Spaces:
Runtime error
Runtime error
File size: 65,480 Bytes
2eafbc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 |
import base64
import traceback
from functools import partial, wraps
from time import sleep
from typing import Any, List, Optional, Union
import uvicorn
from fastapi import BackgroundTasks, FastAPI, Path, Query, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, RedirectResponse, Response
from fastapi.staticfiles import StaticFiles
from fastapi_cprofile.profiler import CProfileMiddleware
from inference.core import logger
from inference.core.cache import cache
from inference.core.devices.utils import GLOBAL_INFERENCE_SERVER_ID
from inference.core.entities.requests.clip import (
ClipCompareRequest,
ClipImageEmbeddingRequest,
ClipTextEmbeddingRequest,
)
from inference.core.entities.requests.cogvlm import CogVLMInferenceRequest
from inference.core.entities.requests.doctr import DoctrOCRInferenceRequest
from inference.core.entities.requests.gaze import GazeDetectionInferenceRequest
from inference.core.entities.requests.groundingdino import GroundingDINOInferenceRequest
from inference.core.entities.requests.inference import (
ClassificationInferenceRequest,
InferenceRequest,
InferenceRequestImage,
InstanceSegmentationInferenceRequest,
KeypointsDetectionInferenceRequest,
ObjectDetectionInferenceRequest,
)
from inference.core.entities.requests.sam import (
SamEmbeddingRequest,
SamSegmentationRequest,
)
from inference.core.entities.requests.server_state import (
AddModelRequest,
ClearModelRequest,
)
from inference.core.entities.requests.workflows import (
WorkflowInferenceRequest,
WorkflowSpecificationInferenceRequest,
)
from inference.core.entities.requests.yolo_world import YOLOWorldInferenceRequest
from inference.core.entities.responses.clip import (
ClipCompareResponse,
ClipEmbeddingResponse,
)
from inference.core.entities.responses.cogvlm import CogVLMResponse
from inference.core.entities.responses.doctr import DoctrOCRInferenceResponse
from inference.core.entities.responses.gaze import GazeDetectionInferenceResponse
from inference.core.entities.responses.inference import (
ClassificationInferenceResponse,
InferenceResponse,
InstanceSegmentationInferenceResponse,
KeypointsDetectionInferenceResponse,
MultiLabelClassificationInferenceResponse,
ObjectDetectionInferenceResponse,
StubResponse,
)
from inference.core.entities.responses.notebooks import NotebookStartResponse
from inference.core.entities.responses.sam import (
SamEmbeddingResponse,
SamSegmentationResponse,
)
from inference.core.entities.responses.server_state import (
ModelsDescriptions,
ServerVersionInfo,
)
from inference.core.entities.responses.workflows import WorkflowInferenceResponse
from inference.core.env import (
ALLOW_ORIGINS,
CORE_MODEL_CLIP_ENABLED,
CORE_MODEL_COGVLM_ENABLED,
CORE_MODEL_DOCTR_ENABLED,
CORE_MODEL_GAZE_ENABLED,
CORE_MODEL_GROUNDINGDINO_ENABLED,
CORE_MODEL_SAM_ENABLED,
CORE_MODEL_YOLO_WORLD_ENABLED,
CORE_MODELS_ENABLED,
DISABLE_WORKFLOW_ENDPOINTS,
LAMBDA,
LEGACY_ROUTE_ENABLED,
METLO_KEY,
METRICS_ENABLED,
NOTEBOOK_ENABLED,
NOTEBOOK_PASSWORD,
NOTEBOOK_PORT,
PROFILE,
ROBOFLOW_SERVICE_SECRET,
WORKFLOWS_MAX_CONCURRENT_STEPS,
WORKFLOWS_STEP_EXECUTION_MODE,
)
from inference.core.exceptions import (
ContentTypeInvalid,
ContentTypeMissing,
InferenceModelNotFound,
InputImageLoadError,
InvalidEnvironmentVariableError,
InvalidMaskDecodeArgument,
InvalidModelIDError,
MalformedRoboflowAPIResponseError,
MalformedWorkflowResponseError,
MissingApiKeyError,
MissingServiceSecretError,
ModelArtefactError,
OnnxProviderNotAvailable,
PostProcessingError,
PreProcessingError,
RoboflowAPIConnectionError,
RoboflowAPINotAuthorizedError,
RoboflowAPINotNotFoundError,
RoboflowAPIUnsuccessfulRequestError,
ServiceConfigurationError,
WorkspaceLoadError,
)
from inference.core.interfaces.base import BaseInterface
from inference.core.interfaces.http.orjson_utils import (
orjson_response,
serialise_workflow_result,
)
from inference.core.managers.base import ModelManager
from inference.core.roboflow_api import (
get_roboflow_workspace,
get_workflow_specification,
)
from inference.core.utils.notebooks import start_notebook
from inference.enterprise.workflows.complier.core import compile_and_execute_async
from inference.enterprise.workflows.complier.entities import StepExecutionMode
from inference.enterprise.workflows.complier.steps_executors.active_learning_middlewares import (
WorkflowsActiveLearningMiddleware,
)
from inference.enterprise.workflows.errors import (
ExecutionEngineError,
RuntimePayloadError,
WorkflowsCompilerError,
)
from inference.models.aliases import resolve_roboflow_model_alias
if LAMBDA:
from inference.core.usage import trackUsage
if METLO_KEY:
from metlo.fastapi import ASGIMiddleware
from inference.core.version import __version__
def with_route_exceptions(route):
"""
A decorator that wraps a FastAPI route to handle specific exceptions. If an exception
is caught, it returns a JSON response with the error message.
