Spaces:
Runtime error
Runtime error
import itertools | |
import json | |
import os | |
from collections import OrderedDict | |
from concurrent.futures import ThreadPoolExecutor | |
from functools import partial | |
from time import perf_counter | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import cv2 | |
import numpy as np | |
import onnxruntime | |
from PIL import Image | |
from inference.core.cache import cache | |
from inference.core.cache.model_artifacts import ( | |
are_all_files_cached, | |
clear_cache, | |
get_cache_dir, | |
get_cache_file_path, | |
initialise_cache, | |
load_json_from_cache, | |
load_text_file_from_cache, | |
save_bytes_in_cache, | |
save_json_in_cache, | |
save_text_lines_in_cache, | |
) | |
from inference.core.devices.utils import GLOBAL_DEVICE_ID | |
from inference.core.entities.requests.inference import ( | |
InferenceRequest, | |
InferenceRequestImage, | |
) | |
from inference.core.entities.responses.inference import InferenceResponse | |
from inference.core.env import ( | |
API_KEY, | |
API_KEY_ENV_NAMES, | |
AWS_ACCESS_KEY_ID, | |
AWS_SECRET_ACCESS_KEY, | |
CORE_MODEL_BUCKET, | |
DISABLE_PREPROC_AUTO_ORIENT, | |
INFER_BUCKET, | |
LAMBDA, | |
MAX_BATCH_SIZE, | |
MODEL_CACHE_DIR, | |
ONNXRUNTIME_EXECUTION_PROVIDERS, | |
REQUIRED_ONNX_PROVIDERS, | |
TENSORRT_CACHE_PATH, | |
) | |
from inference.core.exceptions import ( | |
MissingApiKeyError, | |
ModelArtefactError, | |
OnnxProviderNotAvailable, | |
) | |
from inference.core.logger import logger | |
from inference.core.models.base import Model | |
from inference.core.models.utils.batching import ( | |
calculate_input_elements, | |
create_batches, | |
) | |
from inference.core.roboflow_api import ( | |
ModelEndpointType, | |
get_from_url, | |
get_roboflow_model_data, | |
) | |
from inference.core.utils.image_utils import load_image | |
from inference.core.utils.onnx import get_onnxruntime_execution_providers | |
from inference.core.utils.preprocess import letterbox_image, prepare | |
from inference.core.utils.visualisation import draw_detection_predictions | |
from inference.models.aliases import resolve_roboflow_model_alias | |
NUM_S3_RETRY = 5 | |
SLEEP_SECONDS_BETWEEN_RETRIES = 3 | |
MODEL_METADATA_CACHE_EXPIRATION_TIMEOUT = 3600 # 1 hour | |
S3_CLIENT = None | |
if AWS_ACCESS_KEY_ID and AWS_ACCESS_KEY_ID: | |
try: | |
import boto3 | |
from botocore.config import Config | |
from inference.core.utils.s3 import download_s3_files_to_directory | |
config = Config(retries={"max_attempts": NUM_S3_RETRY, "mode": "standard"}) | |
S3_CLIENT = boto3.client("s3", config=config) | |
except: | |
logger.debug("Error loading boto3") | |
pass | |
DEFAULT_COLOR_PALETTE = [ | |
"#4892EA", | |
"#00EEC3", | |
"#FE4EF0", | |
"#F4004E", | |
"#FA7200", | |
"#EEEE17", | |
"#90FF00", | |
"#78C1D2", | |
"#8C29FF", | |
] | |
class RoboflowInferenceModel(Model): | |
"""Base Roboflow inference model.""" | |
def __init__( | |
self, | |
model_id: str, | |
cache_dir_root=MODEL_CACHE_DIR, | |
api_key=None, | |
load_weights=True, | |
): | |
""" | |
Initialize the RoboflowInferenceModel object. | |
Args: | |
model_id (str): The unique identifier for the model. | |
cache_dir_root (str, optional): The root directory for the cache. Defaults to MODEL_CACHE_DIR. | |
api_key (str, optional): API key for authentication. Defaults to None. | |
""" | |
super().__init__() | |
self.load_weights = load_weights | |
self.metrics = {"num_inferences": 0, "avg_inference_time": 0.0} | |
self.api_key = api_key if api_key else API_KEY | |
model_id = resolve_roboflow_model_alias(model_id=model_id) | |
