Spaces:
Runtime error
Runtime error
File size: 41,415 Bytes
2eafbc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 |
import time
from dataclasses import dataclass
from datetime import datetime
from enum import Enum
from queue import Empty, Queue
from threading import Event, Lock, Thread
from typing import Any, Callable, List, Optional, Protocol, Union
import cv2
import supervision as sv
from inference.core import logger
from inference.core.env import (
DEFAULT_ADAPTIVE_MODE_READER_PACE_TOLERANCE,
DEFAULT_ADAPTIVE_MODE_STREAM_PACE_TOLERANCE,
DEFAULT_BUFFER_SIZE,
DEFAULT_MAXIMUM_ADAPTIVE_FRAMES_DROPPED_IN_ROW,
DEFAULT_MINIMUM_ADAPTIVE_MODE_SAMPLES,
)
from inference.core.interfaces.camera.entities import (
StatusUpdate,
UpdateSeverity,
VideoFrame,
)
from inference.core.interfaces.camera.exceptions import (
EndOfStreamError,
SourceConnectionError,
StreamOperationNotAllowedError,
)
VIDEO_SOURCE_CONTEXT = "video_source"
VIDEO_CONSUMER_CONTEXT = "video_consumer"
SOURCE_STATE_UPDATE_EVENT = "SOURCE_STATE_UPDATE"
SOURCE_ERROR_EVENT = "SOURCE_ERROR"
FRAME_CAPTURED_EVENT = "FRAME_CAPTURED"
FRAME_DROPPED_EVENT = "FRAME_DROPPED"
FRAME_CONSUMED_EVENT = "FRAME_CONSUMED"
VIDEO_CONSUMPTION_STARTED_EVENT = "VIDEO_CONSUMPTION_STARTED"
VIDEO_CONSUMPTION_FINISHED_EVENT = "VIDEO_CONSUMPTION_FINISHED"
class StreamState(Enum):
NOT_STARTED = "NOT_STARTED"
INITIALISING = "INITIALISING"
RESTARTING = "RESTARTING"
RUNNING = "RUNNING"
PAUSED = "PAUSED"
MUTED = "MUTED"
TERMINATING = "TERMINATING"
ENDED = "ENDED"
ERROR = "ERROR"
START_ELIGIBLE_STATES = {
StreamState.NOT_STARTED,
StreamState.RESTARTING,
StreamState.ENDED,
}
PAUSE_ELIGIBLE_STATES = {StreamState.RUNNING}
MUTE_ELIGIBLE_STATES = {StreamState.RUNNING}
RESUME_ELIGIBLE_STATES = {StreamState.PAUSED, StreamState.MUTED}
TERMINATE_ELIGIBLE_STATES = {
StreamState.MUTED,
StreamState.RUNNING,
StreamState.PAUSED,
StreamState.RESTARTING,
StreamState.ENDED,
StreamState.ERROR,
}
RESTART_ELIGIBLE_STATES = {
StreamState.MUTED,
StreamState.RUNNING,
StreamState.PAUSED,
StreamState.ENDED,
StreamState.ERROR,
}
class BufferFillingStrategy(Enum):
WAIT = "WAIT"
DROP_OLDEST = "DROP_OLDEST"
ADAPTIVE_DROP_OLDEST = "ADAPTIVE_DROP_OLDEST"
DROP_LATEST = "DROP_LATEST"
ADAPTIVE_DROP_LATEST = "ADAPTIVE_DROP_LATEST"
ADAPTIVE_STRATEGIES = {
BufferFillingStrategy.ADAPTIVE_DROP_LATEST,
BufferFillingStrategy.ADAPTIVE_DROP_OLDEST,
}
DROP_OLDEST_STRATEGIES = {
BufferFillingStrategy.DROP_OLDEST,
BufferFillingStrategy.ADAPTIVE_DROP_OLDEST,
}
class BufferConsumptionStrategy(Enum):
LAZY = "LAZY"
EAGER = "EAGER"
@dataclass(frozen=True)
class SourceProperties:
width: int
height: int
total_frames: int
is_file: bool
fps: float
@dataclass(frozen=True)
class SourceMetadata:
source_properties: Optional[SourceProperties]
source_reference: str
buffer_size: int
state: StreamState
buffer_filling_strategy: Optional[BufferFillingStrategy]
buffer_consumption_strategy: Optional[BufferConsumptionStrategy]
class VideoSourceMethod(Protocol):
def __call__(self, video_source: "VideoSource", *args, **kwargs) -> None: ...
