Spaces:
Runtime error
Runtime error
from typing import Any, List, Tuple, Union | |
import numpy as np | |
from inference.core.entities.responses.inference import ( | |
InferenceResponseImage, | |
InstanceSegmentationInferenceResponse, | |
InstanceSegmentationPrediction, | |
Point, | |
) | |
from inference.core.exceptions import InvalidMaskDecodeArgument | |
from inference.core.models.roboflow import OnnxRoboflowInferenceModel | |
from inference.core.models.types import PreprocessReturnMetadata | |
from inference.core.models.utils.validate import ( | |
get_num_classes_from_model_prediction_shape, | |
) | |
from inference.core.nms import w_np_non_max_suppression | |
from inference.core.utils.postprocess import ( | |
masks2poly, | |
post_process_bboxes, | |
post_process_polygons, | |
process_mask_accurate, | |
process_mask_fast, | |
process_mask_tradeoff, | |
) | |
DEFAULT_CONFIDENCE = 0.4 | |
DEFAULT_IOU_THRESH = 0.3 | |
DEFAULT_CLASS_AGNOSTIC_NMS = False | |
DEFAUlT_MAX_DETECTIONS = 300 | |
DEFAULT_MAX_CANDIDATES = 3000 | |
DEFAULT_MASK_DECODE_MODE = "accurate" | |
DEFAULT_TRADEOFF_FACTOR = 0.0 | |
PREDICTIONS_TYPE = List[List[List[float]]] | |
class InstanceSegmentationBaseOnnxRoboflowInferenceModel(OnnxRoboflowInferenceModel): | |
"""Roboflow ONNX Instance Segmentation model. | |
This class implements an instance segmentation specific inference method | |
for ONNX models provided by Roboflow. | |
""" | |
task_type = "instance-segmentation" | |
num_masks = 32 | |
def infer( | |
self, | |
image: Any, | |
class_agnostic_nms: bool = False, | |
confidence: float = DEFAULT_CONFIDENCE, | |
disable_preproc_auto_orient: bool = False, | |
disable_preproc_contrast: bool = False, | |
disable_preproc_grayscale: bool = False, | |
disable_preproc_static_crop: bool = False, | |
iou_threshold: float = DEFAULT_IOU_THRESH, | |
mask_decode_mode: str = DEFAULT_MASK_DECODE_MODE, | |
max_candidates: int = DEFAULT_MAX_CANDIDATES, | |
max_detections: int = DEFAUlT_MAX_DETECTIONS, | |
return_image_dims: bool = False, | |
tradeoff_factor: float = DEFAULT_TRADEOFF_FACTOR, | |
**kwargs, | |
) -> Union[PREDICTIONS_TYPE, Tuple[PREDICTIONS_TYPE, List[Tuple[int, int]]]]: | |
""" | |
Process an image or list of images for instance segmentation. | |
Args: | |
image (Any): An image or a list of images for processing. | |
class_agnostic_nms (bool, optional): Whether to use class-agnostic non-maximum suppression. Defaults to False. | |
confidence (float, optional): Confidence threshold for predictions. Defaults to 0.5. | |
iou_threshold (float, optional): IoU threshold for non-maximum suppression. Defaults to 0.5. | |
mask_decode_mode (str, optional): Decoding mode for masks. Choices are "accurate", "tradeoff", and "fast". Defaults to "accurate". | |
max_candidates (int, optional): Maximum number of candidate detections. Defaults to 3000. | |
max_detections (int, optional): Maximum number of detections after non-maximum suppression. Defaults to 300. | |
return_image_dims (bool, optional): Whether to return the dimensions of the processed images. Defaults to False. | |
tradeoff_factor (float, optional): Tradeoff factor used when `mask_decode_mode` is set to "tradeoff". Must be in [0.0, 1.0]. Defaults to 0.5. | |
disable_preproc_auto_orient (bool, optional): If true, the auto orient preprocessing step is disabled for this call. Default is False. | |
disable_preproc_contrast (bool, optional): If true, the auto contrast preprocessing step is disabled for this call. Default is False. | |
disable_preproc_grayscale (bool, optional): If true, the grayscale preprocessing step is disabled for this call. Default is False. | |
disable_preproc_static_crop (bool, optional): If true, the static crop preprocessing step is disabled for this call. Default is False. | |