self.dataset_id, self.version_id = model_id.split("/") | |
self.endpoint = model_id | |
self.device_id = GLOBAL_DEVICE_ID | |
self.cache_dir = os.path.join(cache_dir_root, self.endpoint) | |
self.keypoints_metadata: Optional[dict] = None | |
initialise_cache(model_id=self.endpoint) | |
def cache_file(self, f: str) -> str: | |
"""Get the cache file path for a given file. | |
Args: | |
f (str): Filename. | |
Returns: | |
str: Full path to the cached file. | |
""" | |
return get_cache_file_path(file=f, model_id=self.endpoint) | |
def clear_cache(self) -> None: | |
"""Clear the cache directory.""" | |
clear_cache(model_id=self.endpoint) | |
def draw_predictions( | |
self, | |
inference_request: InferenceRequest, | |
inference_response: InferenceResponse, | |
) -> bytes: | |
"""Draw predictions from an inference response onto the original image provided by an inference request | |
Args: | |
inference_request (ObjectDetectionInferenceRequest): The inference request containing the image on which to draw predictions | |
inference_response (ObjectDetectionInferenceResponse): The inference response containing predictions to be drawn | |
Returns: | |
str: A base64 encoded image string | |
""" | |
return draw_detection_predictions( | |
inference_request=inference_request, | |
inference_response=inference_response, | |
colors=self.colors, | |
) | |
def get_class_names(self): | |
return self.class_names | |
def get_device_id(self) -> str: | |
""" | |
Get the device identifier on which the model is deployed. | |
Returns: | |
str: Device identifier. | |
""" | |
return self.device_id | |
def get_infer_bucket_file_list(self) -> List[str]: | |
"""Get a list of inference bucket files. | |
Raises: | |
NotImplementedError: If the method is not implemented. | |
Returns: | |
List[str]: A list of inference bucket files. | |
""" | |
raise NotImplementedError( | |
self.__class__.__name__ + ".get_infer_bucket_file_list" | |
) | |
def cache_key(self): | |
return f"metadata:{self.endpoint}" | |
def model_metadata_from_memcache_endpoint(endpoint): | |
model_metadata = cache.get(f"metadata:{endpoint}") | |
return model_metadata | |
def model_metadata_from_memcache(self): | |
model_metadata = cache.get(self.cache_key) | |
return model_metadata | |
def write_model_metadata_to_memcache(self, metadata): | |
cache.set( | |
self.cache_key, metadata, expire=MODEL_METADATA_CACHE_EXPIRATION_TIMEOUT | |
) | |
def has_model_metadata(self): | |
return self.model_metadata_from_memcache() is not None | |
def get_model_artifacts(self) -> None: | |
"""Fetch or load the model artifacts. | |
Downloads the model artifacts from S3 or the Roboflow API if they are not already cached. | |
""" | |
self.cache_model_artefacts() | |
self.load_model_artifacts_from_cache() | |
def cache_model_artefacts(self) -> None: | |
infer_bucket_files = self.get_all_required_infer_bucket_file() | |
if are_all_files_cached(files=infer_bucket_files, model_id=self.endpoint): | |
return None | |
if is_model_artefacts_bucket_available(): | |
self.download_model_artefacts_from_s3() | |
return None | |
self.download_model_artifacts_from_roboflow_api() | |
def get_all_required_infer_bucket_file(self) -> List[str]: | |
infer_bucket_files = self.get_infer_bucket_file_list() | |
infer_bucket_files.append(self.weights_file) | |
logger.debug(f"List of files required to load model: {infer_bucket_files}") | |
return [f for f in infer_bucket_files if f is not None] | |
def download_model_artefacts_from_s3(self) -> None: | |
try: | |
logger.debug("Downloading model artifacts from S3") | |