def lock_state_transition(
method: VideoSourceMethod,
) -> Callable[["VideoSource"], None]:
def locked_executor(video_source: "VideoSource", *args, **kwargs) -> None:
with video_source._state_change_lock:
return method(video_source, *args, **kwargs)
return locked_executor
class VideoSource:
@classmethod
def init(
cls,
video_reference: Union[str, int],
buffer_size: int = DEFAULT_BUFFER_SIZE,
status_update_handlers: Optional[List[Callable[[StatusUpdate], None]]] = None,
buffer_filling_strategy: Optional[BufferFillingStrategy] = None,
buffer_consumption_strategy: Optional[BufferConsumptionStrategy] = None,
adaptive_mode_stream_pace_tolerance: float = DEFAULT_ADAPTIVE_MODE_STREAM_PACE_TOLERANCE,
adaptive_mode_reader_pace_tolerance: float = DEFAULT_ADAPTIVE_MODE_READER_PACE_TOLERANCE,
minimum_adaptive_mode_samples: int = DEFAULT_MINIMUM_ADAPTIVE_MODE_SAMPLES,
maximum_adaptive_frames_dropped_in_row: int = DEFAULT_MAXIMUM_ADAPTIVE_FRAMES_DROPPED_IN_ROW,
):
"""
This class is meant to represent abstraction over video sources - both video files and
on-line streams that are possible to be consumed and used by other components of `inference`
library.
Before digging into details of the class behaviour, it is advised to familiarise with the following
concepts and implementation assumptions:
1. Video file can be accessed from local (or remote) storage by the consumer in a pace dictated by
its processing capabilities. If processing is faster than the frame rate of video, operations
may be executed in a time shorter than the time of video playback. In the opposite case - consumer
may freely decode and process frames in its own pace, without risk for failures due to temporal
dependencies of processing - this is classical offline processing example.
2. Video streams, on the other hand, usually need to be consumed in a pace near to their frame-rate -
in other words - this is on-line processing example. Consumer being faster than incoming stream
frames cannot utilise its resources to the full extent as not-yet-delivered data would be needed.
Slow consumer, however, may not be able to process everything on time and to keep up with the pace
of stream - some frames would need to be dropped. Otherwise - over time, consumer could go out of
sync with the stream causing decoding failures or unpredictable behavior.
To fit those two types of video sources, `VideoSource` introduces the concept of buffered decoding of
video stream (like at the YouTube - player buffers some frames that are soon to be displayed).
The way on how buffer is filled and consumed dictates the behavior of `VideoSource`.
Starting from `BufferFillingStrategy` - we have 3 basic options:
* WAIT: in case of slow video consumption, when buffer is full - `VideoSource` will wait for
the empty spot in buffer before next frame will be processed - this is suitable in cases when
we want to ensure EACH FRAME of the video to be processed
* DROP_OLDEST: when buffer is full, the frame that sits there for the longest time will be dropped -
this is suitable for cases when we want to process the most recent frames possible
* DROP_LATEST: when buffer is full, the newly decoded frame is dropped - useful in cases when
it is expected to have processing performance drops, but we would like to consume portions of
video that are locally smooth - but this is probably the least common use-case.
On top of that - there are two ADAPTIVE strategies: ADAPTIVE_DROP_OLDEST and ADAPTIVE_DROP_LATEST,
which are equivalent to DROP_OLDEST and DROP_LATEST with adaptive decoding feature enabled. The notion
of that mode will be described later.
Naturally, decoded frames must also be consumed. `VideoSource` provides a handy interface for reading
a video source frames by a SINGLE consumer. Consumption strategy can also be dictated via
`BufferConsumptionStrategy`:
* LAZY - consume all the frames from decoding buffer one-by-one
* EAGER - at each readout - take all frames already buffered, drop all of them apart from the most recent
In consequence - there are various combinations of `BufferFillingStrategy` and `BufferConsumptionStrategy`.
The most popular would be:
* `BufferFillingStrategy.WAIT` and `BufferConsumptionStrategy.LAZY` - to always decode and process each and
every frame of the source (useful while processing video files - and default behaviour enforced by
`inference` if there is no explicit configuration)
* `BufferFillingStrategy.DROP_OLDEST` and `BufferConsumptionStrategy.EAGER` - to always process the most
recent frames of source (useful while processing video streams when low latency [real-time experience]
is required - ADAPTIVE version of this is default for streams)
ADAPTIVE strategies were introduced to handle corner-cases, when consumer hardware is not capable to consume
video stream and process frames at the same time (for instance - Nvidia Jetson devices running processing
against hi-res streams with high FPS ratio). It acts with buffer in nearly the same way as `DROP_OLDEST`
and `DROP_LATEST` strategies, but there are two more conditions that may influence frame drop:
* announced rate of source - which in fact dictate the pace of frames grabbing from incoming stream that
MUST be met by consumer to avoid strange decoding issues causing decoder to fail - if the pace of frame grabbing
deviates too much - decoding will be postponed, and frames dropped to grab next ones sooner
* consumption rate - in resource constraints environment, not only decoding is problematic from the performance
perspective - but also heavy processing. If consumer is not quick enough - allocating more useful resources
for decoding frames that may never be processed is a waste. That's why - if decoding happens more frequently
than consumption of frame - ADAPTIVE mode causes decoding to be done in a slower pace and more frames are just
grabbed and dropped on the floor.
