Spaces:
Runtime error
Runtime error
File size: 12,130 Bytes
2eafbc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import json
import urllib.parse
from enum import Enum
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
import requests
from requests import Response
from requests_toolbelt import MultipartEncoder
from inference.core import logger
from inference.core.cache import cache
from inference.core.entities.types import (
DatasetID,
ModelType,
TaskType,
VersionID,
WorkspaceID,
)
from inference.core.env import API_BASE_URL
from inference.core.exceptions import (
MalformedRoboflowAPIResponseError,
MalformedWorkflowResponseError,
MissingDefaultModelError,
RoboflowAPIConnectionError,
RoboflowAPIIAlreadyAnnotatedError,
RoboflowAPIIAnnotationRejectionError,
RoboflowAPIImageUploadRejectionError,
RoboflowAPINotAuthorizedError,
RoboflowAPINotNotFoundError,
RoboflowAPIUnsuccessfulRequestError,
WorkspaceLoadError,
)
from inference.core.utils.requests import api_key_safe_raise_for_status
from inference.core.utils.url_utils import wrap_url
MODEL_TYPE_DEFAULTS = {
"object-detection": "yolov5v2s",
"instance-segmentation": "yolact",
"classification": "vit",
"keypoint-detection": "yolov8n",
}
PROJECT_TASK_TYPE_KEY = "project_task_type"
MODEL_TYPE_KEY = "model_type"
NOT_FOUND_ERROR_MESSAGE = (
"Could not find requested Roboflow resource. Check that the provided dataset and "
"version are correct, and check that the provided Roboflow API key has the correct permissions."
)
def raise_from_lambda(
inner_error: Exception, exception_type: Type[Exception], message: str
) -> None:
raise exception_type(message) from inner_error
DEFAULT_ERROR_HANDLERS = {
401: lambda e: raise_from_lambda(
e,
RoboflowAPINotAuthorizedError,
"Unauthorized access to roboflow API - check API key. Visit "
"https://docs.roboflow.com/api-reference/authentication#retrieve-an-api-key to learn how to retrieve one.",
),
404: lambda e: raise_from_lambda(
e, RoboflowAPINotNotFoundError, NOT_FOUND_ERROR_MESSAGE
),
}
def wrap_roboflow_api_errors(
http_errors_handlers: Optional[
Dict[int, Callable[[Union[requests.exceptions.HTTPError]], None]]
] = None,
) -> callable:
def decorator(function: callable) -> callable:
def wrapper(*args, **kwargs) -> Any:
try:
return function(*args, **kwargs)
except (requests.exceptions.ConnectionError, ConnectionError) as error:
raise RoboflowAPIConnectionError(
"Could not connect to Roboflow API."
) from error
except requests.exceptions.HTTPError as error:
user_handler_override = (
http_errors_handlers if http_errors_handlers is not None else {}
)
status_code = error.response.status_code
default_handler = DEFAULT_ERROR_HANDLERS.get(status_code)
error_handler = user_handler_override.get(status_code, default_handler)
if error_handler is not None:
error_handler(error)
raise RoboflowAPIUnsuccessfulRequestError(
f"Unsuccessful request to Roboflow API with response code: {status_code}"
) from error
except requests.exceptions.InvalidJSONError as error:
raise MalformedRoboflowAPIResponseError(
"Could not decode JSON response from Roboflow API."
