Spaces:
Runtime error
Runtime error
File size: 4,537 Bytes
2eafbc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
from time import perf_counter
from typing import Any
from ultralytics import YOLO
from inference.core.cache import cache
from inference.core.entities.requests.yolo_world import YOLOWorldInferenceRequest
from inference.core.entities.responses.inference import (
InferenceResponseImage,
ObjectDetectionInferenceResponse,
ObjectDetectionPrediction,
)
from inference.core.models.defaults import DEFAULT_CONFIDENCE
from inference.core.models.roboflow import RoboflowCoreModel
from inference.core.utils.hash import get_string_list_hash
from inference.core.utils.image_utils import load_image_rgb
class YOLOWorld(RoboflowCoreModel):
"""GroundingDINO class for zero-shot object detection.
Attributes:
model: The GroundingDINO model.
"""
def __init__(self, *args, model_id="yolo_world/l", **kwargs):
"""Initializes the YOLO-World model.
Args:
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
"""
super().__init__(*args, model_id=model_id, **kwargs)
self.model = YOLO(self.cache_file("yolo-world.pt"))
self.class_names = None
def preproc_image(self, image: Any):
"""Preprocesses an image.
Args:
image (InferenceRequestImage): The image to preprocess.
Returns:
np.array: The preprocessed image.
"""
np_image = load_image_rgb(image)
return np_image[:, :, ::-1]
def infer_from_request(
self,
request: YOLOWorldInferenceRequest,
) -> ObjectDetectionInferenceResponse:
"""
Perform inference based on the details provided in the request, and return the associated responses.
"""
result = self.infer(**request.dict())
return result
def infer(
self,
image: Any = None,
text: list = None,
confidence: float = DEFAULT_CONFIDENCE,
**kwargs,
):
"""
Run inference on a provided image.
Args:
request (CVInferenceRequest): The inference request.
class_filter (Optional[List[str]]): A list of class names to filter, if provided.
Returns:
GroundingDINOInferenceRequest: The inference response.
"""
t1 = perf_counter()
image = self.preproc_image(image)
img_dims = image.shape
if text is not None and text != self.class_names:
self.set_classes(text)
if self.class_names is None:
raise ValueError(
"Class names not set and not provided in the request. Must set class names before inference or provide them via the argument `text`."
)
results = self.model.predict(
image,
conf=confidence,
verbose=False,
)[0]
t2 = perf_counter() - t1
predictions = []
for i, box in enumerate(results.boxes):
x, y, w, h = box.xywh.tolist()[0]
class_id = int(box.cls)
predictions.append(
ObjectDetectionPrediction(
**{
"x": x,
"y": y,
"width": w,
"height": h,
"confidence": float(box.conf),
"class": self.class_names[class_id],
"class_id": class_id,
}
)
)
responses = ObjectDetectionInferenceResponse(
predictions=predictions,
image=InferenceResponseImage(width=img_dims[1], height=img_dims[0]),
time=t2,
)
return responses
def set_classes(self, text: list):
"""Set the class names for the model.
Args:
text (list): The class names.
"""
text_hash = get_string_list_hash(text)
cached_embeddings = cache.get_numpy(text_hash)
if cached_embeddings is not None:
self.model.model.txt_feats = cached_embeddings
self.model.model.model[-1].nc = len(text)
else:
self.model.set_classes(text)
cache.set_numpy(text_hash, self.model.model.txt_feats, expire=300)
self.class_names = text
def get_infer_bucket_file_list(self) -> list:
"""Get the list of required files for inference.
Returns:
list: A list of required files for inference, e.g., ["model.pt"].
"""
return ["yolo-world.pt"]
|