ADAPTIVE mode increases latency slightly, but may be the only way to operate in some cases.
Behaviour of adaptive mode, including the maximum acceptable deviations of frames grabbing pace from source,
reader pace and maximum number of consecutive frames dropped in ADAPTIVE mode are configurable by clients,
with reasonable defaults being set.
`VideoSource` emits events regarding its activity - which can be intercepted by custom handlers. Take
into account that they are always executed in context of thread invoking them (and should be fast to complete,
otherwise may block the flow of stream consumption). All errors raised will be emitted as logger warnings only.
`VideoSource` implementation is naturally multithreading, with different thread decoding video and different
one consuming it and manipulating source state. Implementation of user interface is thread-safe, although
stream it is meant to be consumed by a single thread only.
ENV variables involved:
* VIDEO_SOURCE_BUFFER_SIZE - default: 64
* VIDEO_SOURCE_ADAPTIVE_MODE_STREAM_PACE_TOLERANCE - default: 0.1
* VIDEO_SOURCE_ADAPTIVE_MODE_READER_PACE_TOLERANCE - default: 5.0
* VIDEO_SOURCE_MINIMUM_ADAPTIVE_MODE_SAMPLES - default: 10
* VIDEO_SOURCE_MAXIMUM_ADAPTIVE_FRAMES_DROPPED_IN_ROW - default: 16
As an `inference` user, please use .init() method instead of constructor to instantiate objects.
Args:
video_reference (Union[str, int]): Either str with file or stream reference, or int representing device ID
buffer_size (int): size of decoding buffer
status_update_handlers (Optional[List[Callable[[StatusUpdate], None]]]): List of handlers for status updates
buffer_filling_strategy (Optional[BufferFillingStrategy]): Settings for buffer filling strategy - if not
given - automatic choice regarding source type will be applied
buffer_consumption_strategy (Optional[BufferConsumptionStrategy]): Settings for buffer consumption strategy,
if not given - automatic choice regarding source type will be applied
adaptive_mode_stream_pace_tolerance (float): Maximum deviation between frames grabbing pace and stream pace
that will not trigger adaptive mode frame drop
adaptive_mode_reader_pace_tolerance (float): Maximum deviation between decoding pace and stream consumption
pace that will not trigger adaptive mode frame drop
minimum_adaptive_mode_samples (int): Minimal number of frames to be used to establish actual pace of
processing, before adaptive mode can drop any frame
maximum_adaptive_frames_dropped_in_row (int): Maximum number of frames dropped in row due to application of
adaptive strategy
Returns: Instance of `VideoSource` class
"""
frames_buffer = Queue(maxsize=buffer_size)
if status_update_handlers is None:
status_update_handlers = []
video_consumer = VideoConsumer.init(
buffer_filling_strategy=buffer_filling_strategy,
adaptive_mode_stream_pace_tolerance=adaptive_mode_stream_pace_tolerance,
adaptive_mode_reader_pace_tolerance=adaptive_mode_reader_pace_tolerance,
minimum_adaptive_mode_samples=minimum_adaptive_mode_samples,
maximum_adaptive_frames_dropped_in_row=maximum_adaptive_frames_dropped_in_row,
status_update_handlers=status_update_handlers,
)
return cls(
stream_reference=video_reference,
frames_buffer=frames_buffer,
status_update_handlers=status_update_handlers,
buffer_consumption_strategy=buffer_consumption_strategy,
video_consumer=video_consumer,
)
def __init__(
self,
stream_reference: Union[str, int],
frames_buffer: Queue,
status_update_handlers: List[Callable[[StatusUpdate], None]],
buffer_consumption_strategy: Optional[BufferConsumptionStrategy],
video_consumer: "VideoConsumer",
):
self._stream_reference = stream_reference
self._video: Optional[cv2.VideoCapture] = None
self._source_properties: Optional[SourceProperties] = None
self._frames_buffer = frames_buffer
self._status_update_handlers = status_update_handlers
self._buffer_consumption_strategy = buffer_consumption_strategy
self._video_consumer = video_consumer
self._state = StreamState.NOT_STARTED
self._playback_allowed = Event()
self._frames_buffering_allowed = True
self._stream_consumption_thread: Optional[Thread] = None
self._state_change_lock = Lock()
@lock_state_transition
def restart(self, wait_on_frames_consumption: bool = True) -> None:
"""
Method to restart source consumption. Eligible to be used in states:
[MUTED, RUNNING, PAUSED, ENDED, ERROR].
