Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,464 Bytes
b5adbf2 b93c24a 8c1251f 0ede6a0 3460b5c 30a8a29 1c4dfd5 c75e017 0a0750e 07629f7 693c129 bacc813 37b6092 b5adbf2 693c129 37b6092 84d3675 37b6092 b93c24a f107ce2 9af664a 1fc806b 9af664a b93c24a 9af664a b93c24a 1343135 b93c24a 7d94b32 4e5c199 b93c24a 37b6092 b93c24a 1343135 b93c24a 1343135 1fc806b 1343135 37b6092 b93c24a 84d3675 f630d6e b93c24a 1343135 b93c24a 1343135 37a3fc6 1343135 b93c24a 1343135 b93c24a 1343135 b93c24a 1343135 b93c24a 04eb8bb 8ae3c92 698dade 6487b24 9af664a 698dade 04eb8bb 8ae3c92 a55649b b93c24a 8ae3c92 9af664a b93c24a 04eb8bb d896a67 ae7dc16 d896a67 693c129 d896a67 ae7dc16 d896a67 22ee199 d896a67 22ee199 d896a67 22ee199 d896a67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# Copyright (c) 2024 Alibaba Inc (authors: Chong Zhang)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
os.system('nvidia-smi')
os.system('apt update -y && apt-get install -y apt-utils && apt install -y unzip')
os.environ['PYTHONPATH'] = 'third_party/Matcha-TTS'
# os.system('pip install flash-attn --no-build-isolation')
# os.system('git submodule update --init --recursive')
# os.system('git clone https://github.com/shivammehta25/Matcha-TTS.git third_party/')
# os.system('mkdir pretrained_models && cd pretrained_models && git clone https://huggingface.co/FunAudioLLM/InspireMusic-Base.git &&git clone https://huggingface.co/FunAudioLLM/InspireMusic-1.5B-Long.git &&git clone https://huggingface.co/FunAudioLLM/InspireMusic-1.5B.git &&git clone https://huggingface.co/FunAudioLLM/InspireMusic-1.5B-24kHz.git &&git clone https://huggingface.co/FunAudioLLM/InspireMusic-Base-24kHz.git && for i in InspireMusic-Base InspireMusic-Base-24kHz InspireMusic-1.5B InspireMusic-1.5B-24kHz InspireMusic-1.5B-Long; do sed -i -e "s/\.\.\/\.\.\///g" ${i}/inspiremusic.yaml; done && cd ..')
# os.system('mkdir pretrained_models && cd pretrained_models && git clone https://huggingface.co/FunAudioLLM/InspireMusic-Base.git && for i in InspireMusic-Base; do sed -i -e "s/\.\.\/\.\.\///g" ${i}/inspiremusic.yaml; done && cd ..')
import sys
import torch
print(torch.backends.cudnn.version())
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))
import spaces
import gradio as gr
from inspiremusic.cli.inference import InspireMusicUnified, set_env_variables
import torchaudio
import datetime
import hashlib
import importlib
MODELS = ["InspireMusic-1.5B-Long", "InspireMusic-1.5B", "InspireMusic-1.5B-24kHz", "InspireMusic-Base", "InspireMusic-Base-24kHz"]
def generate_filename():
hash_object = hashlib.sha256(str(int(datetime.datetime.now().timestamp())).encode())
hash_string = hash_object.hexdigest()
return hash_string
def get_args(
task, text="", audio=None, model_name="InspireMusic-Base",
chorus="intro",
output_sample_rate=48000, max_generate_audio_seconds=30.0, time_start = 0.0, time_end=30.0, trim=False):
if output_sample_rate == 24000:
fast = True
else:
fast = False
# This function constructs the arguments required for InspireMusic
args = {
"task" : task,
"text" : text,
"audio_prompt" : audio,
"model_name" : model_name,
"chorus" : chorus,
"fast" : fast,
"fade_out" : True,
"trim" : trim,
"output_sample_rate" : output_sample_rate,
"min_generate_audio_seconds": 10.0,
"max_generate_audio_seconds": max_generate_audio_seconds,
"max_audio_prompt_length": 5.0,
"model_dir" : os.path.join("pretrained_models",
model_name),
"result_dir" : "exp/inspiremusic",
"output_fn" : generate_filename(),
"format" : "wav",
"time_start" : time_start,
"time_end": time_end,
"fade_out_duration": 1.0,
}
if args["time_start"] is None:
args["time_start"] = 0.0
args["time_end"] = args["time_start"] + args["max_generate_audio_seconds"]
print(args)
return args
def trim_audio(audio_file, cut_seconds=5):
audio, sr = torchaudio.load(audio_file)
num_samples = cut_seconds * sr
cutted_audio = audio[:, :num_samples]
output_path = os.path.join(os.getcwd(), "audio_prompt_" + generate_filename() + ".wav")
torchaudio.save(output_path, cutted_audio, sr)
