Spaces:
Runtime error
Runtime error
File size: 5,300 Bytes
2eafbc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import os
import shutil
import tempfile
from time import perf_counter
from typing import Any, List, Union
from doctr import models as models
from doctr.io import DocumentFile
from doctr.models import ocr_predictor
from PIL import Image
from inference.core.entities.requests.doctr import DoctrOCRInferenceRequest
from inference.core.entities.requests.inference import InferenceRequest
from inference.core.entities.responses.doctr import DoctrOCRInferenceResponse
from inference.core.entities.responses.inference import InferenceResponse
from inference.core.env import MODEL_CACHE_DIR
from inference.core.models.roboflow import RoboflowCoreModel
from inference.core.utils.image_utils import load_image
class DocTR(RoboflowCoreModel):
def __init__(self, *args, model_id: str = "doctr_rec/crnn_vgg16_bn", **kwargs):
"""Initializes the DocTR model.
Args:
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
"""
self.api_key = kwargs.get("api_key")
self.dataset_id = "doctr"
self.version_id = "default"
self.endpoint = model_id
model_id = model_id.lower()
os.environ["DOCTR_CACHE_DIR"] = os.path.join(MODEL_CACHE_DIR, "doctr_rec")
self.det_model = DocTRDet(api_key=kwargs.get("api_key"))
self.rec_model = DocTRRec(api_key=kwargs.get("api_key"))
os.makedirs(f"{MODEL_CACHE_DIR}/doctr_rec/models/", exist_ok=True)
os.makedirs(f"{MODEL_CACHE_DIR}/doctr_det/models/", exist_ok=True)
shutil.copyfile(
f"{MODEL_CACHE_DIR}/doctr_det/db_resnet50/model.pt",
f"{MODEL_CACHE_DIR}/doctr_det/models/db_resnet50-ac60cadc.pt",
)
shutil.copyfile(
f"{MODEL_CACHE_DIR}/doctr_rec/crnn_vgg16_bn/model.pt",
f"{MODEL_CACHE_DIR}/doctr_rec/models/crnn_vgg16_bn-9762b0b0.pt",
)
self.model = ocr_predictor(
det_arch=self.det_model.version_id,
reco_arch=self.rec_model.version_id,
pretrained=True,
)
self.task_type = "ocr"
def clear_cache(self) -> None:
self.det_model.clear_cache()
self.rec_model.clear_cache()
def preprocess_image(self, image: Image.Image) -> Image.Image:
"""
DocTR pre-processes images as part of its inference pipeline.
Thus, no preprocessing is required here.
"""
pass
def infer_from_request(
self, request: DoctrOCRInferenceRequest
) -> DoctrOCRInferenceResponse:
t1 = perf_counter()
result = self.infer(**request.dict())
return DoctrOCRInferenceResponse(
result=result,
time=perf_counter() - t1,
)
def infer(self, image: Any, **kwargs):
"""
Run inference on a provided image.
Args:
request (DoctrOCRInferenceRequest): The inference request.
Returns:
DoctrOCRInferenceResponse: The inference response.
"""
img = load_image(image)
with tempfile.NamedTemporaryFile(suffix=".jpg") as f:
image = Image.fromarray(img[0])
image.save(f.name)
doc = DocumentFile.from_images([f.name])
result = self.model(doc).export()
result = result["pages"][0]["blocks"]
result = [
" ".join([word["value"] for word in line["words"]])
for block in result
for line in block["lines"]
]
result = " ".join(result)
return result
def get_infer_bucket_file_list(self) -> list:
"""Get the list of required files for inference.
Returns:
list: A list of required files for inference, e.g., ["model.pt"].
"""
return ["model.pt"]
class DocTRRec(RoboflowCoreModel):
def __init__(self, *args, model_id: str = "doctr_rec/crnn_vgg16_bn", **kwargs):
"""Initializes the DocTR model.
Args:
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
"""
pass
self.get_infer_bucket_file_list()
super().__init__(*args, model_id=model_id, **kwargs)
def get_infer_bucket_file_list(self) -> list:
"""Get the list of required files for inference.
Returns:
list: A list of required files for inference, e.g., ["model.pt"].
"""
return ["model.pt"]
class DocTRDet(RoboflowCoreModel):
"""DocTR class for document Optical Character Recognition (OCR).
Attributes:
doctr: The DocTR model.
ort_session: ONNX runtime inference session.
"""
def __init__(self, *args, model_id: str = "doctr_det/db_resnet50", **kwargs):
"""Initializes the DocTR model.
Args:
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
"""
self.get_infer_bucket_file_list()
super().__init__(*args, model_id=model_id, **kwargs)
def get_infer_bucket_file_list(self) -> list:
"""Get the list of required files for inference.
Returns:
list: A list of required files for inference, e.g., ["model.pt"].
"""
return ["model.pt"]
|