End state:
* INITIALISING - that should change into RUNNING once first frame is ready to be grabbed
* ERROR - if it was not possible to connect with source
Thread safe - only one transition of states possible at the time.
Args:
wait_on_frames_consumption (bool): Flag telling if all frames from buffer must be consumed before
completion of this operation.
Returns: None
Throws:
* StreamOperationNotAllowedError: if executed in context of incorrect state of the source
* SourceConnectionError: if source cannot be connected
"""
if self._state not in RESTART_ELIGIBLE_STATES:
raise StreamOperationNotAllowedError(
f"Could not RESTART stream in state: {self._state}"
)
self._restart(wait_on_frames_consumption=wait_on_frames_consumption)
@lock_state_transition
def start(self) -> None:
"""
Method to be used to start source consumption. Eligible to be used in states:
[NOT_STARTED, ENDED, (RESTARTING - which is internal state only)]
End state:
* INITIALISING - that should change into RUNNING once first frame is ready to be grabbed
* ERROR - if it was not possible to connect with source
Thread safe - only one transition of states possible at the time.
Returns: None
Throws:
* StreamOperationNotAllowedError: if executed in context of incorrect state of the source
* SourceConnectionError: if source cannot be connected
"""
if self._state not in START_ELIGIBLE_STATES:
raise StreamOperationNotAllowedError(
f"Could not START stream in state: {self._state}"
)
self._start()
@lock_state_transition
def terminate(self, wait_on_frames_consumption: bool = True) -> None:
"""
Method to be used to terminate source consumption. Eligible to be used in states:
[MUTED, RUNNING, PAUSED, ENDED, ERROR, (RESTARTING - which is internal state only)]
End state:
* ENDED - indicating success of the process
* ERROR - if error with processing occurred
Must be used to properly dispose resources at the end.
Thread safe - only one transition of states possible at the time.
Args:
wait_on_frames_consumption (bool): Flag telling if all frames from buffer must be consumed before
completion of this operation.
Returns: None
Throws:
* StreamOperationNotAllowedError: if executed in context of incorrect state of the source
"""
if self._state not in TERMINATE_ELIGIBLE_STATES:
raise StreamOperationNotAllowedError(
f"Could not TERMINATE stream in state: {self._state}"
)
self._terminate(wait_on_frames_consumption=wait_on_frames_consumption)
@lock_state_transition
def pause(self) -> None:
"""
Method to be used to pause source consumption. During pause - no new frames are consumed.
Used on on-line streams for too long may cause stream disconnection.
Eligible to be used in states:
[RUNNING]
End state:
* PAUSED
Thread safe - only one transition of states possible at the time.
Returns: None
Throws:
* StreamOperationNotAllowedError: if executed in context of incorrect state of the source
"""
if self._state not in PAUSE_ELIGIBLE_STATES:
raise StreamOperationNotAllowedError(
f"Could not PAUSE stream in state: {self._state}"
)
self._pause()
@lock_state_transition
def mute(self) -> None:
"""
Method to be used to mute source consumption. Muting is an equivalent of pause for stream - where
frames grabbing is not put on hold, just new frames decoding and buffering is not allowed - causing
intermediate frames to be dropped. May be also used against files, although arguably less useful.
Eligible to be used in states:
[RUNNING]
End state:
* MUTED
Thread safe - only one transition of states possible at the time.
Returns: None
Throws:
* StreamOperationNotAllowedError: if executed in context of incorrect state of the source
"""
if self._state not in MUTE_ELIGIBLE_STATES:
raise StreamOperationNotAllowedError(
f"Could not MUTE stream in state: {self._state}"
)
self._mute()
@lock_state_transition
def resume(self) -> None:
"""
Method to recover from pause or mute into running state.
[PAUSED, MUTED]
End state:
* RUNNING
Thread safe - only one transition of states possible at the time.
