Spaces:
Runtime error
Runtime error
File size: 13,268 Bytes
df6c67d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
import math
from time import perf_counter
from typing import List, Optional, Tuple, Union
import cv2
import mediapipe as mp
import numpy as np
import onnxruntime
import torch
import torch.nn as nn
import torchvision
from mediapipe.tasks.python.components.containers.bounding_box import BoundingBox
from mediapipe.tasks.python.components.containers.category import Category
from mediapipe.tasks.python.components.containers.detections import Detection
from torchvision import transforms
from inference.core.entities.requests.gaze import GazeDetectionInferenceRequest
from inference.core.entities.responses.gaze import (
GazeDetectionInferenceResponse,
GazeDetectionPrediction,
)
from inference.core.entities.responses.inference import FaceDetectionPrediction, Point
from inference.core.env import (
GAZE_MAX_BATCH_SIZE,
MODEL_CACHE_DIR,
REQUIRED_ONNX_PROVIDERS,
TENSORRT_CACHE_PATH,
)
from inference.core.exceptions import OnnxProviderNotAvailable
from inference.core.models.roboflow import OnnxRoboflowCoreModel
from inference.core.utils.image_utils import load_image_rgb
from inference.models.gaze.l2cs import L2CS
class Gaze(OnnxRoboflowCoreModel):
"""Roboflow ONNX Gaze model.
This class is responsible for handling the ONNX Gaze model, including
loading the model, preprocessing the input, and performing inference.
Attributes:
gaze_onnx_session (onnxruntime.InferenceSession): ONNX Runtime session for gaze detection inference.
"""
def __init__(self, *args, **kwargs):
"""Initializes the Gaze with the given arguments and keyword arguments."""
t1 = perf_counter()
super().__init__(*args, **kwargs)
# Create an ONNX Runtime Session with a list of execution providers in priority order. ORT attempts to load providers until one is successful. This keeps the code across devices identical.
self.log("Creating inference sessions")
# TODO: convert face detector (TensorflowLite) to ONNX model
self.gaze_onnx_session = onnxruntime.InferenceSession(
self.cache_file("L2CSNet_gaze360_resnet50_90bins.onnx"),
providers=[
(
"TensorrtExecutionProvider",
{
"trt_engine_cache_enable": True,
"trt_engine_cache_path": TENSORRT_CACHE_PATH,
},
),
"CUDAExecutionProvider",
"CPUExecutionProvider",
],
)
if REQUIRED_ONNX_PROVIDERS:
available_providers = onnxruntime.get_available_providers()
for provider in REQUIRED_ONNX_PROVIDERS:
if provider not in available_providers:
raise OnnxProviderNotAvailable(
f"Required ONNX Execution Provider {provider} is not availble. Check that you are using the correct docker image on a supported device."
)
# init face detector
self.face_detector = mp.tasks.vision.FaceDetector.create_from_options(
mp.tasks.vision.FaceDetectorOptions(
base_options=mp.tasks.BaseOptions(
model_asset_path=self.cache_file("mediapipe_face_detector.tflite")
),
running_mode=mp.tasks.vision.RunningMode.IMAGE,
)
)
# additional settings for gaze detection
self._gaze_transformations = transforms.Compose(
[
transforms.ToTensor(),
transforms.Resize(448),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
)
self.task_type = "gaze-detection"
self.log(f"GAZE model loaded in {perf_counter() - t1:.2f} seconds")
def _crop_face_img(self, np_img: np.ndarray, face: Detection) -> np.ndarray:
"""Extract facial area in an image.
Args:
np_img (np.ndarray): The numpy image.
face (mediapipe.tasks.python.components.containers.detections.Detection): The detected face.
Returns:
np.ndarray: Cropped face image.
