Spaces:
Runtime error
Runtime error
File size: 11,833 Bytes
2eafbc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
import asyncio
from datetime import datetime
from typing import Any, Dict, List, Optional, Set
import networkx as nx
from fastapi import BackgroundTasks
from networkx import DiGraph
from inference.core import logger
from inference.core.managers.base import ModelManager
from inference.enterprise.workflows.complier.entities import StepExecutionMode
from inference.enterprise.workflows.complier.flow_coordinator import (
ParallelStepExecutionCoordinator,
SerialExecutionCoordinator,
)
from inference.enterprise.workflows.complier.runtime_input_validator import (
prepare_runtime_parameters,
)
from inference.enterprise.workflows.complier.steps_executors.active_learning_middlewares import (
WorkflowsActiveLearningMiddleware,
)
from inference.enterprise.workflows.complier.steps_executors.auxiliary import (
run_active_learning_data_collector,
run_condition_step,
run_crop_step,
run_detection_filter,
run_detection_offset_step,
run_detections_consensus_step,
run_static_crop_step,
)
from inference.enterprise.workflows.complier.steps_executors.constants import (
PARENT_COORDINATES_SUFFIX,
)
from inference.enterprise.workflows.complier.steps_executors.models import (
run_clip_comparison_step,
run_ocr_model_step,
run_roboflow_model_step,
run_yolo_world_model_step,
)
from inference.enterprise.workflows.complier.steps_executors.types import OutputsLookup
from inference.enterprise.workflows.complier.steps_executors.utils import make_batches
from inference.enterprise.workflows.complier.utils import (
get_nodes_of_specific_kind,
get_step_selector_from_its_output,
is_condition_step,
)
from inference.enterprise.workflows.constants import OUTPUT_NODE_KIND
from inference.enterprise.workflows.entities.outputs import CoordinatesSystem
from inference.enterprise.workflows.entities.validators import get_last_selector_chunk
from inference.enterprise.workflows.errors import (
ExecutionEngineError,
WorkflowsCompilerRuntimeError,
)
STEP_TYPE2EXECUTOR_MAPPING = {
"ClassificationModel": run_roboflow_model_step,
"MultiLabelClassificationModel": run_roboflow_model_step,
"ObjectDetectionModel": run_roboflow_model_step,
"KeypointsDetectionModel": run_roboflow_model_step,
"InstanceSegmentationModel": run_roboflow_model_step,
"OCRModel": run_ocr_model_step,
"Crop": run_crop_step,
"Condition": run_condition_step,
"DetectionFilter": run_detection_filter,
"DetectionOffset": run_detection_offset_step,
"AbsoluteStaticCrop": run_static_crop_step,
"RelativeStaticCrop": run_static_crop_step,
"ClipComparison": run_clip_comparison_step,
"DetectionsConsensus": run_detections_consensus_step,
"ActiveLearningDataCollector": run_active_learning_data_collector,
"YoloWorld": run_yolo_world_model_step,
}
async def execute_graph(
execution_graph: DiGraph,
runtime_parameters: Dict[str, Any],
model_manager: ModelManager,
active_learning_middleware: WorkflowsActiveLearningMiddleware,
background_tasks: Optional[BackgroundTasks] = None,
api_key: Optional[str] = None,
max_concurrent_steps: int = 1,
step_execution_mode: StepExecutionMode = StepExecutionMode.LOCAL,
) -> dict:
runtime_parameters = prepare_runtime_parameters(
execution_graph=execution_graph,
runtime_parameters=runtime_parameters,
)
outputs_lookup = {}
steps_to_discard = set()
if max_concurrent_steps > 1:
execution_coordinator = ParallelStepExecutionCoordinator.init(
execution_graph=execution_graph
)
else:
execution_coordinator = SerialExecutionCoordinator.init(
execution_graph=execution_graph
)
while True:
next_steps = execution_coordinator.get_steps_to_execute_next(
steps_to_discard=steps_to_discard
)
if next_steps is None:
break
steps_to_discard = await execute_steps(
steps=next_steps,
max_concurrent_steps=max_concurrent_steps,
execution_graph=execution_graph,
runtime_parameters=runtime_parameters,
outputs_lookup=outputs_lookup,
model_manager=model_manager,
api_key=api_key,
step_execution_mode=step_execution_mode,
active_learning_middleware=active_learning_middleware,
background_tasks=background_tasks,
)
return construct_response(
execution_graph=execution_graph, outputs_lookup=outputs_lookup
)
async def execute_steps(
steps: List[str],
max_concurrent_steps: int,
execution_graph: DiGraph,
runtime_parameters: Dict[str, Any],
outputs_lookup: OutputsLookup,
model_manager: ModelManager,
api_key: Optional[str],
step_execution_mode: StepExecutionMode,
active_learning_middleware: WorkflowsActiveLearningMiddleware,
background_tasks: Optional[BackgroundTasks],
) -> Set[str]:
"""outputs_lookup is mutated while execution, only independent steps may be run together"""
logger.info(f"Executing steps: {steps}. Execution mode: {step_execution_mode}")
nodes_to_discard = set()
steps_batches = list(make_batches(iterable=steps, batch_size=max_concurrent_steps))
for steps_batch in steps_batches:
logger.info(f"Steps batch: {steps_batch}")
coroutines = [
safe_execute_step(
step=step,
execution_graph=execution_graph,