infer_bucket_files = self.get_all_required_infer_bucket_file() | |
cache_directory = get_cache_dir() | |
s3_keys = [f"{self.endpoint}/{file}" for file in infer_bucket_files] | |
download_s3_files_to_directory( | |
bucket=self.model_artifact_bucket, | |
keys=s3_keys, | |
target_dir=cache_directory, | |
s3_client=S3_CLIENT, | |
) | |
except Exception as error: | |
raise ModelArtefactError( | |
f"Could not obtain model artefacts from S3 with keys {s3_keys}. Cause: {error}" | |
) from error | |
def model_artifact_bucket(self): | |
return INFER_BUCKET | |
def download_model_artifacts_from_roboflow_api(self) -> None: | |
logger.debug("Downloading model artifacts from Roboflow API") | |
api_data = get_roboflow_model_data( | |
api_key=self.api_key, | |
model_id=self.endpoint, | |
endpoint_type=ModelEndpointType.ORT, | |
device_id=self.device_id, | |
) | |
if "ort" not in api_data.keys(): | |
raise ModelArtefactError( | |
"Could not find `ort` key in roboflow API model description response." | |
) | |
api_data = api_data["ort"] | |
if "classes" in api_data: | |
save_text_lines_in_cache( | |
content=api_data["classes"], | |
file="class_names.txt", | |
model_id=self.endpoint, | |
) | |
if "model" not in api_data: | |
raise ModelArtefactError( | |
"Could not find `model` key in roboflow API model description response." | |
) | |
if "environment" not in api_data: | |
raise ModelArtefactError( | |
"Could not find `environment` key in roboflow API model description response." | |
) | |
environment = get_from_url(api_data["environment"]) | |
model_weights_response = get_from_url(api_data["model"], json_response=False) | |
save_bytes_in_cache( | |
content=model_weights_response.content, | |
file=self.weights_file, | |
model_id=self.endpoint, | |
) | |
if "colors" in api_data: | |
environment["COLORS"] = api_data["colors"] | |
save_json_in_cache( | |
content=environment, | |
file="environment.json", | |
model_id=self.endpoint, | |
) | |
if "keypoints_metadata" in api_data: | |
# TODO: make sure backend provides that | |
save_json_in_cache( | |
content=api_data["keypoints_metadata"], | |
file="keypoints_metadata.json", | |
model_id=self.endpoint, | |
) | |
def load_model_artifacts_from_cache(self) -> None: | |
logger.debug("Model artifacts already downloaded, loading model from cache") | |
infer_bucket_files = self.get_all_required_infer_bucket_file() | |
if "environment.json" in infer_bucket_files: | |
self.environment = load_json_from_cache( | |
file="environment.json", | |
model_id=self.endpoint, | |
object_pairs_hook=OrderedDict, | |
) | |
if "class_names.txt" in infer_bucket_files: | |
self.class_names = load_text_file_from_cache( | |
file="class_names.txt", | |
model_id=self.endpoint, | |
split_lines=True, | |
strip_white_chars=True, | |
) | |
else: | |
self.class_names = get_class_names_from_environment_file( | |
environment=self.environment | |
) | |
self.colors = get_color_mapping_from_environment( | |
environment=self.environment, | |
class_names=self.class_names, | |
) | |
if "keypoints_metadata.json" in infer_bucket_files: | |
self.keypoints_metadata = parse_keypoints_metadata( | |
load_json_from_cache( | |
file="keypoints_metadata.json", | |
model_id=self.endpoint, | |
object_pairs_hook=OrderedDict, | |
) | |
) | |
self.num_classes = len(self.class_names) | |
if "PREPROCESSING" not in self.environment: | |
raise ModelArtefactError( | |
"Could not find `PREPROCESSING` key in environment file." | |
) | |
if issubclass(type(self.environment["PREPROCESSING"]), dict): | |
self.preproc = self.environment["PREPROCESSING"] | |
else: | |