**kwargs: Additional parameters to customize the inference process. | |
Returns: | |
Union[List[List[List[float]]], Tuple[List[List[List[float]]], List[Tuple[int, int]]]]: The list of predictions, with each prediction being a list of lists. Optionally, also returns the dimensions of the processed images. | |
Raises: | |
InvalidMaskDecodeArgument: If an invalid `mask_decode_mode` is provided or if the `tradeoff_factor` is outside the allowed range. | |
Notes: | |
- Processes input images and normalizes them. | |
- Makes predictions using the ONNX runtime. | |
- Applies non-maximum suppression to the predictions. | |
- Decodes the masks according to the specified mode. | |
""" | |
return super().infer( | |
image, | |
class_agnostic_nms=class_agnostic_nms, | |
confidence=confidence, | |
disable_preproc_auto_orient=disable_preproc_auto_orient, | |
disable_preproc_contrast=disable_preproc_contrast, | |
disable_preproc_grayscale=disable_preproc_grayscale, | |
disable_preproc_static_crop=disable_preproc_static_crop, | |
iou_threshold=iou_threshold, | |
mask_decode_mode=mask_decode_mode, | |
max_candidates=max_candidates, | |
max_detections=max_detections, | |
return_image_dims=return_image_dims, | |
tradeoff_factor=tradeoff_factor, | |
) | |
def postprocess( | |
self, | |
predictions: Tuple[np.ndarray, np.ndarray], | |
preprocess_return_metadata: PreprocessReturnMetadata, | |
**kwargs, | |
) -> Union[ | |
InstanceSegmentationInferenceResponse, | |
List[InstanceSegmentationInferenceResponse], | |
]: | |
predictions, protos = predictions | |
predictions = w_np_non_max_suppression( | |
predictions, | |
conf_thresh=kwargs["confidence"], | |
iou_thresh=kwargs["iou_threshold"], | |
class_agnostic=kwargs["class_agnostic_nms"], | |
max_detections=kwargs["max_detections"], | |
max_candidate_detections=kwargs["max_candidates"], | |
num_masks=self.num_masks, | |
) | |
infer_shape = (self.img_size_h, self.img_size_w) | |
predictions = np.array(predictions) | |
masks = [] | |
mask_decode_mode = kwargs["mask_decode_mode"] | |
tradeoff_factor = kwargs["tradeoff_factor"] | |
img_in_shape = preprocess_return_metadata["im_shape"] | |
if predictions.shape[1] > 0: | |
for i, (pred, proto, img_dim) in enumerate( | |
zip(predictions, protos, preprocess_return_metadata["img_dims"]) | |
): | |
if mask_decode_mode == "accurate": | |
batch_masks = process_mask_accurate( | |
proto, pred[:, 7:], pred[:, :4], img_in_shape[2:] | |
) | |
output_mask_shape = img_in_shape[2:] | |
elif mask_decode_mode == "tradeoff": | |
if not 0 <= tradeoff_factor <= 1: | |
raise InvalidMaskDecodeArgument( | |
f"Invalid tradeoff_factor: {tradeoff_factor}. Must be in [0.0, 1.0]" | |
) | |
batch_masks = process_mask_tradeoff( | |
proto, | |
pred[:, 7:], | |
pred[:, :4], | |
img_in_shape[2:], | |
tradeoff_factor, | |
) | |
output_mask_shape = batch_masks.shape[1:] | |
elif mask_decode_mode == "fast": | |
batch_masks = process_mask_fast( | |
proto, pred[:, 7:], pred[:, :4], img_in_shape[2:] | |
) | |
output_mask_shape = batch_masks.shape[1:] | |
else: | |
raise InvalidMaskDecodeArgument( | |
f"Invalid mask_decode_mode: {mask_decode_mode}. Must be one of ['accurate', 'fast', 'tradeoff']" | |
) | |
polys = masks2poly(batch_masks) | |
pred[:, :4] = post_process_bboxes( | |
[pred[:, :4]], | |
infer_shape, | |
[img_dim], | |
self.preproc, | |
resize_method=self.resize_method, | |
disable_preproc_static_crop=preprocess_return_metadata[ | |
"disable_preproc_static_crop" | |
], | |
)[0] | |
polys = post_process_polygons( | |
img_dim, | |
polys, | |
output_mask_shape, | |
self.preproc, | |
resize_method=self.resize_method, | |
) | |
masks.append(polys) | |
else: | |
masks.extend([[]] * len(predictions)) | |
return self.make_response( | |
predictions, masks, preprocess_return_metadata["img_dims"], **kwargs | |