runtime_parameters=runtime_parameters,
outputs_lookup=outputs_lookup,
model_manager=model_manager,
api_key=api_key,
step_execution_mode=step_execution_mode,
active_learning_middleware=active_learning_middleware,
background_tasks=background_tasks,
)
for step in steps_batch
]
results = await asyncio.gather(*coroutines)
for result in results:
nodes_to_discard.update(result)
return nodes_to_discard
async def safe_execute_step(
step: str,
execution_graph: DiGraph,
runtime_parameters: Dict[str, Any],
outputs_lookup: OutputsLookup,
model_manager: ModelManager,
api_key: Optional[str],
step_execution_mode: StepExecutionMode,
active_learning_middleware: WorkflowsActiveLearningMiddleware,
background_tasks: Optional[BackgroundTasks],
) -> Set[str]:
try:
return await execute_step(
step=step,
execution_graph=execution_graph,
runtime_parameters=runtime_parameters,
outputs_lookup=outputs_lookup,
model_manager=model_manager,
api_key=api_key,
step_execution_mode=step_execution_mode,
active_learning_middleware=active_learning_middleware,
background_tasks=background_tasks,
)
except Exception as error:
raise ExecutionEngineError(
f"Error during execution of step: {step}. "
f"Type of error: {type(error).__name__}. "
f"Cause: {error}"
) from error
async def execute_step(
step: str,
execution_graph: DiGraph,
runtime_parameters: Dict[str, Any],
outputs_lookup: OutputsLookup,
model_manager: ModelManager,
api_key: Optional[str],
step_execution_mode: StepExecutionMode,
active_learning_middleware: WorkflowsActiveLearningMiddleware,
background_tasks: Optional[BackgroundTasks],
) -> Set[str]:
logger.info(f"started execution of: {step} - {datetime.now().isoformat()}")
nodes_to_discard = set()
step_definition = execution_graph.nodes[step]["definition"]
executor = STEP_TYPE2EXECUTOR_MAPPING[step_definition.type]
additional_args = {}
if step_definition.type == "ActiveLearningDataCollector":
additional_args["active_learning_middleware"] = active_learning_middleware
additional_args["background_tasks"] = background_tasks
next_step, outputs_lookup = await executor(
step=step_definition,
runtime_parameters=runtime_parameters,
outputs_lookup=outputs_lookup,
model_manager=model_manager,
api_key=api_key,
step_execution_mode=step_execution_mode,
**additional_args,
)
if is_condition_step(execution_graph=execution_graph, node=step):
if execution_graph.nodes[step]["definition"].step_if_true == next_step:
nodes_to_discard = get_all_nodes_in_execution_path(
execution_graph=execution_graph,
source=execution_graph.nodes[step]["definition"].step_if_false,
)
else:
nodes_to_discard = get_all_nodes_in_execution_path(
execution_graph=execution_graph,
source=execution_graph.nodes[step]["definition"].step_if_true,
)
logger.info(f"finished execution of: {step} - {datetime.now().isoformat()}")
return nodes_to_discard
def get_all_nodes_in_execution_path(
execution_graph: DiGraph,
source: str,
) -> Set[str]:
nodes = set(nx.descendants(execution_graph, source))
nodes.add(source)
return nodes
def construct_response(
execution_graph: nx.DiGraph,
outputs_lookup: Dict[str, Any],
) -> Dict[str, Any]:
output_nodes = get_nodes_of_specific_kind(
execution_graph=execution_graph, kind=OUTPUT_NODE_KIND
)
result = {}
for node in output_nodes:
node_definition = execution_graph.nodes[node]["definition"]
fallback_selector = None
node_selector = node_definition.selector
if node_definition.coordinates_system is CoordinatesSystem.PARENT:
fallback_selector = node_selector
node_selector = f"{node_selector}{PARENT_COORDINATES_SUFFIX}"
step_selector = get_step_selector_from_its_output(
step_output_selector=node_selector
)
step_field = get_last_selector_chunk(selector=node_selector)
fallback_step_field = (
None
if fallback_selector is None
else get_last_selector_chunk(selector=fallback_selector)
)
step_result = outputs_lookup.get(step_selector)
if step_result is not None:
if issubclass(type(step_result), list):
step_result = extract_step_result_from_list(
result=step_result,
step_field=step_field,
fallback_step_field=fallback_step_field,
step_selector=step_selector,
)
else:
step_result = extract_step_result_from_dict(
result=step_result,
step_field=step_field,
fallback_step_field=fallback_step_field,
step_selector=step_selector,
)
result[execution_graph.nodes[node]["definition"].name] = step_result
return result
def extract_step_result_from_list(
result: List[Dict[str, Any]],
step_field: str,
fallback_step_field: Optional[str],
step_selector: str,
) -> List[Any]:
return [
extract_step_result_from_dict(
result=element,
step_field=step_field,
fallback_step_field=fallback_step_field,
step_selector=step_selector,
)
for element in result
]
def extract_step_result_from_dict(
result: Dict[str, Any],
step_field: str,
fallback_step_field: Optional[str],
step_selector: str,
) -> Any:
step_result = result.get(step_field, result.get(fallback_step_field))
if step_result is None:
raise WorkflowsCompilerRuntimeError(
f"Cannot find neither field {step_field} nor {fallback_step_field} in result of step {step_selector}"
)
return step_result
|