self.preproc = json.loads(self.environment["PREPROCESSING"]) | |
if self.preproc.get("resize"): | |
self.resize_method = self.preproc["resize"].get("format", "Stretch to") | |
if self.resize_method not in [ | |
"Stretch to", | |
"Fit (black edges) in", | |
"Fit (white edges) in", | |
]: | |
self.resize_method = "Stretch to" | |
else: | |
self.resize_method = "Stretch to" | |
logger.debug(f"Resize method is '{self.resize_method}'") | |
self.multiclass = self.environment.get("MULTICLASS", False) | |
def initialize_model(self) -> None: | |
"""Initialize the model. | |
Raises: | |
NotImplementedError: If the method is not implemented. | |
""" | |
raise NotImplementedError(self.__class__.__name__ + ".initialize_model") | |
def preproc_image( | |
self, | |
image: Union[Any, InferenceRequestImage], | |
disable_preproc_auto_orient: bool = False, | |
disable_preproc_contrast: bool = False, | |
disable_preproc_grayscale: bool = False, | |
disable_preproc_static_crop: bool = False, | |
) -> Tuple[np.ndarray, Tuple[int, int]]: | |
""" | |
Preprocesses an inference request image by loading it, then applying any pre-processing specified by the Roboflow platform, then scaling it to the inference input dimensions. | |
Args: | |
image (Union[Any, InferenceRequestImage]): An object containing information necessary to load the image for inference. | |
disable_preproc_auto_orient (bool, optional): If true, the auto orient preprocessing step is disabled for this call. Default is False. | |
disable_preproc_contrast (bool, optional): If true, the contrast preprocessing step is disabled for this call. Default is False. | |
disable_preproc_grayscale (bool, optional): If true, the grayscale preprocessing step is disabled for this call. Default is False. | |
disable_preproc_static_crop (bool, optional): If true, the static crop preprocessing step is disabled for this call. Default is False. | |
Returns: | |
Tuple[np.ndarray, Tuple[int, int]]: A tuple containing a numpy array of the preprocessed image pixel data and a tuple of the images original size. | |
""" | |
np_image, is_bgr = load_image( | |
image, | |
disable_preproc_auto_orient=disable_preproc_auto_orient | |
or "auto-orient" not in self.preproc.keys() | |
or DISABLE_PREPROC_AUTO_ORIENT, | |
) | |
preprocessed_image, img_dims = self.preprocess_image( | |
np_image, | |
disable_preproc_contrast=disable_preproc_contrast, | |
disable_preproc_grayscale=disable_preproc_grayscale, | |
disable_preproc_static_crop=disable_preproc_static_crop, | |
) | |
if self.resize_method == "Stretch to": | |
resized = cv2.resize( | |
preprocessed_image, (self.img_size_w, self.img_size_h), cv2.INTER_CUBIC | |
) | |
elif self.resize_method == "Fit (black edges) in": | |
resized = letterbox_image( | |
preprocessed_image, (self.img_size_w, self.img_size_h) | |
) | |
elif self.resize_method == "Fit (white edges) in": | |
resized = letterbox_image( | |
preprocessed_image, | |
(self.img_size_w, self.img_size_h), | |
color=(255, 255, 255), | |
) | |
if is_bgr: | |
resized = cv2.cvtColor(resized, cv2.COLOR_BGR2RGB) | |
img_in = np.transpose(resized, (2, 0, 1)) | |
img_in = img_in.astype(np.float32) | |
img_in = np.expand_dims(img_in, axis=0) | |
return img_in, img_dims | |
def preprocess_image( | |
self, | |
image: np.ndarray, | |
disable_preproc_contrast: bool = False, | |
disable_preproc_grayscale: bool = False, | |
disable_preproc_static_crop: bool = False, | |
) -> Tuple[np.ndarray, Tuple[int, int]]: | |
""" | |
Preprocesses the given image using specified preprocessing steps. | |
Args: | |
image (Image.Image): The PIL image to preprocess. | |