Args:
route (Callable): The FastAPI route to be wrapped.
Returns:
Callable: The wrapped route.
"""
@wraps(route)
async def wrapped_route(*args, **kwargs):
try:
return await route(*args, **kwargs)
except (
ContentTypeInvalid,
ContentTypeMissing,
InputImageLoadError,
InvalidModelIDError,
InvalidMaskDecodeArgument,
MissingApiKeyError,
RuntimePayloadError,
) as e:
resp = JSONResponse(status_code=400, content={"message": str(e)})
traceback.print_exc()
except RoboflowAPINotAuthorizedError as e:
resp = JSONResponse(status_code=401, content={"message": str(e)})
traceback.print_exc()
except (RoboflowAPINotNotFoundError, InferenceModelNotFound) as e:
resp = JSONResponse(status_code=404, content={"message": str(e)})
traceback.print_exc()
except (
InvalidEnvironmentVariableError,
MissingServiceSecretError,
WorkspaceLoadError,
PreProcessingError,
PostProcessingError,
ServiceConfigurationError,
ModelArtefactError,
MalformedWorkflowResponseError,
WorkflowsCompilerError,
ExecutionEngineError,
) as e:
resp = JSONResponse(status_code=500, content={"message": str(e)})
traceback.print_exc()
except OnnxProviderNotAvailable as e:
resp = JSONResponse(status_code=501, content={"message": str(e)})
traceback.print_exc()
except (
MalformedRoboflowAPIResponseError,
RoboflowAPIUnsuccessfulRequestError,
) as e:
resp = JSONResponse(status_code=502, content={"message": str(e)})
traceback.print_exc()
except RoboflowAPIConnectionError as e:
resp = JSONResponse(status_code=503, content={"message": str(e)})
traceback.print_exc()
except Exception:
resp = JSONResponse(status_code=500, content={"message": "Internal error."})
traceback.print_exc()
return resp
return wrapped_route
class HttpInterface(BaseInterface):
"""Roboflow defined HTTP interface for a general-purpose inference server.
This class sets up the FastAPI application and adds necessary middleware,
as well as initializes the model manager and model registry for the inference server.
Attributes:
app (FastAPI): The FastAPI application instance.
model_manager (ModelManager): The manager for handling different models.
"""
def __init__(
self,
model_manager: ModelManager,
root_path: Optional[str] = None,
):
"""
Initializes the HttpInterface with given model manager and model registry.
Args:
model_manager (ModelManager): The manager for handling different models.
root_path (Optional[str]): The root path for the FastAPI application.
Description:
Deploy Roboflow trained models to nearly any compute environment!
"""
description = "Roboflow inference server"
app = FastAPI(
title="Roboflow Inference Server",
description=description,
version=__version__,
terms_of_service="https://roboflow.com/terms",
contact={
"name": "Roboflow Inc.",
"url": "https://roboflow.com/contact",
"email": "[email protected]",
},
license_info={
"name": "Apache 2.0",
"url": "https://www.apache.org/licenses/LICENSE-2.0.html",
},
root_path=root_path,
)
if METLO_KEY:
app.add_middleware(
ASGIMiddleware, host="https://app.metlo.com", api_key=METLO_KEY
)
if len(ALLOW_ORIGINS) > 0:
app.add_middleware(
CORSMiddleware,
allow_origins=ALLOW_ORIGINS,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Optionally add middleware for profiling the FastAPI server and underlying inference API code
if PROFILE:
app.add_middleware(
CProfileMiddleware,
enable=True,
server_app=app,
filename="/profile/output.pstats",
strip_dirs=False,
sort_by="cumulative",
)
if METRICS_ENABLED:
@app.middleware("http")
async def count_errors(request: Request, call_next):
"""Middleware to count errors.
Args:
request (Request): The incoming request.
call_next (Callable): The next middleware or endpoint to call.
Returns:
Response: The response from the next middleware or endpoint.
"""
response = await call_next(request)
if response.status_code >= 400:
self.model_manager.num_errors += 1
return response
self.app = app
self.model_manager = model_manager
self.workflows_active_learning_middleware = WorkflowsActiveLearningMiddleware(
cache=cache,
)
async def process_inference_request(
inference_request: InferenceRequest, **kwargs
) -> InferenceResponse:
"""Processes an inference request by calling the appropriate model.
Args:
inference_request (InferenceRequest): The request containing model ID and other inference details.
Returns:
InferenceResponse: The response containing the inference results.
"""
de_aliased_model_id = resolve_roboflow_model_alias(
model_id=inference_request.model_id
)
self.model_manager.add_model(de_aliased_model_id, inference_request.api_key)
resp = await self.model_manager.infer_from_request(
de_aliased_model_id, inference_request, **kwargs
)
return orjson_response(resp)
async def process_workflow_inference_request(
workflow_request: WorkflowInferenceRequest,
workflow_specification: dict,
background_tasks: Optional[BackgroundTasks],
) -> WorkflowInferenceResponse:
step_execution_mode = StepExecutionMode(WORKFLOWS_STEP_EXECUTION_MODE)
result = await compile_and_execute_async(
workflow_specification=workflow_specification,
runtime_parameters=workflow_request.inputs,
model_manager=model_manager,
api_key=workflow_request.api_key,
max_concurrent_steps=WORKFLOWS_MAX_CONCURRENT_STEPS,
step_execution_mode=step_execution_mode,
active_learning_middleware=self.workflows_active_learning_middleware,
background_tasks=background_tasks,
)
outputs = serialise_workflow_result(
result=result,
excluded_fields=workflow_request.excluded_fields,
)
response = WorkflowInferenceResponse(outputs=outputs)
return orjson_response(response=response)
def load_core_model(
inference_request: InferenceRequest,
api_key: Optional[str] = None,
core_model: str = None,
) -> None:
"""Loads a core model (e.g., "clip" or "sam") into the model manager.