Returns: None
Throws:
* StreamOperationNotAllowedError: if executed in context of incorrect state of the source
"""
if self._state not in RESUME_ELIGIBLE_STATES:
raise StreamOperationNotAllowedError(
f"Could not RESUME stream in state: {self._state}"
)
self._resume()
def get_state(self) -> StreamState:
"""
Method to get current state of the `VideoSource`
Returns: StreamState
"""
return self._state
def frame_ready(self) -> bool:
"""
Method to check if decoded frame is ready for consumer
Returns: boolean flag indicating frame readiness
"""
return not self._frames_buffer.empty()
def read_frame(self) -> VideoFrame:
"""
Method to be used by the consumer to get decoded source frame.
Returns: VideoFrame object with decoded frame and its metadata.
Throws:
* EndOfStreamError: when trying to get the frame from closed source.
"""
if self._buffer_consumption_strategy is BufferConsumptionStrategy.EAGER:
video_frame: Optional[VideoFrame] = purge_queue(
queue=self._frames_buffer,
on_successful_read=self._video_consumer.notify_frame_consumed,
)
else:
video_frame: Optional[VideoFrame] = self._frames_buffer.get()
self._frames_buffer.task_done()
self._video_consumer.notify_frame_consumed()
if video_frame is None:
raise EndOfStreamError(
"Attempted to retrieve frame from stream that already ended."
)
send_video_source_status_update(
severity=UpdateSeverity.DEBUG,
event_type=FRAME_CONSUMED_EVENT,
payload={
"frame_timestamp": video_frame.frame_timestamp,
"frame_id": video_frame.frame_id,
},
status_update_handlers=self._status_update_handlers,
)
return video_frame
def describe_source(self) -> SourceMetadata:
return SourceMetadata(
source_properties=self._source_properties,
source_reference=self._stream_reference,
buffer_size=self._frames_buffer.maxsize,
state=self._state,
buffer_filling_strategy=self._video_consumer.buffer_filling_strategy,
buffer_consumption_strategy=self._buffer_consumption_strategy,
)
def _restart(self, wait_on_frames_consumption: bool = True) -> None:
self._terminate(wait_on_frames_consumption=wait_on_frames_consumption)
self._change_state(target_state=StreamState.RESTARTING)
self._playback_allowed = Event()
self._frames_buffering_allowed = True
self._video: Optional[cv2.VideoCapture] = None
self._source_properties: Optional[SourceProperties] = None
self._start()
def _start(self) -> None:
self._change_state(target_state=StreamState.INITIALISING)
self._video = cv2.VideoCapture(self._stream_reference)
if not self._video.isOpened():
self._change_state(target_state=StreamState.ERROR)
raise SourceConnectionError(
f"Cannot connect to video source under reference: {self._stream_reference}"
)
self._source_properties = discover_source_properties(stream=self._video)
self._video_consumer.reset(source_properties=self._source_properties)
if self._source_properties.is_file:
self._set_file_mode_consumption_strategies()
else:
self._set_stream_mode_consumption_strategies()
self._playback_allowed.set()
self._stream_consumption_thread = Thread(target=self._consume_video)
self._stream_consumption_thread.start()
def _terminate(self, wait_on_frames_consumption: bool) -> None:
if self._state in RESUME_ELIGIBLE_STATES:
self._resume()
previous_state = self._state
self._change_state(target_state=StreamState.TERMINATING)
if self._stream_consumption_thread is not None:
self._stream_consumption_thread.join()
if wait_on_frames_consumption:
self._frames_buffer.join()
if previous_state is not StreamState.ERROR:
self._change_state(target_state=StreamState.ENDED)
def _pause(self) -> None:
self._playback_allowed.clear()
self._change_state(target_state=StreamState.PAUSED)
def _mute(self) -> None:
self._frames_buffering_allowed = False
self._change_state(target_state=StreamState.MUTED)
def _resume(self) -> None:
previous_state = self._state
self._change_state(target_state=StreamState.RUNNING)
if previous_state is StreamState.PAUSED:
self._video_consumer.reset_stream_consumption_pace()
self._playback_allowed.set()
if previous_state is StreamState.MUTED:
self._frames_buffering_allowed = True
def _set_file_mode_consumption_strategies(self) -> None:
if self._buffer_consumption_strategy is None:
self._buffer_consumption_strategy = BufferConsumptionStrategy.LAZY
