Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,354 Bytes
b5adbf2 b93c24a 8c1251f 0ede6a0 3460b5c c72a6e3 bacc813 c72a6e3 b5adbf2 c72a6e3 693c129 c72a6e3 372eac8 b3d320b 693c129 c72a6e3 d89f1ee 37b6092 c72a6e3 b93c24a 3d0f730 c72a6e3 b93c24a d896a67 c72a6e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# Copyright (c) 2024 Alibaba Inc (authors: Chong Zhang)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
os.system('nvidia-smi')
os.system('apt update -y && apt-get install -y apt-utils && apt install -y unzip')
os.environ['PYTHONPATH'] = 'third_party/Matcha-TTS'
os.system('mkdir pretrained_models && cd pretrained_models && git clone https://huggingface.co/FunAudioLLM/InspireMusic-Base.git &&git clone https://huggingface.co/FunAudioLLM/InspireMusic-1.5B-Long.git &&git clone https://huggingface.co/FunAudioLLM/InspireMusic-1.5B.git &&git clone https://huggingface.co/FunAudioLLM/InspireMusic-1.5B-24kHz.git &&git clone https://huggingface.co/FunAudioLLM/InspireMusic-Base-24kHz.git && for i in InspireMusic-Base InspireMusic-Base-24kHz InspireMusic-1.5B InspireMusic-1.5B-24kHz InspireMusic-1.5B-Long; do sed -i -e "s/\.\.\/\.\.\///g" ${i}/inspiremusic.yaml; done && cd ..')
import sys
import torch
print(torch.backends.cudnn.version())
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))
import spaces
import gradio as gr
from inspiremusic.cli.inference import InspireMusicUnified, set_env_variables
import torchaudio
import datetime
import hashlib
import importlib
MODELS = ["InspireMusic-1.5B-Long", "InspireMusic-1.5B", "InspireMusic-Base", "InspireMusic-1.5B-24kHz", "InspireMusic-Base-24kHz"]
AUDIO_PROMPT_DIR = "demo/audio_prompts"
OUTPUT_AUDIO_DIR = "demo/outputs"
DEMO_TEXT_PROMPTS = ["Jazz music with drum beats.",
"A captivating classical piano performance, this piece exudes a dynamic and intense atmosphere, showcasing intricate and expressive instrumental artistry.",
"A soothing instrumental piece blending elements of light music and pop, featuring a gentle guitar rendition. The overall feel is serene and reflective, likely instrumental with no vocals.",
"The instrumental rock piece features dynamic oscillations and wave-like progressions, creating an immersive and energetic atmosphere. The music is purely instrumental, with no vocals, and it blends elements of rock and post-rock for a powerful and evocative experience.",
"The classical instrumental piece exudes a haunting and evocative atmosphere, characterized by its intricate guitar work and profound emotional depth.",
"Experience a dynamic blend of instrumental electronic music with futuristic house vibes, featuring energetic beats and a captivating rhythm. The tracks are likely instrumental, focusing on the immersive soundscapes rather than vocal performances."]
def generate_filename():
hash_object = hashlib.sha256(str(int(datetime.datetime.now().timestamp())).encode())
hash_string = hash_object.hexdigest()
return hash_string
def get_args(
task, text="", audio=None, model_name="InspireMusic-Base",
chorus="intro",
output_sample_rate=48000, max_generate_audio_seconds=30.0, time_start = 0.0, time_end=30.0, trim=False):
if "24kHz" in model_name:
output_sample_rate = 24000
if output_sample_rate == 24000:
fast = True
else:
fast = False
# This function constructs the arguments required for InspireMusic
args = {
"task" : task,
"text" : text,
"audio_prompt" : audio,
"model_name" : model_name,
"chorus" : chorus,
"fast" : fast,
"fade_out" : True,
"trim" : trim,
"output_sample_rate" : output_sample_rate,
"min_generate_audio_seconds": 10.0,
"max_generate_audio_seconds": max_generate_audio_seconds,
"max_audio_prompt_length": 5.0,
"model_dir" : os.path.join("pretrained_models",
model_name),
"result_dir" : OUTPUT_AUDIO_DIR,
"output_fn" : generate_filename(),
"format" : "wav",
"time_start" : time_start,
"time_end": time_end,
"fade_out_duration": 1.0,
}
if args["time_start"] is None:
args["time_start"] = 0.0
args["time_end"] = args["time_start"] + args["max_generate_audio_seconds"]
print(args)
return args
def trim_audio(audio_file, cut_seconds=5):
audio, sr = torchaudio.load(audio_file)
num_samples = cut_seconds * sr
cutted_audio = audio[:, :num_samples]
