Spaces:
Runtime error
Runtime error
from typing import Any, List, Optional, Tuple, Union | |
import numpy as np | |
from inference.core.entities.responses.inference import ( | |
InferenceResponseImage, | |
ObjectDetectionInferenceResponse, | |
ObjectDetectionPrediction, | |
) | |
from inference.core.env import FIX_BATCH_SIZE, MAX_BATCH_SIZE | |
from inference.core.logger import logger | |
from inference.core.models.defaults import ( | |
DEFAULT_CLASS_AGNOSTIC_NMS, | |
DEFAULT_CONFIDENCE, | |
DEFAULT_IOU_THRESH, | |
DEFAULT_MAX_CANDIDATES, | |
DEFAUlT_MAX_DETECTIONS, | |
) | |
from inference.core.models.roboflow import OnnxRoboflowInferenceModel | |
from inference.core.models.types import PreprocessReturnMetadata | |
from inference.core.models.utils.validate import ( | |
get_num_classes_from_model_prediction_shape, | |
) | |
from inference.core.nms import w_np_non_max_suppression | |
from inference.core.utils.postprocess import post_process_bboxes | |
class ObjectDetectionBaseOnnxRoboflowInferenceModel(OnnxRoboflowInferenceModel): | |
"""Roboflow ONNX Object detection model. This class implements an object detection specific infer method.""" | |
task_type = "object-detection" | |
box_format = "xywh" | |
def infer( | |
self, | |
image: Any, | |
class_agnostic_nms: bool = DEFAULT_CLASS_AGNOSTIC_NMS, | |
confidence: float = DEFAULT_CONFIDENCE, | |
disable_preproc_auto_orient: bool = False, | |
disable_preproc_contrast: bool = False, | |
disable_preproc_grayscale: bool = False, | |
disable_preproc_static_crop: bool = False, | |
iou_threshold: float = DEFAULT_IOU_THRESH, | |
fix_batch_size: bool = False, | |
max_candidates: int = DEFAULT_MAX_CANDIDATES, | |
max_detections: int = DEFAUlT_MAX_DETECTIONS, | |
return_image_dims: bool = False, | |
**kwargs, | |
) -> Any: | |
""" | |
Runs object detection inference on one or multiple images and returns the detections. | |
Args: | |
image (Any): The input image or a list of images to process. | |
class_agnostic_nms (bool, optional): Whether to use class-agnostic non-maximum suppression. Defaults to False. | |
confidence (float, optional): Confidence threshold for predictions. Defaults to 0.5. | |
iou_threshold (float, optional): IoU threshold for non-maximum suppression. Defaults to 0.5. | |
fix_batch_size (bool, optional): If True, fix the batch size for predictions. Useful when the model requires a fixed batch size. Defaults to False. | |
max_candidates (int, optional): Maximum number of candidate detections. Defaults to 3000. | |
max_detections (int, optional): Maximum number of detections after non-maximum suppression. Defaults to 300. | |
return_image_dims (bool, optional): Whether to return the dimensions of the processed images along with the predictions. Defaults to False. | |
disable_preproc_auto_orient (bool, optional): If true, the auto orient preprocessing step is disabled for this call. Default is False. | |
disable_preproc_contrast (bool, optional): If true, the auto contrast preprocessing step is disabled for this call. Default is False. | |
disable_preproc_grayscale (bool, optional): If true, the grayscale preprocessing step is disabled for this call. Default is False. | |
disable_preproc_static_crop (bool, optional): If true, the static crop preprocessing step is disabled for this call. Default is False. | |
*args: Variable length argument list. | |
**kwargs: Arbitrary keyword arguments. | |
Returns: | |
Union[List[ObjectDetectionInferenceResponse], ObjectDetectionInferenceResponse]: One or multiple object detection inference responses based on the number of processed images. Each response contains a list of predictions. If `return_image_dims` is True, it will return a tuple with predictions and image dimensions. | |