def _set_stream_mode_consumption_strategies(self) -> None:
if self._buffer_consumption_strategy is None:
self._buffer_consumption_strategy = BufferConsumptionStrategy.EAGER
def _consume_video(self) -> None:
send_video_source_status_update(
severity=UpdateSeverity.INFO,
event_type=VIDEO_CONSUMPTION_STARTED_EVENT,
status_update_handlers=self._status_update_handlers,
)
logger.info(f"Video consumption started")
try:
self._change_state(target_state=StreamState.RUNNING)
declared_source_fps = None
if self._source_properties is not None:
declared_source_fps = self._source_properties.fps
while self._video.isOpened():
if self._state is StreamState.TERMINATING:
break
self._playback_allowed.wait()
success = self._video_consumer.consume_frame(
video=self._video,
declared_source_fps=declared_source_fps,
buffer=self._frames_buffer,
frames_buffering_allowed=self._frames_buffering_allowed,
)
if not success:
break
self._frames_buffer.put(None)
self._video.release()
self._change_state(target_state=StreamState.ENDED)
send_video_source_status_update(
severity=UpdateSeverity.INFO,
event_type=VIDEO_CONSUMPTION_FINISHED_EVENT,
status_update_handlers=self._status_update_handlers,
)
logger.info(f"Video consumption finished")
except Exception as error:
self._change_state(target_state=StreamState.ERROR)
payload = {
"error_type": error.__class__.__name__,
"error_message": str(error),
"error_context": "stream_consumer_thread",
}
send_video_source_status_update(
severity=UpdateSeverity.ERROR,
event_type=SOURCE_ERROR_EVENT,
payload=payload,
status_update_handlers=self._status_update_handlers,
)
logger.exception("Encountered error in video consumption thread")
def _change_state(self, target_state: StreamState) -> None:
payload = {
"previous_state": self._state,
"new_state": target_state,
}
self._state = target_state
send_video_source_status_update(
severity=UpdateSeverity.INFO,
event_type=SOURCE_STATE_UPDATE_EVENT,
payload=payload,
status_update_handlers=self._status_update_handlers,
)
def __iter__(self) -> "VideoSource":
return self
def __next__(self) -> VideoFrame:
"""
Method allowing to use `VideoSource` convenient to read frames
Returns: VideoFrame
Example:
```python
source = VideoSource.init(video_reference="./some.mp4")
source.start()
for frame in source:
pass
```
"""
try:
return self.read_frame()
except EndOfStreamError:
raise StopIteration()
class VideoConsumer:
"""
This class should be consumed as part of internal implementation.
It provides abstraction around stream consumption strategies.
"""
@classmethod
def init(
cls,
buffer_filling_strategy: Optional[BufferFillingStrategy],
adaptive_mode_stream_pace_tolerance: float,
adaptive_mode_reader_pace_tolerance: float,
minimum_adaptive_mode_samples: int,
maximum_adaptive_frames_dropped_in_row: int,
status_update_handlers: List[Callable[[StatusUpdate], None]],
) -> "VideoConsumer":
minimum_adaptive_mode_samples = max(minimum_adaptive_mode_samples, 2)
reader_pace_monitor = sv.FPSMonitor(
sample_size=10 * minimum_adaptive_mode_samples
)
stream_consumption_pace_monitor = sv.FPSMonitor(
sample_size=10 * minimum_adaptive_mode_samples
)
decoding_pace_monitor = sv.FPSMonitor(
sample_size=10 * minimum_adaptive_mode_samples
)
return cls(
buffer_filling_strategy=buffer_filling_strategy,
adaptive_mode_stream_pace_tolerance=adaptive_mode_stream_pace_tolerance,
adaptive_mode_reader_pace_tolerance=adaptive_mode_reader_pace_tolerance,
minimum_adaptive_mode_samples=minimum_adaptive_mode_samples,
maximum_adaptive_frames_dropped_in_row=maximum_adaptive_frames_dropped_in_row,
status_update_handlers=status_update_handlers,
reader_pace_monitor=reader_pace_monitor,
stream_consumption_pace_monitor=stream_consumption_pace_monitor,
decoding_pace_monitor=decoding_pace_monitor,
)
def __init__(
self,
buffer_filling_strategy: Optional[BufferFillingStrategy],
adaptive_mode_stream_pace_tolerance: float,
adaptive_mode_reader_pace_tolerance: float,
minimum_adaptive_mode_samples: int,
maximum_adaptive_frames_dropped_in_row: int,
status_update_handlers: List[Callable[[StatusUpdate], None]],
reader_pace_monitor: sv.FPSMonitor,
stream_consumption_pace_monitor: sv.FPSMonitor,
decoding_pace_monitor: sv.FPSMonitor,
):
self._buffer_filling_strategy = buffer_filling_strategy
self._frame_counter = 0