return output_path
@spaces.GPU(duration=120)
def music_generation(args):
set_env_variables()
model = InspireMusicUnified(
model_name=args["model_name"],
model_dir=args["model_dir"],
min_generate_audio_seconds=args["min_generate_audio_seconds"],
max_generate_audio_seconds=args["max_generate_audio_seconds"],
sample_rate=24000,
output_sample_rate=args["output_sample_rate"],
load_jit=True,
load_onnx=False,
fast=args["fast"],
result_dir=args["result_dir"])
output_path = model.inference(
task=args["task"],
text=args["text"],
audio_prompt=args["audio_prompt"],
chorus=args["chorus"],
time_start=args["time_start"],
time_end=args["time_end"],
output_fn=args["output_fn"],
max_audio_prompt_length=args["max_audio_prompt_length"],
fade_out_duration=args["fade_out_duration"],
output_format=args["format"],
fade_out_mode=args["fade_out"],
trim=args["trim"])
return output_path
# @spaces.GPU(duration=120)
def demo_inspiremusic_t2m(text, model_name, chorus,
output_sample_rate, max_generate_audio_seconds):
args = get_args(
task='text-to-music', text=text, audio=None,
model_name=model_name, chorus=chorus,
output_sample_rate=output_sample_rate,
max_generate_audio_seconds=max_generate_audio_seconds)
return music_generation(args)
# @spaces.GPU(duration=120)
def demo_inspiremusic_con(text, audio, model_name, chorus,
output_sample_rate, max_generate_audio_seconds):
args = get_args(
task='continuation', text=text, audio=trim_audio(audio, cut_seconds=5),
model_name=model_name, chorus=chorus,
output_sample_rate=output_sample_rate,
max_generate_audio_seconds=max_generate_audio_seconds)
return music_generation(args)
# @spaces.GPU(duration=120)
def main():
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# InspireMusic
- Support text-to-music, music continuation, audio super-resolution, audio reconstruction tasks with high audio quality, with available sampling rates of 24kHz, 48kHz.
- Support long audio generation in multiple output audio formats, i.e., wav, flac, mp3, m4a.
- Open-source [InspireMusic-Base](https://modelscope.cn/models/iic/InspireMusic/summary), [InspireMusic-Base-24kHz](https://modelscope.cn/models/iic/InspireMusic-Base-24kHz/summary), [InspireMusic-1.5B](https://modelscope.cn/models/iic/InspireMusic-1.5B/summary), [InspireMusic-1.5B-24kHz](https://modelscope.cn/models/iic/InspireMusic-1.5B-24kHz/summary), [InspireMusic-1.5B-Long](https://modelscope.cn/models/iic/InspireMusic-1.5B-Long/summary) models for music generation.
- Currently only support English text prompts.
This page is for demo purpose, if you want to generate long form music, please try to deploy locally. Thank you for your support.
""")
with gr.Row(equal_height=True):
model_name = gr.Dropdown(MODELS, label="Select Model Name", value="InspireMusic-1.5B-Long")
chorus = gr.Dropdown(["intro", "verse", "chorus", "outro"],
label="Chorus Mode", value="intro")
output_sample_rate = gr.Dropdown([48000, 24000],
label="Output Audio Sample Rate (Hz)",
value=48000)
max_generate_audio_seconds = gr.Slider(10, 30,
label="Generate Audio Length (s)",
value=30)
# with gr.Row(equal_height=True):
text_input = gr.Textbox(label="Input Text (For Text-to-Music Task)", value="Experience soothing and sensual instrumental jazz with a touch of Bossa Nova, perfect for a relaxing restaurant or spa ambiance.")
music_output = gr.Audio(label="Text to Music Output", type="filepath")
button = gr.Button("Text to Music")
button.click(demo_inspiremusic_t2m,
inputs=[text_input, model_name,
chorus,
output_sample_rate,
max_generate_audio_seconds],
outputs=music_output)
audio_input = gr.Audio(label="Input Audio Prompt (For Music Continuation Task)",
type="filepath")
music_con_output = gr.Audio(label="Music Continuation Output", type="filepath")
generate_button = gr.Button("Music Continuation")
generate_button.click(demo_inspiremusic_con,
inputs=[text_input, audio_input, model_name,
chorus,
output_sample_rate,
max_generate_audio_seconds],
outputs=music_con_output)
demo.launch()
if __name__ == '__main__':
main() |