File size: 65,480 Bytes
2eafbc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
import base64
import traceback
from functools import partial, wraps
from time import sleep
from typing import Any, List, Optional, Union

import uvicorn
from fastapi import BackgroundTasks, FastAPI, Path, Query, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, RedirectResponse, Response
from fastapi.staticfiles import StaticFiles
from fastapi_cprofile.profiler import CProfileMiddleware

from inference.core import logger
from inference.core.cache import cache
from inference.core.devices.utils import GLOBAL_INFERENCE_SERVER_ID
from inference.core.entities.requests.clip import (
    ClipCompareRequest,
    ClipImageEmbeddingRequest,
    ClipTextEmbeddingRequest,
)
from inference.core.entities.requests.cogvlm import CogVLMInferenceRequest
from inference.core.entities.requests.doctr import DoctrOCRInferenceRequest
from inference.core.entities.requests.gaze import GazeDetectionInferenceRequest
from inference.core.entities.requests.groundingdino import GroundingDINOInferenceRequest
from inference.core.entities.requests.inference import (
    ClassificationInferenceRequest,
    InferenceRequest,
    InferenceRequestImage,
    InstanceSegmentationInferenceRequest,
    KeypointsDetectionInferenceRequest,
    ObjectDetectionInferenceRequest,
)
from inference.core.entities.requests.sam import (
    SamEmbeddingRequest,
    SamSegmentationRequest,
)
from inference.core.entities.requests.server_state import (
    AddModelRequest,
    ClearModelRequest,
)
from inference.core.entities.requests.workflows import (
    WorkflowInferenceRequest,
    WorkflowSpecificationInferenceRequest,
)
from inference.core.entities.requests.yolo_world import YOLOWorldInferenceRequest
from inference.core.entities.responses.clip import (
    ClipCompareResponse,
    ClipEmbeddingResponse,
)
from inference.core.entities.responses.cogvlm import CogVLMResponse
from inference.core.entities.responses.doctr import DoctrOCRInferenceResponse
from inference.core.entities.responses.gaze import GazeDetectionInferenceResponse
from inference.core.entities.responses.inference import (
    ClassificationInferenceResponse,
    InferenceResponse,
    InstanceSegmentationInferenceResponse,
    KeypointsDetectionInferenceResponse,
    MultiLabelClassificationInferenceResponse,
    ObjectDetectionInferenceResponse,
    StubResponse,
)
from inference.core.entities.responses.notebooks import NotebookStartResponse
from inference.core.entities.responses.sam import (
    SamEmbeddingResponse,
    SamSegmentationResponse,
)
from inference.core.entities.responses.server_state import (
    ModelsDescriptions,
    ServerVersionInfo,
)
from inference.core.entities.responses.workflows import WorkflowInferenceResponse
from inference.core.env import (
    ALLOW_ORIGINS,
    CORE_MODEL_CLIP_ENABLED,
    CORE_MODEL_COGVLM_ENABLED,
    CORE_MODEL_DOCTR_ENABLED,
    CORE_MODEL_GAZE_ENABLED,
    CORE_MODEL_GROUNDINGDINO_ENABLED,
    CORE_MODEL_SAM_ENABLED,
    CORE_MODEL_YOLO_WORLD_ENABLED,
    CORE_MODELS_ENABLED,
    DISABLE_WORKFLOW_ENDPOINTS,
    LAMBDA,
    LEGACY_ROUTE_ENABLED,
    METLO_KEY,
    METRICS_ENABLED,
    NOTEBOOK_ENABLED,
    NOTEBOOK_PASSWORD,
    NOTEBOOK_PORT,
    PROFILE,
    ROBOFLOW_SERVICE_SECRET,
    WORKFLOWS_MAX_CONCURRENT_STEPS,
    WORKFLOWS_STEP_EXECUTION_MODE,
)
from inference.core.exceptions import (
    ContentTypeInvalid,
    ContentTypeMissing,
    InferenceModelNotFound,
    InputImageLoadError,
    InvalidEnvironmentVariableError,
    InvalidMaskDecodeArgument,
    InvalidModelIDError,
    MalformedRoboflowAPIResponseError,
    MalformedWorkflowResponseError,
    MissingApiKeyError,
    MissingServiceSecretError,
    ModelArtefactError,
    OnnxProviderNotAvailable,
    PostProcessingError,
    PreProcessingError,
    RoboflowAPIConnectionError,
    RoboflowAPINotAuthorizedError,
    RoboflowAPINotNotFoundError,
    RoboflowAPIUnsuccessfulRequestError,
    ServiceConfigurationError,
    WorkspaceLoadError,
)
from inference.core.interfaces.base import BaseInterface
from inference.core.interfaces.http.orjson_utils import (
    orjson_response,
    serialise_workflow_result,
)
from inference.core.managers.base import ModelManager
from inference.core.roboflow_api import (
    get_roboflow_workspace,
    get_workflow_specification,
)
from inference.core.utils.notebooks import start_notebook
from inference.enterprise.workflows.complier.core import compile_and_execute_async
from inference.enterprise.workflows.complier.entities import StepExecutionMode
from inference.enterprise.workflows.complier.steps_executors.active_learning_middlewares import (
    WorkflowsActiveLearningMiddleware,
)
from inference.enterprise.workflows.errors import (
    ExecutionEngineError,
    RuntimePayloadError,
    WorkflowsCompilerError,
)
from inference.models.aliases import resolve_roboflow_model_alias

if LAMBDA:
    from inference.core.usage import trackUsage
if METLO_KEY:
    from metlo.fastapi import ASGIMiddleware

from inference.core.version import __version__


def with_route_exceptions(route):
    """
    A decorator that wraps a FastAPI route to handle specific exceptions. If an exception
    is caught, it returns a JSON response with the error message.

    Args:
        route (Callable): The FastAPI route to be wrapped.