) from error
return wrapper
return decorator
@wrap_roboflow_api_errors()
def get_roboflow_workspace(api_key: str) -> WorkspaceID:
api_url = _add_params_to_url(
url=f"{API_BASE_URL}/",
params=[("api_key", api_key), ("nocache", "true")],
)
api_key_info = _get_from_url(url=api_url)
workspace_id = api_key_info.get("workspace")
if workspace_id is None:
raise WorkspaceLoadError(f"Empty workspace encountered, check your API key.")
return workspace_id
@wrap_roboflow_api_errors()
def get_roboflow_dataset_type(
api_key: str, workspace_id: WorkspaceID, dataset_id: DatasetID
) -> TaskType:
api_url = _add_params_to_url(
url=f"{API_BASE_URL}/{workspace_id}/{dataset_id}",
params=[("api_key", api_key), ("nocache", "true")],
)
dataset_info = _get_from_url(url=api_url)
project_task_type = dataset_info.get("project", {})
if "type" not in project_task_type:
logger.warning(
f"Project task type not defined for workspace={workspace_id} and dataset={dataset_id}, defaulting "
f"to object-detection."
)
return project_task_type.get("type", "object-detection")
@wrap_roboflow_api_errors(
http_errors_handlers={
500: lambda e: raise_from_lambda(
e, RoboflowAPINotNotFoundError, NOT_FOUND_ERROR_MESSAGE
)
# this is temporary solution, empirically checked that backend API responds HTTP 500 on incorrect version.
# TO BE FIXED at backend, otherwise this error handling may overshadow existing backend problems.
}
)
def get_roboflow_model_type(
api_key: str,
workspace_id: WorkspaceID,
dataset_id: DatasetID,
version_id: VersionID,
project_task_type: ModelType,
) -> ModelType:
api_url = _add_params_to_url(
url=f"{API_BASE_URL}/{workspace_id}/{dataset_id}/{version_id}",
params=[("api_key", api_key), ("nocache", "true")],
)
version_info = _get_from_url(url=api_url)
model_type = version_info["version"]
if "modelType" not in model_type:
if project_task_type not in MODEL_TYPE_DEFAULTS:
raise MissingDefaultModelError(
f"Could not set default model for {project_task_type}"
)
logger.warning(
f"Model type not defined - using default for {project_task_type} task."
)
return model_type.get("modelType", MODEL_TYPE_DEFAULTS[project_task_type])
class ModelEndpointType(Enum):
ORT = "ort"
CORE_MODEL = "core_model"
@wrap_roboflow_api_errors()
def get_roboflow_model_data(
api_key: str,
model_id: str,
endpoint_type: ModelEndpointType,
device_id: str,
) -> dict:
api_data_cache_key = f"roboflow_api_data:{endpoint_type.value}:{model_id}"
api_data = cache.get(api_data_cache_key)
if api_data is not None:
logger.debug(f"Loaded model data from cache with key: {api_data_cache_key}.")
return api_data
else:
params = [
("nocache", "true"),
("device", device_id),
("dynamic", "true"),
]
if api_key is not None:
params.append(("api_key", api_key))
api_url = _add_params_to_url(
url=f"{API_BASE_URL}/{endpoint_type.value}/{model_id}",
params=params,
)
api_data = _get_from_url(url=api_url)
cache.set(
api_data_cache_key,
api_data,
expire=10,
)
logger.debug(
f"Loaded model data from Roboflow API and saved to cache with key: {api_data_cache_key}."