output_path = os.path.join(AUDIO_PROMPT_DIR, "audio_prompt_" + generate_filename() + ".wav")
torchaudio.save(output_path, cutted_audio, sr)
return output_path
@spaces.GPU(duration=120)
def music_generation(args):
set_env_variables()
model = InspireMusicUnified(
model_name=args["model_name"],
model_dir=args["model_dir"],
min_generate_audio_seconds=args["min_generate_audio_seconds"],
max_generate_audio_seconds=args["max_generate_audio_seconds"],
sample_rate=24000,
output_sample_rate=args["output_sample_rate"],
load_jit=True,
load_onnx=False,
fast=args["fast"],
result_dir=args["result_dir"])
output_path = model.inference(
task=args["task"],
text=args["text"],
audio_prompt=args["audio_prompt"],
chorus=args["chorus"],
time_start=args["time_start"],
time_end=args["time_end"],
output_fn=args["output_fn"],
max_audio_prompt_length=args["max_audio_prompt_length"],
fade_out_duration=args["fade_out_duration"],
output_format=args["format"],
fade_out_mode=args["fade_out"],
trim=args["trim"])
return output_path
def demo_inspiremusic_t2m(text, model_name, chorus,
output_sample_rate, max_generate_audio_seconds):
args = get_args(
task='text-to-music', text=text, audio=None,
model_name=model_name, chorus=chorus,
output_sample_rate=output_sample_rate,
max_generate_audio_seconds=max_generate_audio_seconds)
return music_generation(args)
def demo_inspiremusic_con(text, audio, model_name, chorus,
output_sample_rate, max_generate_audio_seconds):
args = get_args(
task='continuation', text=text, audio=trim_audio(audio, cut_seconds=5),
model_name=model_name, chorus=chorus,
output_sample_rate=output_sample_rate,
max_generate_audio_seconds=max_generate_audio_seconds)
return music_generation(args)
def main():
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# InspireMusic
- Support music generation tasks with long-form and high audio quality, sampling rates up to 48kHz.
- Github: https://github.com/FunAudioLLM/InspireMusic/ | ModelScope Studio: https://modelscope.cn/studios/iic/InspireMusic
- Available music generation models: [InspireMusic-1.5B-Long](https://huggingface.co/FunAudioLLM/InspireMusic-1.5B-Long), [InspireMusic-1.5B](https://huggingface.co/FunAudioLLM/InspireMusic-1.5B), [InspireMusic-Base](https://huggingface.co/FunAudioLLM/InspireMusic-Base), [InspireMusic-1.5B-24kHz](https://huggingface.co/FunAudioLLM/InspireMusic-1.5B-24kHz), [InspireMusic-Base-24kHz](https://huggingface.co/FunAudioLLM/InspireMusic-Base-24kHz). Both on Huggingface and ModelScope.
- Currently only support English text prompts.
- This page is for demo purpose, if you want to generate long-form audio, e.g., 5mins, please try to deploy locally. Thank you for your support.
""")
with gr.Row(equal_height=True):
model_name = gr.Dropdown(
MODELS, label="Select Model Name",
value="InspireMusic-1.5B-Long")
chorus = gr.Dropdown(["intro", "verse", "chorus", "outro"],
label="Chorus Mode", value="intro")
output_sample_rate = gr.Dropdown([48000, 24000],
label="Output Audio Sample Rate (Hz)",
value=48000)
max_generate_audio_seconds = gr.Slider(10, 300,
label="Generate Audio Length (s)",
value=30)
with gr.Row(equal_height=True):
text_input = gr.Textbox(label="Input Text (For Text-to-Music Task)",
value="Experience soothing and sensual instrumental jazz with a touch of Bossa Nova, perfect for a relaxing restaurant or spa ambiance.")
audio_input = gr.Audio(
label="Input Audio Prompt (For Music Continuation Task)",
type="filepath")
music_output = gr.Audio(label="Generated Music", type="filepath", autoplay=True, show_download_button = True)
with gr.Row():
button = gr.Button("Start Text-to-Music Task")
button.click(demo_inspiremusic_t2m,
inputs=[text_input, model_name,
chorus,
output_sample_rate,
max_generate_audio_seconds],
outputs=music_output)
generate_button = gr.Button("Start Music Continuation Task")
generate_button.click(demo_inspiremusic_con,
inputs=[text_input, audio_input, model_name,
chorus,
output_sample_rate,
max_generate_audio_seconds],
outputs=music_output)
t2m_examples = gr.Examples(examples=DEMO_TEXT_PROMPTS, inputs=[text_input])
demo.launch()
if __name__ == '__main__':
os.makedirs(AUDIO_PROMPT_DIR, exist_ok=True)
os.makedirs(OUTPUT_AUDIO_DIR, exist_ok=True)
main()
|