self._adaptive_mode_stream_pace_tolerance = adaptive_mode_stream_pace_tolerance
self._adaptive_mode_reader_pace_tolerance = adaptive_mode_reader_pace_tolerance
self._minimum_adaptive_mode_samples = minimum_adaptive_mode_samples
self._maximum_adaptive_frames_dropped_in_row = (
maximum_adaptive_frames_dropped_in_row
)
self._adaptive_frames_dropped_in_row = 0
self._reader_pace_monitor = reader_pace_monitor
self._stream_consumption_pace_monitor = stream_consumption_pace_monitor
self._decoding_pace_monitor = decoding_pace_monitor
self._status_update_handlers = status_update_handlers
@property
def buffer_filling_strategy(self) -> Optional[BufferFillingStrategy]:
return self._buffer_filling_strategy
def reset(self, source_properties: SourceProperties) -> None:
if source_properties.is_file:
self._set_file_mode_buffering_strategies()
else:
self._set_stream_mode_buffering_strategies()
self._reader_pace_monitor.reset()
self.reset_stream_consumption_pace()
self._decoding_pace_monitor.reset()
self._adaptive_frames_dropped_in_row = 0
def reset_stream_consumption_pace(self) -> None:
self._stream_consumption_pace_monitor.reset()
def notify_frame_consumed(self) -> None:
self._reader_pace_monitor.tick()
def consume_frame(
self,
video: cv2.VideoCapture,
declared_source_fps: Optional[float],
buffer: Queue,
frames_buffering_allowed: bool,
) -> bool:
frame_timestamp = datetime.now()
success = video.grab()
self._stream_consumption_pace_monitor.tick()
if not success:
return False
self._frame_counter += 1
send_video_source_status_update(
severity=UpdateSeverity.DEBUG,
event_type=FRAME_CAPTURED_EVENT,
payload={
"frame_timestamp": frame_timestamp,
"frame_id": self._frame_counter,
},
status_update_handlers=self._status_update_handlers,
)
return self._consume_stream_frame(
video=video,
declared_source_fps=declared_source_fps,
frame_timestamp=frame_timestamp,
buffer=buffer,
frames_buffering_allowed=frames_buffering_allowed,
)
def _set_file_mode_buffering_strategies(self) -> None:
if self._buffer_filling_strategy is None:
self._buffer_filling_strategy = BufferFillingStrategy.WAIT
def _set_stream_mode_buffering_strategies(self) -> None:
if self._buffer_filling_strategy is None:
self._buffer_filling_strategy = BufferFillingStrategy.ADAPTIVE_DROP_OLDEST
def _consume_stream_frame(
self,
video: cv2.VideoCapture,
declared_source_fps: Optional[float],
frame_timestamp: datetime,
buffer: Queue,
frames_buffering_allowed: bool,
) -> bool:
"""
Returns: boolean flag with success status
"""
if not frames_buffering_allowed:
send_frame_drop_update(
frame_timestamp=frame_timestamp,
frame_id=self._frame_counter,
cause="Buffering not allowed at the moment",
status_update_handlers=self._status_update_handlers,
)
return True
if self._frame_should_be_adaptively_dropped(
declared_source_fps=declared_source_fps
):
self._adaptive_frames_dropped_in_row += 1
send_frame_drop_update(
frame_timestamp=frame_timestamp,
frame_id=self._frame_counter,
cause="ADAPTIVE strategy",
status_update_handlers=self._status_update_handlers,
)
return True
self._adaptive_frames_dropped_in_row = 0
if (
not buffer.full()
or self._buffer_filling_strategy is BufferFillingStrategy.WAIT
):
return decode_video_frame_to_buffer(
frame_timestamp=frame_timestamp,
frame_id=self._frame_counter,
video=video,
buffer=buffer,
decoding_pace_monitor=self._decoding_pace_monitor,
)
if self._buffer_filling_strategy in DROP_OLDEST_STRATEGIES:
return self._process_stream_frame_dropping_oldest(
frame_timestamp=frame_timestamp,
video=video,
buffer=buffer,
)
send_frame_drop_update(
frame_timestamp=frame_timestamp,
frame_id=self._frame_counter,
cause="DROP_LATEST strategy",
status_update_handlers=self._status_update_handlers,
)
return True
def _frame_should_be_adaptively_dropped(
self, declared_source_fps: Optional[float]
) -> bool:
if self._buffer_filling_strategy not in ADAPTIVE_STRATEGIES:
return False
if (
self._adaptive_frames_dropped_in_row
>= self._maximum_adaptive_frames_dropped_in_row
):
return False
if (
len(self._stream_consumption_pace_monitor.all_timestamps)
<= self._minimum_adaptive_mode_samples
):
# not enough observations
return False
stream_consumption_pace = self._stream_consumption_pace_monitor()