disable_preproc_contrast (bool, optional): If true, the contrast preprocessing step is disabled for this call. Default is False. | |
disable_preproc_grayscale (bool, optional): If true, the grayscale preprocessing step is disabled for this call. Default is False. | |
disable_preproc_static_crop (bool, optional): If true, the static crop preprocessing step is disabled for this call. Default is False. | |
Returns: | |
Image.Image: The preprocessed PIL image. | |
""" | |
return prepare( | |
image, | |
self.preproc, | |
disable_preproc_contrast=disable_preproc_contrast, | |
disable_preproc_grayscale=disable_preproc_grayscale, | |
disable_preproc_static_crop=disable_preproc_static_crop, | |
) | |
def weights_file(self) -> str: | |
"""Abstract property representing the file containing the model weights. | |
Raises: | |
NotImplementedError: This property must be implemented in subclasses. | |
Returns: | |
str: The file path to the weights file. | |
""" | |
raise NotImplementedError(self.__class__.__name__ + ".weights_file") | |
class RoboflowCoreModel(RoboflowInferenceModel): | |
"""Base Roboflow inference model (Inherits from CvModel since all Roboflow models are CV models currently).""" | |
def __init__( | |
self, | |
model_id: str, | |
api_key=None, | |
): | |
"""Initializes the RoboflowCoreModel instance. | |
Args: | |
model_id (str): The identifier for the specific model. | |
api_key ([type], optional): The API key for authentication. Defaults to None. | |
""" | |
super().__init__(model_id, api_key=api_key) | |
self.download_weights() | |
def download_weights(self) -> None: | |
"""Downloads the model weights from the configured source. | |
This method includes handling for AWS access keys and error handling. | |
""" | |
infer_bucket_files = self.get_infer_bucket_file_list() | |
if are_all_files_cached(files=infer_bucket_files, model_id=self.endpoint): | |
logger.debug("Model artifacts already downloaded, loading from cache") | |
return None | |
if is_model_artefacts_bucket_available(): | |
self.download_model_artefacts_from_s3() | |
return None | |
self.download_model_from_roboflow_api() | |
def download_model_from_roboflow_api(self) -> None: | |
api_data = get_roboflow_model_data( | |
api_key=self.api_key, | |
model_id=self.endpoint, | |
endpoint_type=ModelEndpointType.CORE_MODEL, | |
device_id=self.device_id, | |
) | |
if "weights" not in api_data: | |
raise ModelArtefactError( | |
f"`weights` key not available in Roboflow API response while downloading model weights." | |
) | |
for weights_url_key in api_data["weights"]: | |
weights_url = api_data["weights"][weights_url_key] | |
t1 = perf_counter() | |
model_weights_response = get_from_url(weights_url, json_response=False) | |
filename = weights_url.split("?")[0].split("/")[-1] | |
save_bytes_in_cache( | |
content=model_weights_response.content, | |
file=filename, | |
model_id=self.endpoint, | |
) | |
if perf_counter() - t1 > 120: | |
logger.debug( | |
"Weights download took longer than 120 seconds, refreshing API request" | |
) | |
api_data = get_roboflow_model_data( | |
api_key=self.api_key, | |
model_id=self.endpoint, | |
endpoint_type=ModelEndpointType.CORE_MODEL, | |
device_id=self.device_id, | |
) | |
def get_device_id(self) -> str: | |
"""Returns the device ID associated with this model. | |
Returns: | |
str: The device ID. | |
""" | |
return self.device_id | |
def get_infer_bucket_file_list(self) -> List[str]: | |
"""Abstract method to get the list of files to be downloaded from the inference bucket. | |
Raises: | |
NotImplementedError: This method must be implemented in subclasses. | |