Args:
inference_request (InferenceRequest): The request containing version and other details.
api_key (Optional[str]): The API key for the request.
core_model (str): The core model type, e.g., "clip" or "sam".
Returns:
str: The core model ID.
"""
if api_key:
inference_request.api_key = api_key
version_id_field = f"{core_model}_version_id"
core_model_id = (
f"{core_model}/{inference_request.__getattribute__(version_id_field)}"
)
self.model_manager.add_model(core_model_id, inference_request.api_key)
return core_model_id
load_clip_model = partial(load_core_model, core_model="clip")
"""Loads the CLIP model into the model manager.
Args:
inference_request: The request containing version and other details.
api_key: The API key for the request.
Returns:
The CLIP model ID.
"""
load_sam_model = partial(load_core_model, core_model="sam")
"""Loads the SAM model into the model manager.
Args:
inference_request: The request containing version and other details.
api_key: The API key for the request.
Returns:
The SAM model ID.
"""
load_gaze_model = partial(load_core_model, core_model="gaze")
"""Loads the GAZE model into the model manager.
Args:
inference_request: The request containing version and other details.
api_key: The API key for the request.
Returns:
The GAZE model ID.
"""
load_doctr_model = partial(load_core_model, core_model="doctr")
"""Loads the DocTR model into the model manager.
Args:
inference_request: The request containing version and other details.
api_key: The API key for the request.
Returns:
The DocTR model ID.
"""
load_cogvlm_model = partial(load_core_model, core_model="cogvlm")
load_grounding_dino_model = partial(
load_core_model, core_model="grounding_dino"
)
"""Loads the Grounding DINO model into the model manager.
Args:
inference_request: The request containing version and other details.
api_key: The API key for the request.
Returns:
The Grounding DINO model ID.
"""
load_yolo_world_model = partial(load_core_model, core_model="yolo_world")
"""Loads the YOLO World model into the model manager.
Args:
inference_request: The request containing version and other details.
api_key: The API key for the request.
Returns:
The YOLO World model ID.
"""
@app.get(
"/info",
response_model=ServerVersionInfo,
summary="Info",
description="Get the server name and version number",
)
async def root():
"""Endpoint to get the server name and version number.
Returns:
ServerVersionInfo: The server version information.
"""
return ServerVersionInfo(
name="Roboflow Inference Server",
version=__version__,
uuid=GLOBAL_INFERENCE_SERVER_ID,
)
# The current AWS Lambda authorizer only supports path parameters, therefore we can only use the legacy infer route. This case statement excludes routes which won't work for the current Lambda authorizer.
if not LAMBDA:
@app.get(
"/model/registry",
response_model=ModelsDescriptions,
summary="Get model keys",
description="Get the ID of each loaded model",
)
async def registry():
"""Get the ID of each loaded model in the registry.
Returns:
ModelsDescriptions: The object containing models descriptions
"""
logger.debug(f"Reached /model/registry")
models_descriptions = self.model_manager.describe_models()
return ModelsDescriptions.from_models_descriptions(
models_descriptions=models_descriptions
)
@app.post(
"/model/add",
response_model=ModelsDescriptions,
summary="Load a model",
description="Load the model with the given model ID",
)
@with_route_exceptions
async def model_add(request: AddModelRequest):
"""Load the model with the given model ID into the model manager.
Args:
request (AddModelRequest): The request containing the model ID and optional API key.
Returns:
ModelsDescriptions: The object containing models descriptions
"""
logger.debug(f"Reached /model/add")
de_aliased_model_id = resolve_roboflow_model_alias(
model_id=request.model_id
)
self.model_manager.add_model(de_aliased_model_id, request.api_key)
models_descriptions = self.model_manager.describe_models()
return ModelsDescriptions.from_models_descriptions(
models_descriptions=models_descriptions
)
@app.post(
"/model/remove",
response_model=ModelsDescriptions,
summary="Remove a model",
description="Remove the model with the given model ID",
)
@with_route_exceptions
async def model_remove(request: ClearModelRequest):
"""Remove the model with the given model ID from the model manager.
Args:
request (ClearModelRequest): The request containing the model ID to be removed.
Returns:
ModelsDescriptions: The object containing models descriptions
"""
logger.debug(f"Reached /model/remove")
de_aliased_model_id = resolve_roboflow_model_alias(
model_id=request.model_id
)
self.model_manager.remove(de_aliased_model_id)
models_descriptions = self.model_manager.describe_models()
return ModelsDescriptions.from_models_descriptions(
models_descriptions=models_descriptions
)
@app.post(
"/model/clear",
response_model=ModelsDescriptions,
summary="Remove all models",
description="Remove all loaded models",
)
@with_route_exceptions
async def model_clear():
"""Remove all loaded models from the model manager.
Returns:
ModelsDescriptions: The object containing models descriptions
"""
logger.debug(f"Reached /model/clear")
self.model_manager.clear()
models_descriptions = self.model_manager.describe_models()
return ModelsDescriptions.from_models_descriptions(
models_descriptions=models_descriptions
)
@app.post(
"/infer/object_detection",
response_model=Union[
ObjectDetectionInferenceResponse,
List[ObjectDetectionInferenceResponse],
StubResponse,
],
summary="Object detection infer",
description="Run inference with the specified object detection model",
response_model_exclude_none=True,
)
@with_route_exceptions
async def infer_object_detection(
inference_request: ObjectDetectionInferenceRequest,
background_tasks: BackgroundTasks,
):
"""Run inference with the specified object detection model.