    Returns:
        Callable: The wrapped route.
    """

    @wraps(route)
    async def wrapped_route(*args, **kwargs):
        try:
            return await route(*args, **kwargs)
        except (
            ContentTypeInvalid,
            ContentTypeMissing,
            InputImageLoadError,
            InvalidModelIDError,
            InvalidMaskDecodeArgument,
            MissingApiKeyError,
            RuntimePayloadError,
        ) as e:
            resp = JSONResponse(status_code=400, content={"message": str(e)})
            traceback.print_exc()
        except RoboflowAPINotAuthorizedError as e:
            resp = JSONResponse(status_code=401, content={"message": str(e)})
            traceback.print_exc()
        except (RoboflowAPINotNotFoundError, InferenceModelNotFound) as e:
            resp = JSONResponse(status_code=404, content={"message": str(e)})
            traceback.print_exc()
        except (
            InvalidEnvironmentVariableError,
            MissingServiceSecretError,
            WorkspaceLoadError,
            PreProcessingError,
            PostProcessingError,
            ServiceConfigurationError,
            ModelArtefactError,
            MalformedWorkflowResponseError,
            WorkflowsCompilerError,
            ExecutionEngineError,
        ) as e:
            resp = JSONResponse(status_code=500, content={"message": str(e)})
            traceback.print_exc()
        except OnnxProviderNotAvailable as e:
            resp = JSONResponse(status_code=501, content={"message": str(e)})
            traceback.print_exc()
        except (
            MalformedRoboflowAPIResponseError,
            RoboflowAPIUnsuccessfulRequestError,
        ) as e:
            resp = JSONResponse(status_code=502, content={"message": str(e)})
            traceback.print_exc()
        except RoboflowAPIConnectionError as e:
            resp = JSONResponse(status_code=503, content={"message": str(e)})
            traceback.print_exc()
        except Exception:
            resp = JSONResponse(status_code=500, content={"message": "Internal error."})
            traceback.print_exc()
        return resp

    return wrapped_route


class HttpInterface(BaseInterface):
    """Roboflow defined HTTP interface for a general-purpose inference server.

    This class sets up the FastAPI application and adds necessary middleware,
    as well as initializes the model manager and model registry for the inference server.

    Attributes:
        app (FastAPI): The FastAPI application instance.
        model_manager (ModelManager): The manager for handling different models.
    """

    def __init__(
        self,
        model_manager: ModelManager,
        root_path: Optional[str] = None,
    ):
        """
        Initializes the HttpInterface with given model manager and model registry.

        Args:
            model_manager (ModelManager): The manager for handling different models.
            root_path (Optional[str]): The root path for the FastAPI application.

        Description:
            Deploy Roboflow trained models to nearly any compute environment!
        """
        description = "Roboflow inference server"
        app = FastAPI(
            title="Roboflow Inference Server",
            description=description,
            version=__version__,
            terms_of_service="https://roboflow.com/terms",
            contact={
                "name": "Roboflow Inc.",
                "url": "https://roboflow.com/contact",
                "email": "[email protected]",
            },
            license_info={
                "name": "Apache 2.0",
                "url": "https://www.apache.org/licenses/LICENSE-2.0.html",
            },
            root_path=root_path,
        )
        if METLO_KEY:
            app.add_middleware(
                ASGIMiddleware, host="https://app.metlo.com", api_key=METLO_KEY
            )

        if len(ALLOW_ORIGINS) > 0:
            app.add_middleware(
                CORSMiddleware,
                allow_origins=ALLOW_ORIGINS,
                allow_credentials=True,
                allow_methods=["*"],
                allow_headers=["*"],
            )

        # Optionally add middleware for profiling the FastAPI server and underlying inference API code
        if PROFILE:
            app.add_middleware(
                CProfileMiddleware,
                enable=True,
                server_app=app,
                filename="/profile/output.pstats",
                strip_dirs=False,
                sort_by="cumulative",
            )

        if METRICS_ENABLED:

            @app.middleware("http")
            async def count_errors(request: Request, call_next):
                """Middleware to count errors.

                Args:
                    request (Request): The incoming request.
                    call_next (Callable): The next middleware or endpoint to call.

                Returns:
                    Response: The response from the next middleware or endpoint.
                """
                response = await call_next(request)
                if response.status_code >= 400:
                    self.model_manager.num_errors += 1
                return response

        self.app = app
        self.model_manager = model_manager
        self.workflows_active_learning_middleware = WorkflowsActiveLearningMiddleware(
            cache=cache,
        )

        async def process_inference_request(
            inference_request: InferenceRequest, **kwargs
        ) -> InferenceResponse:
            """Processes an inference request by calling the appropriate model.

            Args:
                inference_request (InferenceRequest): The request containing model ID and other inference details.

            Returns:
                InferenceResponse: The response containing the inference results.
            """
            de_aliased_model_id = resolve_roboflow_model_alias(
                model_id=inference_request.model_id
            )
            self.model_manager.add_model(de_aliased_model_id, inference_request.api_key)
            resp = await self.model_manager.infer_from_request(
                de_aliased_model_id, inference_request, **kwargs
            )
            return orjson_response(resp)

        async def process_workflow_inference_request(
            workflow_request: WorkflowInferenceRequest,
            workflow_specification: dict,
            background_tasks: Optional[BackgroundTasks],
        ) -> WorkflowInferenceResponse:
            step_execution_mode = StepExecutionMode(WORKFLOWS_STEP_EXECUTION_MODE)
            result = await compile_and_execute_async(
                workflow_specification=workflow_specification,
                runtime_parameters=workflow_request.inputs,
                model_manager=model_manager,
                api_key=workflow_request.api_key,
                max_concurrent_steps=WORKFLOWS_MAX_CONCURRENT_STEPS,
                step_execution_mode=step_execution_mode,
                active_learning_middleware=self.workflows_active_learning_middleware,
                background_tasks=background_tasks,
            )
            outputs = serialise_workflow_result(
                result=result,
                excluded_fields=workflow_request.excluded_fields,
            )
            response = WorkflowInferenceResponse(outputs=outputs)
            return orjson_response(response=response)

        def load_core_model(
            inference_request: InferenceRequest,
            api_key: Optional[str] = None,
            core_model: str = None,
        ) -> None:
            """Loads a core model (e.g., "clip" or "sam") into the model manager.

            Args:
                inference_request (InferenceRequest): The request containing version and other details.
                api_key (Optional[str]): The API key for the request.
                core_model (str): The core model type, e.g., "clip" or "sam".