Returns: | |
List[str]: A list of filenames. | |
""" | |
raise NotImplementedError( | |
"get_infer_bucket_file_list not implemented for OnnxRoboflowCoreModel" | |
) | |
def preprocess_image(self, image: Image.Image) -> Image.Image: | |
"""Abstract method to preprocess an image. | |
Raises: | |
NotImplementedError: This method must be implemented in subclasses. | |
Returns: | |
Image.Image: The preprocessed PIL image. | |
""" | |
raise NotImplementedError(self.__class__.__name__ + ".preprocess_image") | |
def weights_file(self) -> str: | |
"""Abstract property representing the file containing the model weights. For core models, all model artifacts are handled through get_infer_bucket_file_list method.""" | |
return None | |
def model_artifact_bucket(self): | |
return CORE_MODEL_BUCKET | |
class OnnxRoboflowInferenceModel(RoboflowInferenceModel): | |
"""Roboflow Inference Model that operates using an ONNX model file.""" | |
def __init__( | |
self, | |
model_id: str, | |
onnxruntime_execution_providers: List[ | |
str | |
] = get_onnxruntime_execution_providers(ONNXRUNTIME_EXECUTION_PROVIDERS), | |
*args, | |
**kwargs, | |
): | |
"""Initializes the OnnxRoboflowInferenceModel instance. | |
Args: | |
model_id (str): The identifier for the specific ONNX model. | |
*args: Variable length argument list. | |
**kwargs: Arbitrary keyword arguments. | |
""" | |
super().__init__(model_id, *args, **kwargs) | |
if self.load_weights or not self.has_model_metadata: | |
self.onnxruntime_execution_providers = onnxruntime_execution_providers | |
for ep in self.onnxruntime_execution_providers: | |
if ep == "TensorrtExecutionProvider": | |
ep = ( | |
"TensorrtExecutionProvider", | |
{ | |
"trt_engine_cache_enable": True, | |
"trt_engine_cache_path": os.path.join( | |
TENSORRT_CACHE_PATH, self.endpoint | |
), | |
"trt_fp16_enable": True, | |
}, | |
) | |
self.initialize_model() | |
self.image_loader_threadpool = ThreadPoolExecutor(max_workers=None) | |
try: | |
self.validate_model() | |
except ModelArtefactError as e: | |
logger.error(f"Unable to validate model artifacts, clearing cache: {e}") | |
self.clear_cache() | |
raise ModelArtefactError from e | |
def infer(self, image: Any, **kwargs) -> Any: | |
input_elements = calculate_input_elements(input_value=image) | |
max_batch_size = MAX_BATCH_SIZE if self.batching_enabled else self.batch_size | |
if (input_elements == 1) or (max_batch_size == float("inf")): | |
return super().infer(image, **kwargs) | |
logger.debug( | |
f"Inference will be executed in batches, as there is {input_elements} input elements and " | |
f"maximum batch size for a model is set to: {max_batch_size}" | |
) | |
inference_results = [] | |
for batch_input in create_batches(sequence=image, batch_size=max_batch_size): | |
batch_inference_results = super().infer(batch_input, **kwargs) | |
inference_results.append(batch_inference_results) | |
return self.merge_inference_results(inference_results=inference_results) | |
def merge_inference_results(self, inference_results: List[Any]) -> Any: | |
return list(itertools.chain(*inference_results)) | |
def validate_model(self) -> None: | |
if not self.load_weights: | |
return | |
try: | |
assert self.onnx_session is not None | |
except AssertionError as e: | |
raise ModelArtefactError( | |
"ONNX session not initialized. Check that the model weights are available." | |
) from e | |
try: | |
self.run_test_inference() | |
except Exception as e: | |
raise ModelArtefactError(f"Unable to run test inference. Cause: {e}") from e | |
try: | |
self.validate_model_classes() | |
except Exception as e: | |