Args:
inference_request (ObjectDetectionInferenceRequest): The request containing the necessary details for object detection.
background_tasks: (BackgroundTasks) pool of fastapi background tasks
Returns:
Union[ObjectDetectionInferenceResponse, List[ObjectDetectionInferenceResponse]]: The response containing the inference results.
"""
logger.debug(f"Reached /infer/object_detection")
return await process_inference_request(
inference_request,
active_learning_eligible=True,
background_tasks=background_tasks,
)
@app.post(
"/infer/instance_segmentation",
response_model=Union[
InstanceSegmentationInferenceResponse, StubResponse
],
summary="Instance segmentation infer",
description="Run inference with the specified instance segmentation model",
)
@with_route_exceptions
async def infer_instance_segmentation(
inference_request: InstanceSegmentationInferenceRequest,
background_tasks: BackgroundTasks,
):
"""Run inference with the specified instance segmentation model.
Args:
inference_request (InstanceSegmentationInferenceRequest): The request containing the necessary details for instance segmentation.
background_tasks: (BackgroundTasks) pool of fastapi background tasks
Returns:
InstanceSegmentationInferenceResponse: The response containing the inference results.
"""
logger.debug(f"Reached /infer/instance_segmentation")
return await process_inference_request(
inference_request,
active_learning_eligible=True,
background_tasks=background_tasks,
)
@app.post(
"/infer/classification",
response_model=Union[
ClassificationInferenceResponse,
MultiLabelClassificationInferenceResponse,
StubResponse,
],
summary="Classification infer",
description="Run inference with the specified classification model",
)
@with_route_exceptions
async def infer_classification(
inference_request: ClassificationInferenceRequest,
background_tasks: BackgroundTasks,
):
"""Run inference with the specified classification model.
Args:
inference_request (ClassificationInferenceRequest): The request containing the necessary details for classification.
background_tasks: (BackgroundTasks) pool of fastapi background tasks
Returns:
Union[ClassificationInferenceResponse, MultiLabelClassificationInferenceResponse]: The response containing the inference results.
"""
logger.debug(f"Reached /infer/classification")
return await process_inference_request(
inference_request,
active_learning_eligible=True,
background_tasks=background_tasks,
)
@app.post(
"/infer/keypoints_detection",
response_model=Union[KeypointsDetectionInferenceResponse, StubResponse],
summary="Keypoints detection infer",
description="Run inference with the specified keypoints detection model",
)
@with_route_exceptions
async def infer_keypoints(
inference_request: KeypointsDetectionInferenceRequest,
):
"""Run inference with the specified keypoints detection model.
Args:
inference_request (KeypointsDetectionInferenceRequest): The request containing the necessary details for keypoints detection.
Returns:
Union[ClassificationInferenceResponse, MultiLabelClassificationInferenceResponse]: The response containing the inference results.
"""
logger.debug(f"Reached /infer/keypoints_detection")
return await process_inference_request(inference_request)
if not DISABLE_WORKFLOW_ENDPOINTS:
@app.post(
"/infer/workflows/{workspace_name}/{workflow_name}",
response_model=WorkflowInferenceResponse,
summary="Endpoint to trigger inference from predefined workflow",
description="Checks Roboflow API for workflow definition, once acquired - parses and executes injecting runtime parameters from request body",
)
@with_route_exceptions
async def infer_from_predefined_workflow(
workspace_name: str,
workflow_name: str,
workflow_request: WorkflowInferenceRequest,
background_tasks: BackgroundTasks,
) -> WorkflowInferenceResponse:
workflow_specification = get_workflow_specification(
api_key=workflow_request.api_key,
workspace_id=workspace_name,
workflow_name=workflow_name,
)
return await process_workflow_inference_request(
workflow_request=workflow_request,
workflow_specification=workflow_specification,
background_tasks=background_tasks if not LAMBDA else None,
)
@app.post(
"/infer/workflows",
response_model=WorkflowInferenceResponse,
summary="Endpoint to trigger inference from workflow specification provided in payload",
description="Parses and executes workflow specification, injecting runtime parameters from request body",
)
@with_route_exceptions
async def infer_from_workflow(
workflow_request: WorkflowSpecificationInferenceRequest,
background_tasks: BackgroundTasks,
) -> WorkflowInferenceResponse:
workflow_specification = {
"specification": workflow_request.specification
}
return await process_workflow_inference_request(
workflow_request=workflow_request,
workflow_specification=workflow_specification,
background_tasks=background_tasks if not LAMBDA else None,
)
if CORE_MODELS_ENABLED:
if CORE_MODEL_CLIP_ENABLED:
@app.post(
"/clip/embed_image",
response_model=ClipEmbeddingResponse,
summary="CLIP Image Embeddings",
description="Run the Open AI CLIP model to embed image data.",
)
@with_route_exceptions
async def clip_embed_image(
inference_request: ClipImageEmbeddingRequest,
request: Request,
api_key: Optional[str] = Query(
None,
description="Roboflow API Key that will be passed to the model during initialization for artifact retrieval",
),
):
"""
Embeds image data using the OpenAI CLIP model.
Args:
inference_request (ClipImageEmbeddingRequest): The request containing the image to be embedded.
api_key (Optional[str], default None): Roboflow API Key passed to the model during initialization for artifact retrieval.
request (Request, default Body()): The HTTP request.
Returns:
ClipEmbeddingResponse: The response containing the embedded image.