            Returns:
                str: The core model ID.
            """
            if api_key:
                inference_request.api_key = api_key
            version_id_field = f"{core_model}_version_id"
            core_model_id = (
                f"{core_model}/{inference_request.__getattribute__(version_id_field)}"
            )
            self.model_manager.add_model(core_model_id, inference_request.api_key)
            return core_model_id

        load_clip_model = partial(load_core_model, core_model="clip")
        """Loads the CLIP model into the model manager.

        Args:
        inference_request: The request containing version and other details.
        api_key: The API key for the request.

        Returns:
        The CLIP model ID.
        """

        load_sam_model = partial(load_core_model, core_model="sam")
        """Loads the SAM model into the model manager.

        Args:
        inference_request: The request containing version and other details.
        api_key: The API key for the request.

        Returns:
        The SAM model ID.
        """

        load_gaze_model = partial(load_core_model, core_model="gaze")
        """Loads the GAZE model into the model manager.

        Args:
        inference_request: The request containing version and other details.
        api_key: The API key for the request.

        Returns:
        The GAZE model ID.
        """

        load_doctr_model = partial(load_core_model, core_model="doctr")
        """Loads the DocTR model into the model manager.

        Args:
        inference_request: The request containing version and other details.
        api_key: The API key for the request.

        Returns:
        The DocTR model ID.
        """
        load_cogvlm_model = partial(load_core_model, core_model="cogvlm")

        load_grounding_dino_model = partial(
            load_core_model, core_model="grounding_dino"
        )
        """Loads the Grounding DINO model into the model manager.

        Args:
        inference_request: The request containing version and other details.
        api_key: The API key for the request.

        Returns:
        The Grounding DINO model ID.
        """

        load_yolo_world_model = partial(load_core_model, core_model="yolo_world")
        """Loads the YOLO World model into the model manager.

        Args:
        inference_request: The request containing version and other details.
        api_key: The API key for the request.

        Returns:
        The YOLO World model ID.
        """

        @app.get(
            "/info",
            response_model=ServerVersionInfo,
            summary="Info",
            description="Get the server name and version number",
        )
        async def root():
            """Endpoint to get the server name and version number.

            Returns:
                ServerVersionInfo: The server version information.
            """
            return ServerVersionInfo(
                name="Roboflow Inference Server",
                version=__version__,
                uuid=GLOBAL_INFERENCE_SERVER_ID,
            )

        # The current AWS Lambda authorizer only supports path parameters, therefore we can only use the legacy infer route. This case statement excludes routes which won't work for the current Lambda authorizer.
        if not LAMBDA:

            @app.get(
                "/model/registry",
                response_model=ModelsDescriptions,
                summary="Get model keys",
                description="Get the ID of each loaded model",
            )
            async def registry():
                """Get the ID of each loaded model in the registry.

                Returns:
                    ModelsDescriptions: The object containing models descriptions
                """
                logger.debug(f"Reached /model/registry")
                models_descriptions = self.model_manager.describe_models()
                return ModelsDescriptions.from_models_descriptions(
                    models_descriptions=models_descriptions
                )

            @app.post(
                "/model/add",
                response_model=ModelsDescriptions,
                summary="Load a model",
                description="Load the model with the given model ID",
            )
            @with_route_exceptions
            async def model_add(request: AddModelRequest):
                """Load the model with the given model ID into the model manager.

                Args:
                    request (AddModelRequest): The request containing the model ID and optional API key.

                Returns:
                    ModelsDescriptions: The object containing models descriptions
                """
                logger.debug(f"Reached /model/add")
                de_aliased_model_id = resolve_roboflow_model_alias(
                    model_id=request.model_id
                )
                self.model_manager.add_model(de_aliased_model_id, request.api_key)
                models_descriptions = self.model_manager.describe_models()
                return ModelsDescriptions.from_models_descriptions(
                    models_descriptions=models_descriptions
                )

            @app.post(
                "/model/remove",
                response_model=ModelsDescriptions,
                summary="Remove a model",
                description="Remove the model with the given model ID",
            )
            @with_route_exceptions
            async def model_remove(request: ClearModelRequest):
                """Remove the model with the given model ID from the model manager.

                Args:
                    request (ClearModelRequest): The request containing the model ID to be removed.

                Returns:
                    ModelsDescriptions: The object containing models descriptions
                """
                logger.debug(f"Reached /model/remove")
                de_aliased_model_id = resolve_roboflow_model_alias(
                    model_id=request.model_id
                )
                self.model_manager.remove(de_aliased_model_id)
                models_descriptions = self.model_manager.describe_models()
                return ModelsDescriptions.from_models_descriptions(
                    models_descriptions=models_descriptions
                )

            @app.post(
                "/model/clear",
                response_model=ModelsDescriptions,
                summary="Remove all models",
                description="Remove all loaded models",
            )
            @with_route_exceptions
            async def model_clear():
                """Remove all loaded models from the model manager.

                Returns:
                    ModelsDescriptions: The object containing models descriptions
                """
                logger.debug(f"Reached /model/clear")
                self.model_manager.clear()
                models_descriptions = self.model_manager.describe_models()
                return ModelsDescriptions.from_models_descriptions(
                    models_descriptions=models_descriptions
                )

            @app.post(
                "/infer/object_detection",
                response_model=Union[
                    ObjectDetectionInferenceResponse,
                    List[ObjectDetectionInferenceResponse],
                    StubResponse,
                ],
                summary="Object detection infer",
                description="Run inference with the specified object detection model",
                response_model_exclude_none=True,
            )
            @with_route_exceptions
            async def infer_object_detection(
                inference_request: ObjectDetectionInferenceRequest,
                background_tasks: BackgroundTasks,
            ):
                """Run inference with the specified object detection model.