"""
# extract face area
bbox = face.bounding_box
x_min = bbox.origin_x
y_min = bbox.origin_y
x_max = bbox.origin_x + bbox.width
y_max = bbox.origin_y + bbox.height
face_img = np_img[y_min:y_max, x_min:x_max, :]
face_img = cv2.resize(face_img, (224, 224))
return face_img
def _detect_gaze(self, np_imgs: List[np.ndarray]) -> List[Tuple[float, float]]:
"""Detect faces and gazes in an image.
Args:
pil_imgs (List[np.ndarray]): The numpy image list, each image is a cropped facial image.
Returns:
List[Tuple[float, float]]: Yaw (radian) and Pitch (radian).
"""
ret = []
for i in range(0, len(np_imgs), GAZE_MAX_BATCH_SIZE):
img_batch = []
for j in range(i, min(len(np_imgs), i + GAZE_MAX_BATCH_SIZE)):
img = self._gaze_transformations(np_imgs[j])
img = np.expand_dims(img, axis=0).astype(np.float32)
img_batch.append(img)
img_batch = np.concatenate(img_batch, axis=0)
onnx_input_image = {self.gaze_onnx_session.get_inputs()[0].name: img_batch}
yaw, pitch = self.gaze_onnx_session.run(None, onnx_input_image)
for j in range(len(img_batch)):
ret.append((yaw[j], pitch[j]))
return ret
def _make_response(
self,
faces: List[Detection],
gazes: List[Tuple[float, float]],
imgW: int,
imgH: int,
time_total: float,
time_face_det: float = None,
time_gaze_det: float = None,
) -> GazeDetectionInferenceResponse:
"""Prepare response object from detected faces and corresponding gazes.
Args:
faces (List[Detection]): The detected faces.
gazes (List[tuple(float, float)]): The detected gazes (yaw, pitch).
imgW (int): The width (px) of original image.
imgH (int): The height (px) of original image.
time_total (float): The processing time.
time_face_det (float): The processing time.
time_gaze_det (float): The processing time.
Returns:
GazeDetectionInferenceResponse: The response object including the detected faces and gazes info.
"""
predictions = []
for face, gaze in zip(faces, gazes):
landmarks = []
for keypoint in face.keypoints:
x = min(max(int(keypoint.x * imgW), 0), imgW - 1)
y = min(max(int(keypoint.y * imgH), 0), imgH - 1)
landmarks.append(Point(x=x, y=y))
bbox = face.bounding_box
x_center = bbox.origin_x + bbox.width / 2
y_center = bbox.origin_y + bbox.height / 2
score = face.categories[0].score
prediction = GazeDetectionPrediction(
face=FaceDetectionPrediction(
x=x_center,
y=y_center,
width=bbox.width,
height=bbox.height,
confidence=score,
class_name="face",
landmarks=landmarks,
),
yaw=gaze[0],
pitch=gaze[1],
)
predictions.append(prediction)
response = GazeDetectionInferenceResponse(
predictions=predictions,
time=time_total,
time_face_det=time_face_det,
time_gaze_det=time_gaze_det,
)
return response
def get_infer_bucket_file_list(self) -> List[str]:
"""Gets the list of files required for inference.
Returns:
List[str]: The list of file names.
"""
return [
"mediapipe_face_detector.tflite",
"L2CSNet_gaze360_resnet50_90bins.onnx",
]
def infer_from_request(
self, request: GazeDetectionInferenceRequest
) -> List[GazeDetectionInferenceResponse]:
"""Detect faces and gazes in image(s).
Args:
request (GazeDetectionInferenceRequest): The request object containing the image.
Returns:
List[GazeDetectionInferenceResponse]: The list of response objects containing the faces and corresponding gazes.