"""
logger.debug(f"Reached /clip/embed_image")
clip_model_id = load_clip_model(inference_request, api_key=api_key)
response = await self.model_manager.infer_from_request(
clip_model_id, inference_request
)
if LAMBDA:
actor = request.scope["aws.event"]["requestContext"][
"authorizer"
]["lambda"]["actor"]
trackUsage(clip_model_id, actor)
return response
@app.post(
"/clip/embed_text",
response_model=ClipEmbeddingResponse,
summary="CLIP Text Embeddings",
description="Run the Open AI CLIP model to embed text data.",
)
@with_route_exceptions
async def clip_embed_text(
inference_request: ClipTextEmbeddingRequest,
request: Request,
api_key: Optional[str] = Query(
None,
description="Roboflow API Key that will be passed to the model during initialization for artifact retrieval",
),
):
"""
Embeds text data using the OpenAI CLIP model.
Args:
inference_request (ClipTextEmbeddingRequest): The request containing the text to be embedded.
api_key (Optional[str], default None): Roboflow API Key passed to the model during initialization for artifact retrieval.
request (Request, default Body()): The HTTP request.
Returns:
ClipEmbeddingResponse: The response containing the embedded text.
"""
logger.debug(f"Reached /clip/embed_text")
clip_model_id = load_clip_model(inference_request, api_key=api_key)
response = await self.model_manager.infer_from_request(
clip_model_id, inference_request
)
if LAMBDA:
actor = request.scope["aws.event"]["requestContext"][
"authorizer"
]["lambda"]["actor"]
trackUsage(clip_model_id, actor)
return response
@app.post(
"/clip/compare",
response_model=ClipCompareResponse,
summary="CLIP Compare",
description="Run the Open AI CLIP model to compute similarity scores.",
)
@with_route_exceptions
async def clip_compare(
inference_request: ClipCompareRequest,
request: Request,
api_key: Optional[str] = Query(
None,
description="Roboflow API Key that will be passed to the model during initialization for artifact retrieval",
),
):
"""
Computes similarity scores using the OpenAI CLIP model.
Args:
inference_request (ClipCompareRequest): The request containing the data to be compared.
api_key (Optional[str], default None): Roboflow API Key passed to the model during initialization for artifact retrieval.
request (Request, default Body()): The HTTP request.
Returns:
ClipCompareResponse: The response containing the similarity scores.
"""
logger.debug(f"Reached /clip/compare")
clip_model_id = load_clip_model(inference_request, api_key=api_key)
response = await self.model_manager.infer_from_request(
clip_model_id, inference_request
)
if LAMBDA:
actor = request.scope["aws.event"]["requestContext"][
"authorizer"
]["lambda"]["actor"]
trackUsage(clip_model_id, actor, n=2)
return response
if CORE_MODEL_GROUNDINGDINO_ENABLED:
@app.post(
"/grounding_dino/infer",
response_model=ObjectDetectionInferenceResponse,
summary="Grounding DINO inference.",
description="Run the Grounding DINO zero-shot object detection model.",
)
@with_route_exceptions
async def grounding_dino_infer(
inference_request: GroundingDINOInferenceRequest,
request: Request,
api_key: Optional[str] = Query(
None,
description="Roboflow API Key that will be passed to the model during initialization for artifact retrieval",
),
):
"""
Embeds image data using the Grounding DINO model.
Args:
inference_request GroundingDINOInferenceRequest): The request containing the image on which to run object detection.
api_key (Optional[str], default None): Roboflow API Key passed to the model during initialization for artifact retrieval.
request (Request, default Body()): The HTTP request.
Returns:
ObjectDetectionInferenceResponse: The object detection response.
"""
logger.debug(f"Reached /grounding_dino/infer")
grounding_dino_model_id = load_grounding_dino_model(
inference_request, api_key=api_key
)
response = await self.model_manager.infer_from_request(
grounding_dino_model_id, inference_request
)
if LAMBDA:
actor = request.scope["aws.event"]["requestContext"][
"authorizer"
]["lambda"]["actor"]
trackUsage(grounding_dino_model_id, actor)
return response
if CORE_MODEL_YOLO_WORLD_ENABLED:
@app.post(
"/yolo_world/infer",
response_model=ObjectDetectionInferenceResponse,
summary="YOLO-World inference.",
description="Run the YOLO-World zero-shot object detection model.",
response_model_exclude_none=True,
)
@with_route_exceptions
async def yolo_world_infer(
inference_request: YOLOWorldInferenceRequest,
request: Request,
api_key: Optional[str] = Query(
None,
description="Roboflow API Key that will be passed to the model during initialization for artifact retrieval",
),
):
"""
Runs the YOLO-World zero-shot object detection model.
Args:
inference_request (YOLOWorldInferenceRequest): The request containing the image on which to run object detection.
api_key (Optional[str], default None): Roboflow API Key passed to the model during initialization for artifact retrieval.
request (Request, default Body()): The HTTP request.
Returns:
ObjectDetectionInferenceResponse: The object detection response.
"""
logger.debug(f"Reached /yolo_world/infer")
yolo_world_model_id = load_yolo_world_model(
inference_request, api_key=api_key
)
response = await self.model_manager.infer_from_request(
yolo_world_model_id, inference_request
)
if LAMBDA:
actor = request.scope["aws.event"]["requestContext"][
"authorizer"
]["lambda"]["actor"]
trackUsage(yolo_world_model_id, actor)
return response
if CORE_MODEL_DOCTR_ENABLED:
@app.post(
"/doctr/ocr",
response_model=DoctrOCRInferenceResponse,
summary="DocTR OCR response",
description="Run the DocTR OCR model to retrieve text in an image.",
)
@with_route_exceptions
async def doctr_retrieve_text(
inference_request: DoctrOCRInferenceRequest,
request: Request,
api_key: Optional[str] = Query(
None,
description="Roboflow API Key that will be passed to the model during initialization for artifact retrieval",
),
):
"""
Embeds image data using the DocTR model.