                Args:
                    inference_request (ObjectDetectionInferenceRequest): The request containing the necessary details for object detection.
                    background_tasks: (BackgroundTasks) pool of fastapi background tasks

                Returns:
                    Union[ObjectDetectionInferenceResponse, List[ObjectDetectionInferenceResponse]]: The response containing the inference results.
                """
                logger.debug(f"Reached /infer/object_detection")
                return await process_inference_request(
                    inference_request,
                    active_learning_eligible=True,
                    background_tasks=background_tasks,
                )

            @app.post(
                "/infer/instance_segmentation",
                response_model=Union[
                    InstanceSegmentationInferenceResponse, StubResponse
                ],
                summary="Instance segmentation infer",
                description="Run inference with the specified instance segmentation model",
            )
            @with_route_exceptions
            async def infer_instance_segmentation(
                inference_request: InstanceSegmentationInferenceRequest,
                background_tasks: BackgroundTasks,
            ):
                """Run inference with the specified instance segmentation model.

                Args:
                    inference_request (InstanceSegmentationInferenceRequest): The request containing the necessary details for instance segmentation.
                    background_tasks: (BackgroundTasks) pool of fastapi background tasks

                Returns:
                    InstanceSegmentationInferenceResponse: The response containing the inference results.
                """
                logger.debug(f"Reached /infer/instance_segmentation")
                return await process_inference_request(
                    inference_request,
                    active_learning_eligible=True,
                    background_tasks=background_tasks,
                )

            @app.post(
                "/infer/classification",
                response_model=Union[
                    ClassificationInferenceResponse,
                    MultiLabelClassificationInferenceResponse,
                    StubResponse,
                ],
                summary="Classification infer",
                description="Run inference with the specified classification model",
            )
            @with_route_exceptions
            async def infer_classification(
                inference_request: ClassificationInferenceRequest,
                background_tasks: BackgroundTasks,
            ):
                """Run inference with the specified classification model.

                Args:
                    inference_request (ClassificationInferenceRequest): The request containing the necessary details for classification.
                    background_tasks: (BackgroundTasks) pool of fastapi background tasks

                Returns:
                    Union[ClassificationInferenceResponse, MultiLabelClassificationInferenceResponse]: The response containing the inference results.
                """
                logger.debug(f"Reached /infer/classification")
                return await process_inference_request(
                    inference_request,
                    active_learning_eligible=True,
                    background_tasks=background_tasks,
                )

            @app.post(
                "/infer/keypoints_detection",
                response_model=Union[KeypointsDetectionInferenceResponse, StubResponse],
                summary="Keypoints detection infer",
                description="Run inference with the specified keypoints detection model",
            )
            @with_route_exceptions
            async def infer_keypoints(
                inference_request: KeypointsDetectionInferenceRequest,
            ):
                """Run inference with the specified keypoints detection model.

                Args:
                    inference_request (KeypointsDetectionInferenceRequest): The request containing the necessary details for keypoints detection.

                Returns:
                    Union[ClassificationInferenceResponse, MultiLabelClassificationInferenceResponse]: The response containing the inference results.
                """
                logger.debug(f"Reached /infer/keypoints_detection")
                return await process_inference_request(inference_request)

        if not DISABLE_WORKFLOW_ENDPOINTS:

            @app.post(
                "/infer/workflows/{workspace_name}/{workflow_name}",
                response_model=WorkflowInferenceResponse,
                summary="Endpoint to trigger inference from predefined workflow",
                description="Checks Roboflow API for workflow definition, once acquired - parses and executes injecting runtime parameters from request body",
            )
            @with_route_exceptions
            async def infer_from_predefined_workflow(
                workspace_name: str,
                workflow_name: str,
                workflow_request: WorkflowInferenceRequest,
                background_tasks: BackgroundTasks,
            ) -> WorkflowInferenceResponse:
                workflow_specification = get_workflow_specification(
                    api_key=workflow_request.api_key,
                    workspace_id=workspace_name,
                    workflow_name=workflow_name,
                )
                return await process_workflow_inference_request(
                    workflow_request=workflow_request,
                    workflow_specification=workflow_specification,
                    background_tasks=background_tasks if not LAMBDA else None,
                )

            @app.post(
                "/infer/workflows",
                response_model=WorkflowInferenceResponse,
                summary="Endpoint to trigger inference from workflow specification provided in payload",
                description="Parses and executes workflow specification, injecting runtime parameters from request body",
            )
            @with_route_exceptions
            async def infer_from_workflow(
                workflow_request: WorkflowSpecificationInferenceRequest,
                background_tasks: BackgroundTasks,
            ) -> WorkflowInferenceResponse:
                workflow_specification = {
                    "specification": workflow_request.specification
                }
                return await process_workflow_inference_request(
                    workflow_request=workflow_request,
                    workflow_specification=workflow_specification,
                    background_tasks=background_tasks if not LAMBDA else None,
                )

        if CORE_MODELS_ENABLED:
            if CORE_MODEL_CLIP_ENABLED:

                @app.post(
                    "/clip/embed_image",
                    response_model=ClipEmbeddingResponse,
                    summary="CLIP Image Embeddings",
                    description="Run the Open AI CLIP model to embed image data.",
                )
                @with_route_exceptions
                async def clip_embed_image(
                    inference_request: ClipImageEmbeddingRequest,
                    request: Request,
                    api_key: Optional[str] = Query(
                        None,
                        description="Roboflow API Key that will be passed to the model during initialization for artifact retrieval",
                    ),
                ):
                    """
                    Embeds image data using the OpenAI CLIP model.

                    Args:
                        inference_request (ClipImageEmbeddingRequest): The request containing the image to be embedded.
                        api_key (Optional[str], default None): Roboflow API Key passed to the model during initialization for artifact retrieval.
                        request (Request, default Body()): The HTTP request.

                    Returns:
                        ClipEmbeddingResponse: The response containing the embedded image.
                    """
                    logger.debug(f"Reached /clip/embed_image")
                    clip_model_id = load_clip_model(inference_request, api_key=api_key)
                    response = await self.model_manager.infer_from_request(
                        clip_model_id, inference_request
                    )
                    if LAMBDA:
                        actor = request.scope["aws.event"]["requestContext"][
                            "authorizer"
                        ]["lambda"]["actor"]
                        trackUsage(clip_model_id, actor)
                    return response

                @app.post(
                    "/clip/embed_text",
                    response_model=ClipEmbeddingResponse,
                    summary="CLIP Text Embeddings",
                    description="Run the Open AI CLIP model to embed text data.",
                )
                @with_route_exceptions
                async def clip_embed_text(
                    inference_request: ClipTextEmbeddingRequest,
                    request: Request,
                    api_key: Optional[str] = Query(
                        None,
                        description="Roboflow API Key that will be passed to the model during initialization for artifact retrieval",
                    ),
                ):
                    """
                    Embeds text data using the OpenAI CLIP model.