)
return api_data
@wrap_roboflow_api_errors()
def get_roboflow_active_learning_configuration(
api_key: str,
workspace_id: WorkspaceID,
dataset_id: DatasetID,
) -> dict:
api_url = _add_params_to_url(
url=f"{API_BASE_URL}/{workspace_id}/{dataset_id}/active_learning",
params=[("api_key", api_key)],
)
return _get_from_url(url=api_url)
@wrap_roboflow_api_errors()
def register_image_at_roboflow(
api_key: str,
dataset_id: DatasetID,
local_image_id: str,
image_bytes: bytes,
batch_name: str,
tags: Optional[List[str]] = None,
) -> dict:
url = f"{API_BASE_URL}/dataset/{dataset_id}/upload"
params = [
("api_key", api_key),
("batch", batch_name),
]
tags = tags if tags is not None else []
for tag in tags:
params.append(("tag", tag))
wrapped_url = wrap_url(_add_params_to_url(url=url, params=params))
m = MultipartEncoder(
fields={
"name": f"{local_image_id}.jpg",
"file": ("imageToUpload", image_bytes, "image/jpeg"),
}
)
response = requests.post(
url=wrapped_url,
data=m,
headers={"Content-Type": m.content_type},
)
api_key_safe_raise_for_status(response=response)
parsed_response = response.json()
if not parsed_response.get("duplicate") and not parsed_response.get("success"):
raise RoboflowAPIImageUploadRejectionError(
f"Server rejected image: {parsed_response}"
)
return parsed_response
@wrap_roboflow_api_errors(
http_errors_handlers={
409: lambda e: raise_from_lambda(
e,
RoboflowAPIIAlreadyAnnotatedError,
"Given datapoint already has annotation.",
)
}
)
def annotate_image_at_roboflow(
api_key: str,
dataset_id: DatasetID,
local_image_id: str,
roboflow_image_id: str,
annotation_content: str,
annotation_file_type: str,
is_prediction: bool = True,
) -> dict:
url = f"{API_BASE_URL}/dataset/{dataset_id}/annotate/{roboflow_image_id}"
params = [
("api_key", api_key),
("name", f"{local_image_id}.{annotation_file_type}"),
("prediction", str(is_prediction).lower()),
]
wrapped_url = wrap_url(_add_params_to_url(url=url, params=params))
response = requests.post(
wrapped_url,
data=annotation_content,
headers={"Content-Type": "text/plain"},
)
api_key_safe_raise_for_status(response=response)
parsed_response = response.json()
if "error" in parsed_response or not parsed_response.get("success"):
raise RoboflowAPIIAnnotationRejectionError(
f"Failed to save annotation for {roboflow_image_id}. API response: {parsed_response}"
)
return parsed_response
@wrap_roboflow_api_errors()
def get_roboflow_labeling_batches(
api_key: str, workspace_id: WorkspaceID, dataset_id: str
) -> dict:
api_url = _add_params_to_url(
url=f"{API_BASE_URL}/{workspace_id}/{dataset_id}/batches",
params=[("api_key", api_key)],
)
return _get_from_url(url=api_url)
@wrap_roboflow_api_errors()
def get_roboflow_labeling_jobs(
api_key: str, workspace_id: WorkspaceID, dataset_id: str
) -> dict:
api_url = _add_params_to_url(
url=f"{API_BASE_URL}/{workspace_id}/{dataset_id}/jobs",
params=[("api_key", api_key)],
)
return _get_from_url(url=api_url)
@wrap_roboflow_api_errors()
def get_workflow_specification(
api_key: str,
workspace_id: WorkspaceID,
workflow_name: str,
) -> dict:
api_url = _add_params_to_url(
url=f"{API_BASE_URL}/{workspace_id}/workflows/{workflow_name}",
params=[("api_key", api_key)],
)
response = _get_from_url(url=api_url)
if "workflow" not in response or "config" not in response["workflow"]:
raise MalformedWorkflowResponseError(
f"Could not found workflow specification in API response"
)
try:
return json.loads(response["workflow"]["config"])
except (ValueError, TypeError) as error:
raise MalformedWorkflowResponseError(
"Could not decode workflow specification in Roboflow API response"
) from error
@wrap_roboflow_api_errors()
def get_from_url(
url: str,
json_response: bool = True,
) -> Union[Response, dict]:
return _get_from_url(url=url, json_response=json_response)
def _get_from_url(url: str, json_response: bool = True) -> Union[Response, dict]:
response = requests.get(wrap_url(url))
api_key_safe_raise_for_status(response=response)
if json_response:
return response.json()
return response
def _add_params_to_url(url: str, params: List[Tuple[str, str]]) -> str:
if len(params) == 0:
return url
params_chunks = [
f"{name}={urllib.parse.quote_plus(value)}" for name, value in params
]
parameters_string = "&".join(params_chunks)
return f"{url}?{parameters_string}"
|