"""
if isinstance(request.image, list):
if len(request.image) > GAZE_MAX_BATCH_SIZE:
raise ValueError(
f"The maximum number of images that can be inferred with gaze detection at one time is {GAZE_MAX_BATCH_SIZE}"
)
imgs = request.image
else:
imgs = [request.image]
time_total = perf_counter()
# load pil images
num_img = len(imgs)
np_imgs = [load_image_rgb(img) for img in imgs]
# face detection
# TODO: face detection for batch
time_face_det = perf_counter()
faces = []
for np_img in np_imgs:
if request.do_run_face_detection:
mp_img = mp.Image(
image_format=mp.ImageFormat.SRGB, data=np_img.astype(np.uint8)
)
faces_per_img = self.face_detector.detect(mp_img).detections
else:
faces_per_img = [
Detection(
bounding_box=BoundingBox(
origin_x=0,
origin_y=0,
width=np_img.shape[1],
height=np_img.shape[0],
),
categories=[Category(score=1.0, category_name="face")],
keypoints=[],
)
]
faces.append(faces_per_img)
time_face_det = (perf_counter() - time_face_det) / num_img
# gaze detection
time_gaze_det = perf_counter()
face_imgs = []
for i, np_img in enumerate(np_imgs):
if request.do_run_face_detection:
face_imgs.extend(
[self._crop_face_img(np_img, face) for face in faces[i]]
)
else:
face_imgs.append(cv2.resize(np_img, (224, 224)))
gazes = self._detect_gaze(face_imgs)
time_gaze_det = (perf_counter() - time_gaze_det) / num_img
time_total = (perf_counter() - time_total) / num_img
# prepare response
response = []
idx_gaze = 0
for i in range(len(np_imgs)):
imgH, imgW, _ = np_imgs[i].shape
faces_per_img = faces[i]
gazes_per_img = gazes[idx_gaze : idx_gaze + len(faces_per_img)]
response.append(
self._make_response(
faces_per_img, gazes_per_img, imgW, imgH, time_total
)
)
return response
class L2C2Wrapper(L2CS):
"""Roboflow L2CS Gaze detection model.
This class is responsible for converting L2CS model to ONNX model.
It is ONLY intended for internal usage.
Workflow:
After training a L2CS model, create an instance of this wrapper class.
Load the trained weights file, and save it as ONNX model.
"""
def __init__(self):
self.device = torch.device("cpu")
self.num_bins = 90
super().__init__(
torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], self.num_bins
)
self._gaze_softmax = nn.Softmax(dim=1)
self._gaze_idx_tensor = torch.FloatTensor([i for i in range(90)]).to(
self.device
)
def forward(self, x):
idx_tensor = torch.stack(
[self._gaze_idx_tensor for i in range(x.shape[0])], dim=0
)
gaze_yaw, gaze_pitch = super().forward(x)
yaw_predicted = self._gaze_softmax(gaze_yaw)
yaw_radian = (
(torch.sum(yaw_predicted * idx_tensor, dim=1) * 4 - 180) * np.pi / 180
)
pitch_predicted = self._gaze_softmax(gaze_pitch)
pitch_radian = (
(torch.sum(pitch_predicted * idx_tensor, dim=1) * 4 - 180) * np.pi / 180
)
return yaw_radian, pitch_radian
def load_L2CS_model(
self,
file_path=f"{MODEL_CACHE_DIR}/gaze/L2CS/L2CSNet_gaze360_resnet50_90bins.pkl",
):
super().load_state_dict(torch.load(file_path, map_location=self.device))
super().to(self.device)
def saveas_ONNX_model(
self,
file_path=f"{MODEL_CACHE_DIR}/gaze/L2CS/L2CSNet_gaze360_resnet50_90bins.onnx",
):
dummy_input = torch.randn(1, 3, 448, 448)
dynamic_axes = {
"input": {0: "batch_size"},
"output_yaw": {0: "batch_size"},
"output_pitch": {0: "batch_size"},
}
torch.onnx.export(
self,
dummy_input,
file_path,
input_names=["input"],
output_names=["output_yaw", "output_pitch"],
dynamic_axes=dynamic_axes,
verbose=False,
)
|