                    Args:
                        inference_request (ClipTextEmbeddingRequest): The request containing the text to be embedded.
                        api_key (Optional[str], default None): Roboflow API Key passed to the model during initialization for artifact retrieval.
                        request (Request, default Body()): The HTTP request.

                    Returns:
                        ClipEmbeddingResponse: The response containing the embedded text.
                    """
                    logger.debug(f"Reached /clip/embed_text")
                    clip_model_id = load_clip_model(inference_request, api_key=api_key)
                    response = await self.model_manager.infer_from_request(
                        clip_model_id, inference_request
                    )
                    if LAMBDA:
                        actor = request.scope["aws.event"]["requestContext"][
                            "authorizer"
                        ]["lambda"]["actor"]
                        trackUsage(clip_model_id, actor)
                    return response

                @app.post(
                    "/clip/compare",
                    response_model=ClipCompareResponse,
                    summary="CLIP Compare",
                    description="Run the Open AI CLIP model to compute similarity scores.",
                )
                @with_route_exceptions
                async def clip_compare(
                    inference_request: ClipCompareRequest,
                    request: Request,
                    api_key: Optional[str] = Query(
                        None,
                        description="Roboflow API Key that will be passed to the model during initialization for artifact retrieval",
                    ),
                ):
                    """
                    Computes similarity scores using the OpenAI CLIP model.

                    Args:
                        inference_request (ClipCompareRequest): The request containing the data to be compared.
                        api_key (Optional[str], default None): Roboflow API Key passed to the model during initialization for artifact retrieval.
                        request (Request, default Body()): The HTTP request.

                    Returns:
                        ClipCompareResponse: The response containing the similarity scores.
                    """
                    logger.debug(f"Reached /clip/compare")
                    clip_model_id = load_clip_model(inference_request, api_key=api_key)
                    response = await self.model_manager.infer_from_request(
                        clip_model_id, inference_request
                    )
                    if LAMBDA:
                        actor = request.scope["aws.event"]["requestContext"][
                            "authorizer"
                        ]["lambda"]["actor"]
                        trackUsage(clip_model_id, actor, n=2)
                    return response

            if CORE_MODEL_GROUNDINGDINO_ENABLED:

                @app.post(
                    "/grounding_dino/infer",
                    response_model=ObjectDetectionInferenceResponse,
                    summary="Grounding DINO inference.",
                    description="Run the Grounding DINO zero-shot object detection model.",
                )
                @with_route_exceptions
                async def grounding_dino_infer(
                    inference_request: GroundingDINOInferenceRequest,
                    request: Request,
                    api_key: Optional[str] = Query(
                        None,
                        description="Roboflow API Key that will be passed to the model during initialization for artifact retrieval",
                    ),
                ):
                    """
                    Embeds image data using the Grounding DINO model.

                    Args:
                        inference_request GroundingDINOInferenceRequest): The request containing the image on which to run object detection.
                        api_key (Optional[str], default None): Roboflow API Key passed to the model during initialization for artifact retrieval.
                        request (Request, default Body()): The HTTP request.

                    Returns:
                        ObjectDetectionInferenceResponse: The object detection response.
                    """
                    logger.debug(f"Reached /grounding_dino/infer")
                    grounding_dino_model_id = load_grounding_dino_model(
                        inference_request, api_key=api_key
                    )
                    response = await self.model_manager.infer_from_request(
                        grounding_dino_model_id, inference_request
                    )
                    if LAMBDA:
                        actor = request.scope["aws.event"]["requestContext"][
                            "authorizer"
                        ]["lambda"]["actor"]
                        trackUsage(grounding_dino_model_id, actor)
                    return response

            if CORE_MODEL_YOLO_WORLD_ENABLED:

                @app.post(
                    "/yolo_world/infer",
                    response_model=ObjectDetectionInferenceResponse,
                    summary="YOLO-World inference.",
                    description="Run the YOLO-World zero-shot object detection model.",
                    response_model_exclude_none=True,
                )
                @with_route_exceptions
                async def yolo_world_infer(
                    inference_request: YOLOWorldInferenceRequest,
                    request: Request,
                    api_key: Optional[str] = Query(
                        None,
                        description="Roboflow API Key that will be passed to the model during initialization for artifact retrieval",
                    ),
                ):
                    """
                    Runs the YOLO-World zero-shot object detection model.

                    Args:
                        inference_request (YOLOWorldInferenceRequest): The request containing the image on which to run object detection.
                        api_key (Optional[str], default None): Roboflow API Key passed to the model during initialization for artifact retrieval.
                        request (Request, default Body()): The HTTP request.

                    Returns:
                        ObjectDetectionInferenceResponse: The object detection response.
                    """
                    logger.debug(f"Reached /yolo_world/infer")
                    yolo_world_model_id = load_yolo_world_model(
                        inference_request, api_key=api_key
                    )
                    response = await self.model_manager.infer_from_request(
                        yolo_world_model_id, inference_request
                    )
                    if LAMBDA:
                        actor = request.scope["aws.event"]["requestContext"][
                            "authorizer"
                        ]["lambda"]["actor"]
                        trackUsage(yolo_world_model_id, actor)
                    return response

            if CORE_MODEL_DOCTR_ENABLED:

                @app.post(
                    "/doctr/ocr",
                    response_model=DoctrOCRInferenceResponse,
                    summary="DocTR OCR response",
                    description="Run the DocTR OCR model to retrieve text in an image.",
                )
                @with_route_exceptions
                async def doctr_retrieve_text(
                    inference_request: DoctrOCRInferenceRequest,
                    request: Request,
                    api_key: Optional[str] = Query(
                        None,
                        description="Roboflow API Key that will be passed to the model during initialization for artifact retrieval",
                    ),
                ):
                    """
                    Embeds image data using the DocTR model.