announced_stream_fps = stream_consumption_pace
if declared_source_fps is not None and declared_source_fps > 0:
announced_stream_fps = declared_source_fps
if (
announced_stream_fps - stream_consumption_pace
> self._adaptive_mode_stream_pace_tolerance
):
# cannot keep up with stream emission
return True
if (
len(self._reader_pace_monitor.all_timestamps)
<= self._minimum_adaptive_mode_samples
) or (
len(self._decoding_pace_monitor.all_timestamps)
<= self._minimum_adaptive_mode_samples
):
# not enough observations
return False
actual_reader_pace = get_fps_if_tick_happens_now(
fps_monitor=self._reader_pace_monitor
)
decoding_pace = self._decoding_pace_monitor()
if (
decoding_pace - actual_reader_pace
> self._adaptive_mode_reader_pace_tolerance
):
# we are too fast for the reader - time to save compute on decoding
return True
return False
def _process_stream_frame_dropping_oldest(
self,
frame_timestamp: datetime,
video: cv2.VideoCapture,
buffer: Queue,
) -> bool:
drop_single_frame_from_buffer(
buffer=buffer,
cause="DROP_OLDEST strategy",
status_update_handlers=self._status_update_handlers,
)
return decode_video_frame_to_buffer(
frame_timestamp=frame_timestamp,
frame_id=self._frame_counter,
video=video,
buffer=buffer,
decoding_pace_monitor=self._decoding_pace_monitor,
)
def discover_source_properties(stream: cv2.VideoCapture) -> SourceProperties:
width = int(stream.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(stream.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = stream.get(cv2.CAP_PROP_FPS)
total_frames = int(stream.get(cv2.CAP_PROP_FRAME_COUNT))
return SourceProperties(
width=width,
height=height,
total_frames=total_frames,
is_file=total_frames > 0,
fps=fps,
)
def purge_queue(
queue: Queue,
wait_on_empty: bool = True,
on_successful_read: Callable[[], None] = lambda: None,
) -> Optional[Any]:
result = None
if queue.empty() and wait_on_empty:
result = queue.get()
queue.task_done()
on_successful_read()
while not queue.empty():
result = queue.get()
queue.task_done()
on_successful_read()
return result
def drop_single_frame_from_buffer(
buffer: Queue,
cause: str,
status_update_handlers: List[Callable[[StatusUpdate], None]],
) -> None:
try:
video_frame = buffer.get_nowait()
buffer.task_done()
send_frame_drop_update(
frame_timestamp=video_frame.frame_timestamp,
frame_id=video_frame.frame_id,
cause=cause,
status_update_handlers=status_update_handlers,
)
except Empty:
# buffer may be emptied in the meantime, hence we ignore Empty
pass
def send_frame_drop_update(
frame_timestamp: datetime,
frame_id: int,
cause: str,
status_update_handlers: List[Callable[[StatusUpdate], None]],
) -> None:
send_video_source_status_update(
severity=UpdateSeverity.DEBUG,
event_type=FRAME_DROPPED_EVENT,
payload={
"frame_timestamp": frame_timestamp,
"frame_id": frame_id,
"cause": cause,
},
status_update_handlers=status_update_handlers,
sub_context=VIDEO_CONSUMER_CONTEXT,
)
def send_video_source_status_update(
severity: UpdateSeverity,
event_type: str,
status_update_handlers: List[Callable[[StatusUpdate], None]],
sub_context: Optional[str] = None,
payload: Optional[dict] = None,
) -> None:
if payload is None:
payload = {}
context = VIDEO_SOURCE_CONTEXT
if sub_context is not None:
context = f"{context}.{sub_context}"
status_update = StatusUpdate(
timestamp=datetime.now(),
severity=severity,
event_type=event_type,
payload=payload,
context=context,
)
for handler in status_update_handlers:
try:
handler(status_update)
except Exception as error:
logger.warning(f"Could not execute handler update. Cause: {error}")
def decode_video_frame_to_buffer(
frame_timestamp: datetime,
frame_id: int,
video: cv2.VideoCapture,
buffer: Queue,
decoding_pace_monitor: sv.FPSMonitor,
) -> bool:
success, image = video.retrieve()
if not success:
return False
decoding_pace_monitor.tick()
video_frame = VideoFrame(
image=image, frame_id=frame_id, frame_timestamp=frame_timestamp
)
buffer.put(video_frame)
return True
def get_fps_if_tick_happens_now(fps_monitor: sv.FPSMonitor) -> float:
if len(fps_monitor.all_timestamps) == 0:
return 0.0
min_reader_timestamp = fps_monitor.all_timestamps[0]
now = time.monotonic()
reader_taken_time = now - min_reader_timestamp
return (len(fps_monitor.all_timestamps) + 1) / reader_taken_time
|