Raises: | |
ValueError: If batching is not enabled for the model and more than one image is passed for processing. | |
""" | |
return super().infer( | |
image, | |
class_agnostic_nms=class_agnostic_nms, | |
confidence=confidence, | |
disable_preproc_auto_orient=disable_preproc_auto_orient, | |
disable_preproc_contrast=disable_preproc_contrast, | |
disable_preproc_grayscale=disable_preproc_grayscale, | |
disable_preproc_static_crop=disable_preproc_static_crop, | |
iou_threshold=iou_threshold, | |
fix_batch_size=fix_batch_size, | |
max_candidates=max_candidates, | |
max_detections=max_detections, | |
return_image_dims=return_image_dims, | |
**kwargs, | |
) | |
def make_response( | |
self, | |
predictions: List[List[float]], | |
img_dims: List[Tuple[int, int]], | |
class_filter: Optional[List[str]] = None, | |
*args, | |
**kwargs, | |
) -> List[ObjectDetectionInferenceResponse]: | |
"""Constructs object detection response objects based on predictions. | |
Args: | |
predictions (List[List[float]]): The list of predictions. | |
img_dims (List[Tuple[int, int]]): Dimensions of the images. | |
class_filter (Optional[List[str]]): A list of class names to filter, if provided. | |
Returns: | |
List[ObjectDetectionInferenceResponse]: A list of response objects containing object detection predictions. | |
""" | |
if isinstance(img_dims, dict) and "img_dims" in img_dims: | |
img_dims = img_dims["img_dims"] | |
predictions = predictions[ | |
: len(img_dims) | |
] # If the batch size was fixed we have empty preds at the end | |
responses = [ | |
ObjectDetectionInferenceResponse( | |
predictions=[ | |
ObjectDetectionPrediction( | |
# Passing args as a dictionary here since one of the args is 'class' (a protected term in Python) | |
**{ | |
"x": (pred[0] + pred[2]) / 2, | |
"y": (pred[1] + pred[3]) / 2, | |
"width": pred[2] - pred[0], | |
"height": pred[3] - pred[1], | |
"confidence": pred[4], | |
"class": self.class_names[int(pred[6])], | |
"class_id": int(pred[6]), | |
} | |
) | |
for pred in batch_predictions | |
if not class_filter | |
or self.class_names[int(pred[6])] in class_filter | |
], | |
image=InferenceResponseImage( | |
width=img_dims[ind][1], height=img_dims[ind][0] | |
), | |
) | |
for ind, batch_predictions in enumerate(predictions) | |
] | |
return responses | |
def postprocess( | |
self, | |
predictions: Tuple[np.ndarray, ...], | |
preproc_return_metadata: PreprocessReturnMetadata, | |
class_agnostic_nms=DEFAULT_CLASS_AGNOSTIC_NMS, | |
confidence: float = DEFAULT_CONFIDENCE, | |
iou_threshold: float = DEFAULT_IOU_THRESH, | |
max_candidates: int = DEFAULT_MAX_CANDIDATES, | |
max_detections: int = DEFAUlT_MAX_DETECTIONS, | |
return_image_dims: bool = False, | |
**kwargs, | |
) -> List[ObjectDetectionInferenceResponse]: | |
"""Postprocesses the object detection predictions. | |
Args: | |
predictions (np.ndarray): Raw predictions from the model. | |
img_dims (List[Tuple[int, int]]): Dimensions of the images. | |
class_agnostic_nms (bool): Whether to apply class-agnostic non-max suppression. Default is False. | |
confidence (float): Confidence threshold for filtering detections. Default is 0.5. | |
iou_threshold (float): IoU threshold for non-max suppression. Default is 0.5. | |
max_candidates (int): Maximum number of candidate detections. Default is 3000. | |
max_detections (int): Maximum number of final detections. Default is 300. | |
Returns: | |
List[ObjectDetectionInferenceResponse]: The post-processed predictions. | |
""" | |
predictions = predictions[0] | |
predictions = w_np_non_max_suppression( | |
predictions, | |