Args:
inference_request (M.DoctrOCRInferenceRequest): The request containing the image from which to retrieve text.
api_key (Optional[str], default None): Roboflow API Key passed to the model during initialization for artifact retrieval.
request (Request, default Body()): The HTTP request.
Returns:
M.DoctrOCRInferenceResponse: The response containing the embedded image.
"""
logger.debug(f"Reached /doctr/ocr")
doctr_model_id = load_doctr_model(
inference_request, api_key=api_key
)
response = await self.model_manager.infer_from_request(
doctr_model_id, inference_request
)
if LAMBDA:
actor = request.scope["aws.event"]["requestContext"][
"authorizer"
]["lambda"]["actor"]
trackUsage(doctr_model_id, actor)
return response
if CORE_MODEL_SAM_ENABLED:
@app.post(
"/sam/embed_image",
response_model=SamEmbeddingResponse,
summary="SAM Image Embeddings",
description="Run the Meta AI Segmant Anything Model to embed image data.",
)
@with_route_exceptions
async def sam_embed_image(
inference_request: SamEmbeddingRequest,
request: Request,
api_key: Optional[str] = Query(
None,
description="Roboflow API Key that will be passed to the model during initialization for artifact retrieval",
),
):
"""
Embeds image data using the Meta AI Segmant Anything Model (SAM).
Args:
inference_request (SamEmbeddingRequest): The request containing the image to be embedded.
api_key (Optional[str], default None): Roboflow API Key passed to the model during initialization for artifact retrieval.
request (Request, default Body()): The HTTP request.
Returns:
M.SamEmbeddingResponse or Response: The response containing the embedded image.
"""
logger.debug(f"Reached /sam/embed_image")
sam_model_id = load_sam_model(inference_request, api_key=api_key)
model_response = await self.model_manager.infer_from_request(
sam_model_id, inference_request
)
if LAMBDA:
actor = request.scope["aws.event"]["requestContext"][
"authorizer"
]["lambda"]["actor"]
trackUsage(sam_model_id, actor)
if inference_request.format == "binary":
return Response(
content=model_response.embeddings,
headers={"Content-Type": "application/octet-stream"},
)
return model_response
@app.post(
"/sam/segment_image",
response_model=SamSegmentationResponse,
summary="SAM Image Segmentation",
description="Run the Meta AI Segmant Anything Model to generate segmenations for image data.",
)
@with_route_exceptions
async def sam_segment_image(
inference_request: SamSegmentationRequest,
request: Request,
api_key: Optional[str] = Query(
None,
description="Roboflow API Key that will be passed to the model during initialization for artifact retrieval",
),
):
"""
Generates segmentations for image data using the Meta AI Segmant Anything Model (SAM).
Args:
inference_request (SamSegmentationRequest): The request containing the image to be segmented.
api_key (Optional[str], default None): Roboflow API Key passed to the model during initialization for artifact retrieval.
request (Request, default Body()): The HTTP request.
Returns:
M.SamSegmentationResponse or Response: The response containing the segmented image.
"""
logger.debug(f"Reached /sam/segment_image")
sam_model_id = load_sam_model(inference_request, api_key=api_key)
model_response = await self.model_manager.infer_from_request(
sam_model_id, inference_request
)
if LAMBDA:
actor = request.scope["aws.event"]["requestContext"][
"authorizer"
]["lambda"]["actor"]
trackUsage(sam_model_id, actor)
if inference_request.format == "binary":
return Response(
content=model_response,
headers={"Content-Type": "application/octet-stream"},
)
return model_response
if CORE_MODEL_GAZE_ENABLED:
@app.post(
"/gaze/gaze_detection",
response_model=List[GazeDetectionInferenceResponse],
summary="Gaze Detection",
description="Run the gaze detection model to detect gaze.",
)
@with_route_exceptions
async def gaze_detection(
inference_request: GazeDetectionInferenceRequest,
request: Request,
api_key: Optional[str] = Query(
None,
description="Roboflow API Key that will be passed to the model during initialization for artifact retrieval",
),
):
"""
Detect gaze using the gaze detection model.
Args:
inference_request (M.GazeDetectionRequest): The request containing the image to be detected.
api_key (Optional[str], default None): Roboflow API Key passed to the model during initialization for artifact retrieval.
request (Request, default Body()): The HTTP request.
Returns:
M.GazeDetectionResponse: The response containing all the detected faces and the corresponding gazes.
"""
logger.debug(f"Reached /gaze/gaze_detection")
gaze_model_id = load_gaze_model(inference_request, api_key=api_key)
response = await self.model_manager.infer_from_request(
gaze_model_id, inference_request
)
if LAMBDA:
actor = request.scope["aws.event"]["requestContext"][
"authorizer"
]["lambda"]["actor"]
trackUsage(gaze_model_id, actor)
return response
if CORE_MODEL_COGVLM_ENABLED:
@app.post(
"/llm/cogvlm",
response_model=CogVLMResponse,
summary="CogVLM",
description="Run the CogVLM model to chat or describe an image.",
)
@with_route_exceptions
async def cog_vlm(
inference_request: CogVLMInferenceRequest,
request: Request,
api_key: Optional[str] = Query(
None,
description="Roboflow API Key that will be passed to the model during initialization for artifact retrieval",
),
):
"""
Chat with CogVLM or ask it about an image. Multi-image requests not currently supported.