raise ModelArtefactError( | |
f"Unable to validate model classes. Cause: {e}" | |
) from e | |
def run_test_inference(self) -> None: | |
test_image = (np.random.rand(1024, 1024, 3) * 255).astype(np.uint8) | |
return self.infer(test_image) | |
def get_model_output_shape(self) -> Tuple[int, int, int]: | |
test_image = (np.random.rand(1024, 1024, 3) * 255).astype(np.uint8) | |
test_image, _ = self.preprocess(test_image) | |
output = self.predict(test_image)[0] | |
return output.shape | |
def validate_model_classes(self) -> None: | |
pass | |
def get_infer_bucket_file_list(self) -> list: | |
"""Returns the list of files to be downloaded from the inference bucket for ONNX model. | |
Returns: | |
list: A list of filenames specific to ONNX models. | |
""" | |
return ["environment.json", "class_names.txt"] | |
def initialize_model(self) -> None: | |
"""Initializes the ONNX model, setting up the inference session and other necessary properties.""" | |
self.get_model_artifacts() | |
logger.debug("Creating inference session") | |
if self.load_weights or not self.has_model_metadata: | |
t1_session = perf_counter() | |
# Create an ONNX Runtime Session with a list of execution providers in priority order. ORT attempts to load providers until one is successful. This keeps the code across devices identical. | |
providers = self.onnxruntime_execution_providers | |
if not self.load_weights: | |
providers = ["CPUExecutionProvider"] | |
try: | |
self.onnx_session = onnxruntime.InferenceSession( | |
self.cache_file(self.weights_file), | |
providers=providers, | |
) | |
except Exception as e: | |
self.clear_cache() | |
raise ModelArtefactError( | |
f"Unable to load ONNX session. Cause: {e}" | |
) from e | |
logger.debug(f"Session created in {perf_counter() - t1_session} seconds") | |
if REQUIRED_ONNX_PROVIDERS: | |
available_providers = onnxruntime.get_available_providers() | |
for provider in REQUIRED_ONNX_PROVIDERS: | |
if provider not in available_providers: | |
raise OnnxProviderNotAvailable( | |
f"Required ONNX Execution Provider {provider} is not availble. Check that you are using the correct docker image on a supported device." | |
) | |
inputs = self.onnx_session.get_inputs()[0] | |
input_shape = inputs.shape | |
self.batch_size = input_shape[0] | |
self.img_size_h = input_shape[2] | |
self.img_size_w = input_shape[3] | |
self.input_name = inputs.name | |
if isinstance(self.img_size_h, str) or isinstance(self.img_size_w, str): | |
if "resize" in self.preproc: | |
self.img_size_h = int(self.preproc["resize"]["height"]) | |
self.img_size_w = int(self.preproc["resize"]["width"]) | |
else: | |
self.img_size_h = 640 | |
self.img_size_w = 640 | |
if isinstance(self.batch_size, str): | |
self.batching_enabled = True | |
logger.debug( | |
f"Model {self.endpoint} is loaded with dynamic batching enabled" | |
) | |
else: | |
self.batching_enabled = False | |
logger.debug( | |
f"Model {self.endpoint} is loaded with dynamic batching disabled" | |
) | |
model_metadata = { | |
"batch_size": self.batch_size, | |
"img_size_h": self.img_size_h, | |
"img_size_w": self.img_size_w, | |
} | |
logger.debug(f"Writing model metadata to memcache") | |
self.write_model_metadata_to_memcache(model_metadata) | |
if not self.load_weights: # had to load weights to get metadata | |
del self.onnx_session | |
else: | |
if not self.has_model_metadata: | |
raise ValueError( | |
"This should be unreachable, should get weights if we don't have model metadata" | |
) | |
logger.debug(f"Loading model metadata from memcache") | |
metadata = self.model_metadata_from_memcache() | |
