Spaces:
Configuration error
Configuration error
| from typing import List, Optional, Tuple | |
| import numpy as np | |
| from inference.core.entities.responses.inference import ( | |
| InferenceResponseImage, | |
| Keypoint, | |
| KeypointsDetectionInferenceResponse, | |
| KeypointsPrediction, | |
| ) | |
| from inference.core.exceptions import ModelArtefactError | |
| from inference.core.models.object_detection_base import ( | |
| ObjectDetectionBaseOnnxRoboflowInferenceModel, | |
| ) | |
| from inference.core.models.types import PreprocessReturnMetadata | |
| from inference.core.models.utils.keypoints import model_keypoints_to_response | |
| from inference.core.models.utils.validate import ( | |
| get_num_classes_from_model_prediction_shape, | |
| ) | |
| from inference.core.nms import w_np_non_max_suppression | |
| from inference.core.utils.postprocess import post_process_bboxes, post_process_keypoints | |
| DEFAULT_CONFIDENCE = 0.4 | |
| DEFAULT_IOU_THRESH = 0.3 | |
| DEFAULT_CLASS_AGNOSTIC_NMS = False | |
| DEFAUlT_MAX_DETECTIONS = 300 | |
| DEFAULT_MAX_CANDIDATES = 3000 | |
| class KeypointsDetectionBaseOnnxRoboflowInferenceModel( | |
| ObjectDetectionBaseOnnxRoboflowInferenceModel | |
| ): | |
| """Roboflow ONNX Object detection model. This class implements an object detection specific infer method.""" | |
| task_type = "keypoint-detection" | |
| def __init__(self, model_id: str, *args, **kwargs): | |
| super().__init__(model_id, *args, **kwargs) | |
| def get_infer_bucket_file_list(self) -> list: | |
| """Returns the list of files to be downloaded from the inference bucket for ONNX model. | |
| Returns: | |
| list: A list of filenames specific to ONNX models. | |
| """ | |
| return ["environment.json", "class_names.txt", "keypoints_metadata.json"] | |
| def postprocess( | |
| self, | |
| predictions: Tuple[np.ndarray], | |
| preproc_return_metadata: PreprocessReturnMetadata, | |
| class_agnostic_nms=DEFAULT_CLASS_AGNOSTIC_NMS, | |
| confidence: float = DEFAULT_CONFIDENCE, | |
| iou_threshold: float = DEFAULT_IOU_THRESH, | |
| max_candidates: int = DEFAULT_MAX_CANDIDATES, | |
| max_detections: int = DEFAUlT_MAX_DETECTIONS, | |
| return_image_dims: bool = False, | |
| **kwargs, | |
| ) -> List[KeypointsDetectionInferenceResponse]: | |
| """Postprocesses the object detection predictions. | |
| Args: | |
| predictions (np.ndarray): Raw predictions from the model. | |
| img_dims (List[Tuple[int, int]]): Dimensions of the images. | |
| class_agnostic_nms (bool): Whether to apply class-agnostic non-max suppression. Default is False. | |
| confidence (float): Confidence threshold for filtering detections. Default is 0.5. | |
| iou_threshold (float): IoU threshold for non-max suppression. Default is 0.5. | |
| max_candidates (int): Maximum number of candidate detections. Default is 3000. | |
| max_detections (int): Maximum number of final detections. Default is 300. | |
| Returns: | |
| List[KeypointsDetectionInferenceResponse]: The post-processed predictions. | |
| """ | |
| predictions = predictions[0] | |
| number_of_classes = len(self.get_class_names) | |
| num_masks = predictions.shape[2] - 5 - number_of_classes | |
| predictions = w_np_non_max_suppression( | |
| predictions, | |
| conf_thresh=confidence, | |
| iou_thresh=iou_threshold, | |
| class_agnostic=class_agnostic_nms, | |
| max_detections=max_detections, | |
| max_candidate_detections=max_candidates, | |
| num_masks=num_masks, | |