conf_thresh=confidence, | |
iou_thresh=iou_threshold, | |
class_agnostic=class_agnostic_nms, | |
max_detections=max_detections, | |
max_candidate_detections=max_candidates, | |
box_format=self.box_format, | |
) | |
infer_shape = (self.img_size_h, self.img_size_w) | |
img_dims = preproc_return_metadata["img_dims"] | |
predictions = post_process_bboxes( | |
predictions, | |
infer_shape, | |
img_dims, | |
self.preproc, | |
resize_method=self.resize_method, | |
disable_preproc_static_crop=preproc_return_metadata[ | |
"disable_preproc_static_crop" | |
], | |
) | |
return self.make_response(predictions, img_dims, **kwargs) | |
def preprocess( | |
self, | |
image: Any, | |
disable_preproc_auto_orient: bool = False, | |
disable_preproc_contrast: bool = False, | |
disable_preproc_grayscale: bool = False, | |
disable_preproc_static_crop: bool = False, | |
fix_batch_size: bool = False, | |
**kwargs, | |
) -> Tuple[np.ndarray, PreprocessReturnMetadata]: | |
"""Preprocesses an object detection inference request. | |
Args: | |
request (ObjectDetectionInferenceRequest): The request object containing images. | |
Returns: | |
Tuple[np.ndarray, List[Tuple[int, int]]]: Preprocessed image inputs and corresponding dimensions. | |
""" | |
img_in, img_dims = self.load_image( | |
image, | |
disable_preproc_auto_orient=disable_preproc_auto_orient, | |
disable_preproc_contrast=disable_preproc_contrast, | |
disable_preproc_grayscale=disable_preproc_grayscale, | |
disable_preproc_static_crop=disable_preproc_static_crop, | |
) | |
img_in /= 255.0 | |
if self.batching_enabled: | |
batch_padding = 0 | |
if FIX_BATCH_SIZE or fix_batch_size: | |
if MAX_BATCH_SIZE == float("inf"): | |
logger.warn( | |
"Requested fix_batch_size but MAX_BATCH_SIZE is not set. Using dynamic batching." | |
) | |
batch_padding = 0 | |
else: | |
batch_padding = MAX_BATCH_SIZE - img_in.shape[0] | |
if batch_padding < 0: | |
raise ValueError( | |
f"Requested fix_batch_size but passed in {img_in.shape[0]} images " | |
f"when the model's batch size is {MAX_BATCH_SIZE}\n" | |
f"Consider turning off fix_batch_size, changing `MAX_BATCH_SIZE` in" | |
f"your inference server config, or passing at most {MAX_BATCH_SIZE} images at a time" | |
) | |
width_remainder = img_in.shape[2] % 32 | |
height_remainder = img_in.shape[3] % 32 | |
if width_remainder > 0: | |
width_padding = 32 - (img_in.shape[2] % 32) | |
else: | |
width_padding = 0 | |
if height_remainder > 0: | |
height_padding = 32 - (img_in.shape[3] % 32) | |
else: | |
height_padding = 0 | |
img_in = np.pad( | |
img_in, | |
((0, batch_padding), (0, 0), (0, width_padding), (0, height_padding)), | |
"constant", | |
) | |
return img_in, PreprocessReturnMetadata( | |
{ | |
"img_dims": img_dims, | |
"disable_preproc_static_crop": disable_preproc_static_crop, | |
} | |
) | |
def predict(self, img_in: np.ndarray, **kwargs) -> Tuple[np.ndarray]: | |
"""Runs inference on the ONNX model. | |
Args: | |
img_in (np.ndarray): The preprocessed image(s) to run inference on. | |
Returns: | |
Tuple[np.ndarray]: The ONNX model predictions. | |
Raises: | |
NotImplementedError: This method must be implemented by a subclass. | |
""" | |
raise NotImplementedError("predict must be implemented by a subclass") | |
def validate_model_classes(self) -> None: | |
output_shape = self.get_model_output_shape() | |
num_classes = get_num_classes_from_model_prediction_shape( | |
output_shape[2], masks=0 | |
) | |
try: | |
assert num_classes == self.num_classes | |
except AssertionError: | |
raise ValueError( | |
f"Number of classes in model ({num_classes}) does not match the number of classes in the environment ({self.num_classes})" | |
) | |