                    Args:
                        inference_request (M.DoctrOCRInferenceRequest): The request containing the image from which to retrieve text.
                        api_key (Optional[str], default None): Roboflow API Key passed to the model during initialization for artifact retrieval.
                        request (Request, default Body()): The HTTP request.

                    Returns:
                        M.DoctrOCRInferenceResponse: The response containing the embedded image.
                    """
                    logger.debug(f"Reached /doctr/ocr")
                    doctr_model_id = load_doctr_model(
                        inference_request, api_key=api_key
                    )
                    response = await self.model_manager.infer_from_request(
                        doctr_model_id, inference_request
                    )
                    if LAMBDA:
                        actor = request.scope["aws.event"]["requestContext"][
                            "authorizer"
                        ]["lambda"]["actor"]
                        trackUsage(doctr_model_id, actor)
                    return response

            if CORE_MODEL_SAM_ENABLED:

                @app.post(
                    "/sam/embed_image",
                    response_model=SamEmbeddingResponse,
                    summary="SAM Image Embeddings",
                    description="Run the Meta AI Segmant Anything Model to embed image data.",
                )
                @with_route_exceptions
                async def sam_embed_image(
                    inference_request: SamEmbeddingRequest,
                    request: Request,
                    api_key: Optional[str] = Query(
                        None,
                        description="Roboflow API Key that will be passed to the model during initialization for artifact retrieval",
                    ),
                ):
                    """
                    Embeds image data using the Meta AI Segmant Anything Model (SAM).

                    Args:
                        inference_request (SamEmbeddingRequest): The request containing the image to be embedded.
                        api_key (Optional[str], default None): Roboflow API Key passed to the model during initialization for artifact retrieval.
                        request (Request, default Body()): The HTTP request.

                    Returns:
                        M.SamEmbeddingResponse or Response: The response containing the embedded image.
                    """
                    logger.debug(f"Reached /sam/embed_image")
                    sam_model_id = load_sam_model(inference_request, api_key=api_key)
                    model_response = await self.model_manager.infer_from_request(
                        sam_model_id, inference_request
                    )
                    if LAMBDA:
                        actor = request.scope["aws.event"]["requestContext"][
                            "authorizer"
                        ]["lambda"]["actor"]
                        trackUsage(sam_model_id, actor)
                    if inference_request.format == "binary":
                        return Response(
                            content=model_response.embeddings,
                            headers={"Content-Type": "application/octet-stream"},
                        )
                    return model_response

                @app.post(
                    "/sam/segment_image",
                    response_model=SamSegmentationResponse,
                    summary="SAM Image Segmentation",
                    description="Run the Meta AI Segmant Anything Model to generate segmenations for image data.",
                )
                @with_route_exceptions
                async def sam_segment_image(
                    inference_request: SamSegmentationRequest,
                    request: Request,
                    api_key: Optional[str] = Query(
                        None,
                        description="Roboflow API Key that will be passed to the model during initialization for artifact retrieval",
                    ),
                ):
                    """
                    Generates segmentations for image data using the Meta AI Segmant Anything Model (SAM).

                    Args:
                        inference_request (SamSegmentationRequest): The request containing the image to be segmented.
                        api_key (Optional[str], default None): Roboflow API Key passed to the model during initialization for artifact retrieval.
                        request (Request, default Body()): The HTTP request.

                    Returns:
                        M.SamSegmentationResponse or Response: The response containing the segmented image.
                    """
                    logger.debug(f"Reached /sam/segment_image")
                    sam_model_id = load_sam_model(inference_request, api_key=api_key)
                    model_response = await self.model_manager.infer_from_request(
                        sam_model_id, inference_request
                    )
                    if LAMBDA:
                        actor = request.scope["aws.event"]["requestContext"][
                            "authorizer"
                        ]["lambda"]["actor"]
                        trackUsage(sam_model_id, actor)
                    if inference_request.format == "binary":
                        return Response(
                            content=model_response,
                            headers={"Content-Type": "application/octet-stream"},
                        )
                    return model_response

            if CORE_MODEL_GAZE_ENABLED:

                @app.post(
                    "/gaze/gaze_detection",
                    response_model=List[GazeDetectionInferenceResponse],
                    summary="Gaze Detection",
                    description="Run the gaze detection model to detect gaze.",
                )
                @with_route_exceptions
                async def gaze_detection(
                    inference_request: GazeDetectionInferenceRequest,
                    request: Request,
                    api_key: Optional[str] = Query(
                        None,
                        description="Roboflow API Key that will be passed to the model during initialization for artifact retrieval",
                    ),
                ):
                    """
                    Detect gaze using the gaze detection model.

                    Args:
                        inference_request (M.GazeDetectionRequest): The request containing the image to be detected.
                        api_key (Optional[str], default None): Roboflow API Key passed to the model during initialization for artifact retrieval.
                        request (Request, default Body()): The HTTP request.

                    Returns:
                        M.GazeDetectionResponse: The response containing all the detected faces and the corresponding gazes.
                    """
                    logger.debug(f"Reached /gaze/gaze_detection")
                    gaze_model_id = load_gaze_model(inference_request, api_key=api_key)
                    response = await self.model_manager.infer_from_request(
                        gaze_model_id, inference_request
                    )
                    if LAMBDA:
                        actor = request.scope["aws.event"]["requestContext"][
                            "authorizer"
                        ]["lambda"]["actor"]
                        trackUsage(gaze_model_id, actor)
                    return response

            if CORE_MODEL_COGVLM_ENABLED:

                @app.post(
                    "/llm/cogvlm",
                    response_model=CogVLMResponse,
                    summary="CogVLM",
                    description="Run the CogVLM model to chat or describe an image.",
                )
                @with_route_exceptions
                async def cog_vlm(
                    inference_request: CogVLMInferenceRequest,
                    request: Request,
                    api_key: Optional[str] = Query(
                        None,
                        description="Roboflow API Key that will be passed to the model during initialization for artifact retrieval",
                    ),
                ):
                    """
                    Chat with CogVLM or ask it about an image. Multi-image requests not currently supported.

                    Args:
                        inference_request (M.CogVLMInferenceRequest): The request containing the prompt and image to be described.
                        api_key (Optional[str], default None): Roboflow API Key passed to the model during initialization for artifact retrieval.
                        request (Request, default Body()): The HTTP request.