Args:
inference_request (M.CogVLMInferenceRequest): The request containing the prompt and image to be described.
api_key (Optional[str], default None): Roboflow API Key passed to the model during initialization for artifact retrieval.
request (Request, default Body()): The HTTP request.
Returns:
M.CogVLMResponse: The model's text response
"""
logger.debug(f"Reached /llm/cogvlm")
cog_model_id = load_cogvlm_model(inference_request, api_key=api_key)
response = await self.model_manager.infer_from_request(
cog_model_id, inference_request
)
if LAMBDA:
actor = request.scope["aws.event"]["requestContext"][
"authorizer"
]["lambda"]["actor"]
trackUsage(cog_model_id, actor)
return response
if LEGACY_ROUTE_ENABLED:
# Legacy object detection inference path for backwards compatability
@app.post(
"/{dataset_id}/{version_id}",
# Order matters in this response model Union. It will use the first matching model. For example, Object Detection Inference Response is a subset of Instance segmentation inference response, so instance segmentation must come first in order for the matching logic to work.
response_model=Union[
InstanceSegmentationInferenceResponse,
KeypointsDetectionInferenceResponse,
ObjectDetectionInferenceResponse,
ClassificationInferenceResponse,
MultiLabelClassificationInferenceResponse,
StubResponse,
Any,
],
response_model_exclude_none=True,
)
@with_route_exceptions
async def legacy_infer_from_request(
background_tasks: BackgroundTasks,
request: Request,
dataset_id: str = Path(
description="ID of a Roboflow dataset corresponding to the model to use for inference"
),
version_id: str = Path(
description="ID of a Roboflow dataset version corresponding to the model to use for inference"
),
api_key: Optional[str] = Query(
None,
description="Roboflow API Key that will be passed to the model during initialization for artifact retrieval",
),
confidence: float = Query(
0.4,
description="The confidence threshold used to filter out predictions",
),
keypoint_confidence: float = Query(
0.0,
description="The confidence threshold used to filter out keypoints that are not visible based on model confidence",
),
format: str = Query(
"json",
description="One of 'json' or 'image'. If 'json' prediction data is return as a JSON string. If 'image' prediction data is visualized and overlayed on the original input image.",
),
image: Optional[str] = Query(
None,
description="The publically accessible URL of an image to use for inference.",
),
image_type: Optional[str] = Query(
"base64",
description="One of base64 or numpy. Note, numpy input is not supported for Roboflow Hosted Inference.",
),
labels: Optional[bool] = Query(
False,
description="If true, labels will be include in any inference visualization.",
),
mask_decode_mode: Optional[str] = Query(
"accurate",
description="One of 'accurate' or 'fast'. If 'accurate' the mask will be decoded using the original image size. If 'fast' the mask will be decoded using the original mask size. 'accurate' is slower but more accurate.",
),
tradeoff_factor: Optional[float] = Query(
0.0,
description="The amount to tradeoff between 0='fast' and 1='accurate'",
),
max_detections: int = Query(
300,
description="The maximum number of detections to return. This is used to limit the number of predictions returned by the model. The model may return more predictions than this number, but only the top `max_detections` predictions will be returned.",
),
overlap: float = Query(
0.3,
description="The IoU threhsold that must be met for a box pair to be considered duplicate during NMS",
),
stroke: int = Query(
1, description="The stroke width used when visualizing predictions"
),
countinference: Optional[bool] = Query(
True,
description="If false, does not track inference against usage.",
include_in_schema=False,
),
service_secret: Optional[str] = Query(
None,
description="Shared secret used to authenticate requests to the inference server from internal services (e.g. to allow disabling inference usage tracking via the `countinference` query parameter)",
include_in_schema=False,
),
disable_preproc_auto_orient: Optional[bool] = Query(
False, description="If true, disables automatic image orientation"
),
disable_preproc_contrast: Optional[bool] = Query(
False, description="If true, disables automatic contrast adjustment"
),
disable_preproc_grayscale: Optional[bool] = Query(
False,
description="If true, disables automatic grayscale conversion",
),
disable_preproc_static_crop: Optional[bool] = Query(
False, description="If true, disables automatic static crop"
),
disable_active_learning: Optional[bool] = Query(
default=False,
description="If true, the predictions will be prevented from registration by Active Learning (if the functionality is enabled)",
),
source: Optional[str] = Query(
"external",
description="The source of the inference request",
),
source_info: Optional[str] = Query(
"external",
description="The detailed source information of the inference request",
),
):
"""
Legacy inference endpoint for object detection, instance segmentation, and classification.
Args:
background_tasks: (BackgroundTasks) pool of fastapi background tasks
dataset_id (str): ID of a Roboflow dataset corresponding to the model to use for inference.
version_id (str): ID of a Roboflow dataset version corresponding to the model to use for inference.
api_key (Optional[str], default None): Roboflow API Key passed to the model during initialization for artifact retrieval.
# Other parameters described in the function signature...
Returns:
Union[InstanceSegmentationInferenceResponse, KeypointsDetectionInferenceRequest, ObjectDetectionInferenceResponse, ClassificationInferenceResponse, MultiLabelClassificationInferenceResponse, Any]: The response containing the inference results.