) | |
def preprocess( | |
self, image: Any, **kwargs | |
) -> Tuple[np.ndarray, PreprocessReturnMetadata]: | |
img_in, img_dims = self.load_image( | |
image, | |
disable_preproc_auto_orient=kwargs.get("disable_preproc_auto_orient"), | |
disable_preproc_contrast=kwargs.get("disable_preproc_contrast"), | |
disable_preproc_grayscale=kwargs.get("disable_preproc_grayscale"), | |
disable_preproc_static_crop=kwargs.get("disable_preproc_static_crop"), | |
) | |
img_in /= 255.0 | |
return img_in, PreprocessReturnMetadata( | |
{ | |
"img_dims": img_dims, | |
"im_shape": img_in.shape, | |
"disable_preproc_static_crop": kwargs.get( | |
"disable_preproc_static_crop" | |
), | |
} | |
) | |
def make_response( | |
self, | |
predictions: List[List[List[float]]], | |
masks: List[List[List[float]]], | |
img_dims: List[Tuple[int, int]], | |
class_filter: List[str] = [], | |
**kwargs, | |
) -> Union[ | |
InstanceSegmentationInferenceResponse, | |
List[InstanceSegmentationInferenceResponse], | |
]: | |
""" | |
Create instance segmentation inference response objects for the provided predictions and masks. | |
Args: | |
predictions (List[List[List[float]]]): List of prediction data, one for each image. | |
masks (List[List[List[float]]]): List of masks corresponding to the predictions. | |
img_dims (List[Tuple[int, int]]): List of image dimensions corresponding to the processed images. | |
class_filter (List[str], optional): List of class names to filter predictions by. Defaults to an empty list (no filtering). | |
Returns: | |
Union[InstanceSegmentationInferenceResponse, List[InstanceSegmentationInferenceResponse]]: A single instance segmentation response or a list of instance segmentation responses based on the number of processed images. | |
Notes: | |
- For each image, constructs an `InstanceSegmentationInferenceResponse` object. | |
- Each response contains a list of `InstanceSegmentationPrediction` objects. | |
""" | |
responses = [ | |
InstanceSegmentationInferenceResponse( | |
predictions=[ | |
InstanceSegmentationPrediction( | |
# Passing args as a dictionary here since one of the args is 'class' (a protected term in Python) | |
**{ | |
"x": (pred[0] + pred[2]) / 2, | |
"y": (pred[1] + pred[3]) / 2, | |
"width": pred[2] - pred[0], | |
"height": pred[3] - pred[1], | |
"points": [Point(x=point[0], y=point[1]) for point in mask], | |
"confidence": pred[4], | |
"class": self.class_names[int(pred[6])], | |
"class_id": int(pred[6]), | |
} | |
) | |
for pred, mask in zip(batch_predictions, batch_masks) | |
if not class_filter | |
or self.class_names[int(pred[6])] in class_filter | |
], | |
image=InferenceResponseImage( | |
width=img_dims[ind][1], height=img_dims[ind][0] | |
), | |
) | |
for ind, (batch_predictions, batch_masks) in enumerate( | |
zip(predictions, masks) | |
) | |
] | |
return responses | |
def predict(self, img_in: np.ndarray, **kwargs) -> Tuple[np.ndarray, np.ndarray]: | |
"""Runs inference on the ONNX model. | |
Args: | |
img_in (np.ndarray): The preprocessed image(s) to run inference on. | |
Returns: | |
Tuple[np.ndarray, np.ndarray]: The ONNX model predictions and the ONNX model protos. | |
Raises: | |
NotImplementedError: This method must be implemented by a subclass. | |
""" | |
raise NotImplementedError("predict must be implemented by a subclass") | |
def validate_model_classes(self) -> None: | |
output_shape = self.get_model_output_shape() | |
num_classes = get_num_classes_from_model_prediction_shape( | |
output_shape[2], masks=self.num_masks | |
) | |
try: | |
assert num_classes == self.num_classes | |
except AssertionError: | |
raise ValueError( | |
f"Number of classes in model ({num_classes}) does not match the number of classes in the environment ({self.num_classes})" | |
) | |