                    Returns:
                        M.CogVLMResponse: The model's text response
                    """
                    logger.debug(f"Reached /llm/cogvlm")
                    cog_model_id = load_cogvlm_model(inference_request, api_key=api_key)
                    response = await self.model_manager.infer_from_request(
                        cog_model_id, inference_request
                    )
                    if LAMBDA:
                        actor = request.scope["aws.event"]["requestContext"][
                            "authorizer"
                        ]["lambda"]["actor"]
                        trackUsage(cog_model_id, actor)
                    return response

        if LEGACY_ROUTE_ENABLED:
            # Legacy object detection inference path for backwards compatability
            @app.post(
                "/{dataset_id}/{version_id}",
                # Order matters in this response model Union. It will use the first matching model. For example, Object Detection Inference Response is a subset of Instance segmentation inference response, so instance segmentation must come first in order for the matching logic to work.
                response_model=Union[
                    InstanceSegmentationInferenceResponse,
                    KeypointsDetectionInferenceResponse,
                    ObjectDetectionInferenceResponse,
                    ClassificationInferenceResponse,
                    MultiLabelClassificationInferenceResponse,
                    StubResponse,
                    Any,
                ],
                response_model_exclude_none=True,
            )
            @with_route_exceptions
            async def legacy_infer_from_request(
                background_tasks: BackgroundTasks,
                request: Request,
                dataset_id: str = Path(
                    description="ID of a Roboflow dataset corresponding to the model to use for inference"
                ),
                version_id: str = Path(
                    description="ID of a Roboflow dataset version corresponding to the model to use for inference"
                ),
                api_key: Optional[str] = Query(
                    None,
                    description="Roboflow API Key that will be passed to the model during initialization for artifact retrieval",
                ),
                confidence: float = Query(
                    0.4,
                    description="The confidence threshold used to filter out predictions",
                ),
                keypoint_confidence: float = Query(
                    0.0,
                    description="The confidence threshold used to filter out keypoints that are not visible based on model confidence",
                ),
                format: str = Query(
                    "json",
                    description="One of 'json' or 'image'. If 'json' prediction data is return as a JSON string. If 'image' prediction data is visualized and overlayed on the original input image.",
                ),
                image: Optional[str] = Query(
                    None,
                    description="The publically accessible URL of an image to use for inference.",
                ),
                image_type: Optional[str] = Query(
                    "base64",
                    description="One of base64 or numpy. Note, numpy input is not supported for Roboflow Hosted Inference.",
                ),
                labels: Optional[bool] = Query(
                    False,
                    description="If true, labels will be include in any inference visualization.",
                ),
                mask_decode_mode: Optional[str] = Query(
                    "accurate",
                    description="One of 'accurate' or 'fast'. If 'accurate' the mask will be decoded using the original image size. If 'fast' the mask will be decoded using the original mask size. 'accurate' is slower but more accurate.",
                ),
                tradeoff_factor: Optional[float] = Query(
                    0.0,
                    description="The amount to tradeoff between 0='fast' and 1='accurate'",
                ),
                max_detections: int = Query(
                    300,
                    description="The maximum number of detections to return. This is used to limit the number of predictions returned by the model. The model may return more predictions than this number, but only the top `max_detections` predictions will be returned.",
                ),
                overlap: float = Query(
                    0.3,
                    description="The IoU threhsold that must be met for a box pair to be considered duplicate during NMS",
                ),
                stroke: int = Query(
                    1, description="The stroke width used when visualizing predictions"
                ),
                countinference: Optional[bool] = Query(
                    True,
                    description="If false, does not track inference against usage.",
                    include_in_schema=False,
                ),
                service_secret: Optional[str] = Query(
                    None,
                    description="Shared secret used to authenticate requests to the inference server from internal services (e.g. to allow disabling inference usage tracking via the `countinference` query parameter)",
                    include_in_schema=False,
                ),
                disable_preproc_auto_orient: Optional[bool] = Query(
                    False, description="If true, disables automatic image orientation"
                ),
                disable_preproc_contrast: Optional[bool] = Query(
                    False, description="If true, disables automatic contrast adjustment"
                ),
                disable_preproc_grayscale: Optional[bool] = Query(
                    False,
                    description="If true, disables automatic grayscale conversion",
                ),
                disable_preproc_static_crop: Optional[bool] = Query(
                    False, description="If true, disables automatic static crop"
                ),
                disable_active_learning: Optional[bool] = Query(
                    default=False,
                    description="If true, the predictions will be prevented from registration by Active Learning (if the functionality is enabled)",
                ),
                source: Optional[str] = Query(
                    "external",
                    description="The source of the inference request",
                ),
                source_info: Optional[str] = Query(
                    "external",
                    description="The detailed source information of the inference request",
                ),
            ):
                """
                Legacy inference endpoint for object detection, instance segmentation, and classification.

                Args:
                    background_tasks: (BackgroundTasks) pool of fastapi background tasks
                    dataset_id (str): ID of a Roboflow dataset corresponding to the model to use for inference.
                    version_id (str): ID of a Roboflow dataset version corresponding to the model to use for inference.
                    api_key (Optional[str], default None): Roboflow API Key passed to the model during initialization for artifact retrieval.
                    # Other parameters described in the function signature...