self.batch_size = metadata["batch_size"] | |
self.img_size_h = metadata["img_size_h"] | |
self.img_size_w = metadata["img_size_w"] | |
if isinstance(self.batch_size, str): | |
self.batching_enabled = True | |
logger.debug( | |
f"Model {self.endpoint} is loaded with dynamic batching enabled" | |
) | |
else: | |
self.batching_enabled = False | |
logger.debug( | |
f"Model {self.endpoint} is loaded with dynamic batching disabled" | |
) | |
def load_image( | |
self, | |
image: Any, | |
disable_preproc_auto_orient: bool = False, | |
disable_preproc_contrast: bool = False, | |
disable_preproc_grayscale: bool = False, | |
disable_preproc_static_crop: bool = False, | |
) -> Tuple[np.ndarray, Tuple[int, int]]: | |
if isinstance(image, list): | |
preproc_image = partial( | |
self.preproc_image, | |
disable_preproc_auto_orient=disable_preproc_auto_orient, | |
disable_preproc_contrast=disable_preproc_contrast, | |
disable_preproc_grayscale=disable_preproc_grayscale, | |
disable_preproc_static_crop=disable_preproc_static_crop, | |
) | |
imgs_with_dims = self.image_loader_threadpool.map(preproc_image, image) | |
imgs, img_dims = zip(*imgs_with_dims) | |
img_in = np.concatenate(imgs, axis=0) | |
else: | |
img_in, img_dims = self.preproc_image( | |
image, | |
disable_preproc_auto_orient=disable_preproc_auto_orient, | |
disable_preproc_contrast=disable_preproc_contrast, | |
disable_preproc_grayscale=disable_preproc_grayscale, | |
disable_preproc_static_crop=disable_preproc_static_crop, | |
) | |
img_dims = [img_dims] | |
return img_in, img_dims | |
def weights_file(self) -> str: | |
"""Returns the file containing the ONNX model weights. | |
Returns: | |
str: The file path to the weights file. | |
""" | |
return "weights.onnx" | |
class OnnxRoboflowCoreModel(RoboflowCoreModel): | |
"""Roboflow Inference Model that operates using an ONNX model file.""" | |
pass | |
def get_class_names_from_environment_file(environment: Optional[dict]) -> List[str]: | |
if environment is None: | |
raise ModelArtefactError( | |
f"Missing environment while attempting to get model class names." | |
) | |
if class_mapping_not_available_in_environment(environment=environment): | |
raise ModelArtefactError( | |
f"Missing `CLASS_MAP` in environment or `CLASS_MAP` is not dict." | |
) | |
class_names = [] | |
for i in range(len(environment["CLASS_MAP"].keys())): | |
class_names.append(environment["CLASS_MAP"][str(i)]) | |
return class_names | |
def class_mapping_not_available_in_environment(environment: dict) -> bool: | |
return "CLASS_MAP" not in environment or not issubclass( | |
type(environment["CLASS_MAP"]), dict | |
) | |
def get_color_mapping_from_environment( | |
environment: Optional[dict], class_names: List[str] | |
) -> Dict[str, str]: | |
if color_mapping_available_in_environment(environment=environment): | |
return environment["COLORS"] | |
return { | |
class_name: DEFAULT_COLOR_PALETTE[i % len(DEFAULT_COLOR_PALETTE)] | |
for i, class_name in enumerate(class_names) | |
} | |
def color_mapping_available_in_environment(environment: Optional[dict]) -> bool: | |
return ( | |
environment is not None | |
and "COLORS" in environment | |
and issubclass(type(environment["COLORS"]), dict) | |
) | |
def is_model_artefacts_bucket_available() -> bool: | |
return ( | |
AWS_ACCESS_KEY_ID is not None | |
and AWS_SECRET_ACCESS_KEY is not None | |
and LAMBDA | |
and S3_CLIENT is not None | |
) | |
def parse_keypoints_metadata(metadata: list) -> dict: | |
return { | |
e["object_class_id"]: {int(key): value for key, value in e["keypoints"].items()} | |
for e in metadata | |
} | |