| ) | |
| infer_shape = (self.img_size_h, self.img_size_w) | |
| img_dims = preproc_return_metadata["img_dims"] | |
| predictions = post_process_bboxes( | |
| predictions=predictions, | |
| infer_shape=infer_shape, | |
| img_dims=img_dims, | |
| preproc=self.preproc, | |
| resize_method=self.resize_method, | |
| disable_preproc_static_crop=preproc_return_metadata[ | |
| "disable_preproc_static_crop" | |
| ], | |
| ) | |
| predictions = post_process_keypoints( | |
| predictions=predictions, | |
| keypoints_start_index=-num_masks, | |
| infer_shape=infer_shape, | |
| img_dims=img_dims, | |
| preproc=self.preproc, | |
| resize_method=self.resize_method, | |
| disable_preproc_static_crop=preproc_return_metadata[ | |
| "disable_preproc_static_crop" | |
| ], | |
| ) | |
| return self.make_response(predictions, img_dims, **kwargs) | |
| def make_response( | |
| self, | |
| predictions: List[List[float]], | |
| img_dims: List[Tuple[int, int]], | |
| class_filter: Optional[List[str]] = None, | |
| *args, | |
| **kwargs, | |
| ) -> List[KeypointsDetectionInferenceResponse]: | |
| """Constructs object detection response objects based on predictions. | |
| Args: | |
| predictions (List[List[float]]): The list of predictions. | |
| img_dims (List[Tuple[int, int]]): Dimensions of the images. | |
| class_filter (Optional[List[str]]): A list of class names to filter, if provided. | |
| Returns: | |
| List[KeypointsDetectionInferenceResponse]: A list of response objects containing keypoints detection predictions. | |
| """ | |
| if isinstance(img_dims, dict) and "img_dims" in img_dims: | |
| img_dims = img_dims["img_dims"] | |
| keypoint_confidence_threshold = 0.0 | |
| if "request" in kwargs: | |
| keypoint_confidence_threshold = kwargs["request"].keypoint_confidence | |
| responses = [ | |
| KeypointsDetectionInferenceResponse( | |
| predictions=[ | |
| KeypointsPrediction( | |
| # Passing args as a dictionary here since one of the args is 'class' (a protected term in Python) | |
| **{ | |
| "x": (pred[0] + pred[2]) / 2, | |
| "y": (pred[1] + pred[3]) / 2, | |
| "width": pred[2] - pred[0], | |
| "height": pred[3] - pred[1], | |
| "confidence": pred[4], | |
| "class": self.class_names[int(pred[6])], | |
| "class_id": int(pred[6]), | |
| "keypoints": model_keypoints_to_response( | |
| keypoints_metadata=self.keypoints_metadata, | |
| keypoints=pred[7:], | |
| predicted_object_class_id=int( | |
| pred[4 + len(self.get_class_names)] | |
| ), | |
| keypoint_confidence_threshold=keypoint_confidence_threshold, | |
| ), | |
| } | |
| ) | |
| for pred in batch_predictions | |
| if not class_filter | |
| or self.class_names[int(pred[6])] in class_filter | |
| ], | |
| image=InferenceResponseImage( | |
| width=img_dims[ind][1], height=img_dims[ind][0] | |
| ), | |
| ) | |
| for ind, batch_predictions in enumerate(predictions) | |
| ] | |
| return responses | |
| def keypoints_count(self) -> int: | |
| raise NotImplementedError | |
| def validate_model_classes(self) -> None: | |
| num_keypoints = self.keypoints_count() | |
| output_shape = self.get_model_output_shape() | |
| num_classes = get_num_classes_from_model_prediction_shape( | |
| len_prediction=output_shape[2], keypoints=num_keypoints | |
| ) | |
| if num_classes != self.num_classes: | |
| raise ValueError( | |
| f"Number of classes in model ({num_classes}) does not match the number of classes in the environment ({self.num_classes})" | |
| ) | |