"""
logger.debug(
f"Reached legacy route /:dataset_id/:version_id with {dataset_id}/{version_id}"
)
model_id = f"{dataset_id}/{version_id}"
if confidence >= 1:
confidence /= 100
elif confidence < 0.01:
confidence = 0.01
if overlap >= 1:
overlap /= 100
if image is not None:
request_image = InferenceRequestImage(type="url", value=image)
else:
if "Content-Type" not in request.headers:
raise ContentTypeMissing(
f"Request must include a Content-Type header"
)
if "multipart/form-data" in request.headers["Content-Type"]:
form_data = await request.form()
base64_image_str = await form_data["file"].read()
base64_image_str = base64.b64encode(base64_image_str)
request_image = InferenceRequestImage(
type="base64", value=base64_image_str.decode("ascii")
)
elif (
"application/x-www-form-urlencoded"
in request.headers["Content-Type"]
or "application/json" in request.headers["Content-Type"]
):
data = await request.body()
request_image = InferenceRequestImage(
type=image_type, value=data
)
else:
raise ContentTypeInvalid(
f"Invalid Content-Type: {request.headers['Content-Type']}"
)
if LAMBDA:
request_model_id = (
request.scope["aws.event"]["requestContext"]["authorizer"][
"lambda"
]["model"]["endpoint"]
.replace("--", "/")
.replace("rf-", "")
.replace("nu-", "")
)
actor = request.scope["aws.event"]["requestContext"]["authorizer"][
"lambda"
]["actor"]
if countinference:
trackUsage(request_model_id, actor)
else:
if service_secret != ROBOFLOW_SERVICE_SECRET:
raise MissingServiceSecretError(
"Service secret is required to disable inference usage tracking"
)
else:
request_model_id = model_id
self.model_manager.add_model(
request_model_id, api_key, model_id_alias=model_id
)
task_type = self.model_manager.get_task_type(model_id, api_key=api_key)
inference_request_type = ObjectDetectionInferenceRequest
args = dict()
if task_type == "instance-segmentation":
inference_request_type = InstanceSegmentationInferenceRequest
args = {
"mask_decode_mode": mask_decode_mode,
"tradeoff_factor": tradeoff_factor,
}
elif task_type == "classification":
inference_request_type = ClassificationInferenceRequest
elif task_type == "keypoint-detection":
inference_request_type = KeypointsDetectionInferenceRequest
args = {"keypoint_confidence": keypoint_confidence}
inference_request = inference_request_type(
api_key=api_key,
model_id=model_id,
image=request_image,
confidence=confidence,
iou_threshold=overlap,
max_detections=max_detections,
visualization_labels=labels,
visualization_stroke_width=stroke,
visualize_predictions=True if format == "image" else False,
disable_preproc_auto_orient=disable_preproc_auto_orient,
disable_preproc_contrast=disable_preproc_contrast,
disable_preproc_grayscale=disable_preproc_grayscale,
disable_preproc_static_crop=disable_preproc_static_crop,
disable_active_learning=disable_active_learning,
source=source,
source_info=source_info,
**args,
)
inference_response = await self.model_manager.infer_from_request(
inference_request.model_id,
inference_request,
active_learning_eligible=True,
background_tasks=background_tasks,
)
logger.debug("Response ready.")
if format == "image":
return Response(
content=inference_response.visualization,
media_type="image/jpeg",
)
else:
return orjson_response(inference_response)
if not LAMBDA:
# Legacy clear cache endpoint for backwards compatability
@app.get("/clear_cache", response_model=str)
async def legacy_clear_cache():
"""
Clears the model cache.
This endpoint provides a way to clear the cache of loaded models.
Returns:
str: A string indicating that the cache has been cleared.
"""
logger.debug(f"Reached /clear_cache")
await model_clear()
return "Cache Cleared"
# Legacy add model endpoint for backwards compatability
@app.get("/start/{dataset_id}/{version_id}")
async def model_add(dataset_id: str, version_id: str, api_key: str = None):
"""
Starts a model inference session.
This endpoint initializes and starts an inference session for the specified model version.
Args:
dataset_id (str): ID of a Roboflow dataset corresponding to the model.
version_id (str): ID of a Roboflow dataset version corresponding to the model.
api_key (str, optional): Roboflow API Key for artifact retrieval.
Returns:
JSONResponse: A response object containing the status and a success message.
"""
logger.debug(
f"Reached /start/{dataset_id}/{version_id} with {dataset_id}/{version_id}"
)
model_id = f"{dataset_id}/{version_id}"
self.model_manager.add_model(model_id, api_key)
return JSONResponse(
{
"status": 200,
"message": "inference session started from local memory.",
}
)
if not LAMBDA:
@app.get(
"/notebook/start",
summary="Jupyter Lab Server Start",
description="Starts a jupyter lab server for running development code",
)
@with_route_exceptions
async def notebook_start(browserless: bool = False):
"""Starts a jupyter lab server for running development code.
Args:
inference_request (NotebookStartRequest): The request containing the necessary details for starting a jupyter lab server.
background_tasks: (BackgroundTasks) pool of fastapi background tasks
Returns:
NotebookStartResponse: The response containing the URL of the jupyter lab server.
"""
logger.debug(f"Reached /notebook/start")
if NOTEBOOK_ENABLED:
start_notebook()
if browserless:
return {
"success": True,
"message": f"Jupyter Lab server started at http://localhost:{NOTEBOOK_PORT}?token={NOTEBOOK_PASSWORD}",
}
else:
sleep(2)
return RedirectResponse(
f"http://localhost:{NOTEBOOK_PORT}/lab/tree/quickstart.ipynb?token={NOTEBOOK_PASSWORD}"
)
else:
if browserless:
return {
"success": False,
"message": "Notebook server is not enabled. Enable notebooks via the NOTEBOOK_ENABLED environment variable.",
}
else:
return RedirectResponse(f"/notebook-instructions.html")
app.mount(
"/",
StaticFiles(directory="./inference/landing/out", html=True),
name="static",
)
def run(self):
uvicorn.run(self.app, host="127.0.0.1", port=8080)
|