                Returns:
                    Union[InstanceSegmentationInferenceResponse, KeypointsDetectionInferenceRequest, ObjectDetectionInferenceResponse, ClassificationInferenceResponse, MultiLabelClassificationInferenceResponse, Any]: The response containing the inference results.
                """
                logger.debug(
                    f"Reached legacy route /:dataset_id/:version_id with {dataset_id}/{version_id}"
                )
                model_id = f"{dataset_id}/{version_id}"

                if confidence >= 1:
                    confidence /= 100
                elif confidence < 0.01:
                    confidence = 0.01

                if overlap >= 1:
                    overlap /= 100

                if image is not None:
                    request_image = InferenceRequestImage(type="url", value=image)
                else:
                    if "Content-Type" not in request.headers:
                        raise ContentTypeMissing(
                            f"Request must include a Content-Type header"
                        )
                    if "multipart/form-data" in request.headers["Content-Type"]:
                        form_data = await request.form()
                        base64_image_str = await form_data["file"].read()
                        base64_image_str = base64.b64encode(base64_image_str)
                        request_image = InferenceRequestImage(
                            type="base64", value=base64_image_str.decode("ascii")
                        )
                    elif (
                        "application/x-www-form-urlencoded"
                        in request.headers["Content-Type"]
                        or "application/json" in request.headers["Content-Type"]
                    ):
                        data = await request.body()
                        request_image = InferenceRequestImage(
                            type=image_type, value=data
                        )
                    else:
                        raise ContentTypeInvalid(
                            f"Invalid Content-Type: {request.headers['Content-Type']}"
                        )

                if LAMBDA:
                    request_model_id = (
                        request.scope["aws.event"]["requestContext"]["authorizer"][
                            "lambda"
                        ]["model"]["endpoint"]
                        .replace("--", "/")
                        .replace("rf-", "")
                        .replace("nu-", "")
                    )
                    actor = request.scope["aws.event"]["requestContext"]["authorizer"][
                        "lambda"
                    ]["actor"]
                    if countinference:
                        trackUsage(request_model_id, actor)
                    else:
                        if service_secret != ROBOFLOW_SERVICE_SECRET:
                            raise MissingServiceSecretError(
                                "Service secret is required to disable inference usage tracking"
                            )
                else:
                    request_model_id = model_id
                self.model_manager.add_model(
                    request_model_id, api_key, model_id_alias=model_id
                )

                task_type = self.model_manager.get_task_type(model_id, api_key=api_key)
                inference_request_type = ObjectDetectionInferenceRequest
                args = dict()
                if task_type == "instance-segmentation":
                    inference_request_type = InstanceSegmentationInferenceRequest
                    args = {
                        "mask_decode_mode": mask_decode_mode,
                        "tradeoff_factor": tradeoff_factor,
                    }
                elif task_type == "classification":
                    inference_request_type = ClassificationInferenceRequest
                elif task_type == "keypoint-detection":
                    inference_request_type = KeypointsDetectionInferenceRequest
                    args = {"keypoint_confidence": keypoint_confidence}
                inference_request = inference_request_type(
                    api_key=api_key,
                    model_id=model_id,
                    image=request_image,
                    confidence=confidence,
                    iou_threshold=overlap,
                    max_detections=max_detections,
                    visualization_labels=labels,
                    visualization_stroke_width=stroke,
                    visualize_predictions=True if format == "image" else False,
                    disable_preproc_auto_orient=disable_preproc_auto_orient,
                    disable_preproc_contrast=disable_preproc_contrast,
                    disable_preproc_grayscale=disable_preproc_grayscale,
                    disable_preproc_static_crop=disable_preproc_static_crop,
                    disable_active_learning=disable_active_learning,
                    source=source,
                    source_info=source_info,
                    **args,
                )

                inference_response = await self.model_manager.infer_from_request(
                    inference_request.model_id,
                    inference_request,
                    active_learning_eligible=True,
                    background_tasks=background_tasks,
                )
                logger.debug("Response ready.")
                if format == "image":
                    return Response(
                        content=inference_response.visualization,
                        media_type="image/jpeg",
                    )
                else:
                    return orjson_response(inference_response)

        if not LAMBDA:
            # Legacy clear cache endpoint for backwards compatability
            @app.get("/clear_cache", response_model=str)
            async def legacy_clear_cache():
                """
                Clears the model cache.

                This endpoint provides a way to clear the cache of loaded models.

                Returns:
                    str: A string indicating that the cache has been cleared.
                """
                logger.debug(f"Reached /clear_cache")
                await model_clear()
                return "Cache Cleared"

            # Legacy add model endpoint for backwards compatability
            @app.get("/start/{dataset_id}/{version_id}")
            async def model_add(dataset_id: str, version_id: str, api_key: str = None):
                """
                Starts a model inference session.

                This endpoint initializes and starts an inference session for the specified model version.

                Args:
                    dataset_id (str): ID of a Roboflow dataset corresponding to the model.
                    version_id (str): ID of a Roboflow dataset version corresponding to the model.
                    api_key (str, optional): Roboflow API Key for artifact retrieval.

                Returns:
                    JSONResponse: A response object containing the status and a success message.
                """
                logger.debug(
                    f"Reached /start/{dataset_id}/{version_id} with {dataset_id}/{version_id}"
                )
                model_id = f"{dataset_id}/{version_id}"
                self.model_manager.add_model(model_id, api_key)

                return JSONResponse(
                    {
                        "status": 200,
                        "message": "inference session started from local memory.",
                    }
                )

        if not LAMBDA:

            @app.get(
                "/notebook/start",
                summary="Jupyter Lab Server Start",
                description="Starts a jupyter lab server for running development code",
            )
            @with_route_exceptions
            async def notebook_start(browserless: bool = False):
                """Starts a jupyter lab server for running development code.

                Args:
                    inference_request (NotebookStartRequest): The request containing the necessary details for starting a jupyter lab server.
                    background_tasks: (BackgroundTasks) pool of fastapi background tasks

                Returns:
                    NotebookStartResponse: The response containing the URL of the jupyter lab server.
                """
                logger.debug(f"Reached /notebook/start")
                if NOTEBOOK_ENABLED:
                    start_notebook()
                    if browserless:
                        return {
                            "success": True,
                            "message": f"Jupyter Lab server started at http://localhost:{NOTEBOOK_PORT}?token={NOTEBOOK_PASSWORD}",
                        }
                    else:
                        sleep(2)
                        return RedirectResponse(
                            f"http://localhost:{NOTEBOOK_PORT}/lab/tree/quickstart.ipynb?token={NOTEBOOK_PASSWORD}"
                        )
                else:
                    if browserless:
                        return {
                            "success": False,
                            "message": "Notebook server is not enabled. Enable notebooks via the NOTEBOOK_ENABLED environment variable.",
                        }
                    else:
                        return RedirectResponse(f"/notebook-instructions.html")

        app.mount(
            "/",
            StaticFiles(directory="./inference/landing/out", html=True),
            name="static",
        )

    def run(self):
        uvicorn.run(self.app, host="127.0.0.1", port=8080)