Spaces:
Runtime error
Runtime error
File size: 7,156 Bytes
2eafbc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
from collections import OrderedDict
from typing import List, Optional, Tuple
from uuid import uuid4
import numpy as np
from inference.core import logger
from inference.core.active_learning.cache_operations import (
return_strategy_credit,
use_credit_of_matching_strategy,
)
from inference.core.active_learning.entities import (
ActiveLearningConfiguration,
ImageDimensions,
Prediction,
PredictionType,
SamplingMethod,
)
from inference.core.active_learning.post_processing import (
adjust_prediction_to_client_scaling_factor,
encode_prediction,
)
from inference.core.cache.base import BaseCache
from inference.core.env import ACTIVE_LEARNING_TAGS
from inference.core.roboflow_api import (
annotate_image_at_roboflow,
register_image_at_roboflow,
)
from inference.core.utils.image_utils import encode_image_to_jpeg_bytes
from inference.core.utils.preprocess import downscale_image_keeping_aspect_ratio
def execute_sampling(
image: np.ndarray,
prediction: Prediction,
prediction_type: PredictionType,
sampling_methods: List[SamplingMethod],
) -> List[str]:
matching_strategies = []
for method in sampling_methods:
sampling_result = method.sample(image, prediction, prediction_type)
if sampling_result:
matching_strategies.append(method.name)
return matching_strategies
def execute_datapoint_registration(
cache: BaseCache,
matching_strategies: List[str],
image: np.ndarray,
prediction: Prediction,
prediction_type: PredictionType,
configuration: ActiveLearningConfiguration,
api_key: str,
batch_name: str,
) -> None:
local_image_id = str(uuid4())
encoded_image, scaling_factor = prepare_image_to_registration(
image=image,
desired_size=configuration.max_image_size,
jpeg_compression_level=configuration.jpeg_compression_level,
)
prediction = adjust_prediction_to_client_scaling_factor(
prediction=prediction,
scaling_factor=scaling_factor,
prediction_type=prediction_type,
)
matching_strategies_limits = OrderedDict(
(strategy_name, configuration.strategies_limits[strategy_name])
for strategy_name in matching_strategies
)
strategy_with_spare_credit = use_credit_of_matching_strategy(
cache=cache,
workspace=configuration.workspace_id,
project=configuration.dataset_id,
matching_strategies_limits=matching_strategies_limits,
)
if strategy_with_spare_credit is None:
logger.debug(f"Limit on Active Learning strategy reached.")
return None
register_datapoint_at_roboflow(
cache=cache,
strategy_with_spare_credit=strategy_with_spare_credit,
encoded_image=encoded_image,
local_image_id=local_image_id,
prediction=prediction,
prediction_type=prediction_type,
configuration=configuration,
api_key=api_key,
batch_name=batch_name,
)
def prepare_image_to_registration(
image: np.ndarray,
desired_size: Optional[ImageDimensions],
jpeg_compression_level: int,
) -> Tuple[bytes, float]:
scaling_factor = 1.0
if desired_size is not None:
height_before_scale = image.shape[0]
image = downscale_image_keeping_aspect_ratio(
image=image,
desired_size=desired_size.to_wh(),
)
scaling_factor = image.shape[0] / height_before_scale
return (
encode_image_to_jpeg_bytes(image=image, jpeg_quality=jpeg_compression_level),
scaling_factor,
)
def register_datapoint_at_roboflow(
cache: BaseCache,
strategy_with_spare_credit: str,
encoded_image: bytes,
local_image_id: str,
prediction: Prediction,
prediction_type: PredictionType,
configuration: ActiveLearningConfiguration,
api_key: str,
batch_name: str,
) -> None:
tags = collect_tags(
configuration=configuration,
sampling_strategy=strategy_with_spare_credit,
)
roboflow_image_id = safe_register_image_at_roboflow(
cache=cache,
strategy_with_spare_credit=strategy_with_spare_credit,
encoded_image=encoded_image,
local_image_id=local_image_id,
configuration=configuration,
api_key=api_key,
batch_name=batch_name,
tags=tags,
)
if is_prediction_registration_forbidden(
prediction=prediction,
persist_predictions=configuration.persist_predictions,
roboflow_image_id=roboflow_image_id,
):
return None
encoded_prediction, prediction_file_type = encode_prediction(
prediction=prediction, prediction_type=prediction_type
)
_ = annotate_image_at_roboflow(
api_key=api_key,
dataset_id=configuration.dataset_id,
local_image_id=local_image_id,
roboflow_image_id=roboflow_image_id,
annotation_content=encoded_prediction,
annotation_file_type=prediction_file_type,
is_prediction=True,
)
def collect_tags(
configuration: ActiveLearningConfiguration, sampling_strategy: str
) -> List[str]:
tags = ACTIVE_LEARNING_TAGS if ACTIVE_LEARNING_TAGS is not None else []
tags.extend(configuration.tags)
tags.extend(configuration.strategies_tags[sampling_strategy])
if configuration.persist_predictions:
# this replacement is needed due to backend input validation
tags.append(configuration.model_id.replace("/", "-"))
return tags
def safe_register_image_at_roboflow(
cache: BaseCache,
strategy_with_spare_credit: str,
encoded_image: bytes,
local_image_id: str,
configuration: ActiveLearningConfiguration,
api_key: str,
batch_name: str,
tags: List[str],
) -> Optional[str]:
credit_to_be_returned = False
try:
registration_response = register_image_at_roboflow(
api_key=api_key,
dataset_id=configuration.dataset_id,
local_image_id=local_image_id,
image_bytes=encoded_image,
batch_name=batch_name,
tags=tags,
)
image_duplicated = registration_response.get("duplicate", False)
if image_duplicated:
credit_to_be_returned = True
logger.warning(f"Image duplication detected: {registration_response}.")
return None
return registration_response["id"]
except Exception as error:
credit_to_be_returned = True
raise error
finally:
if credit_to_be_returned:
return_strategy_credit(
cache=cache,
workspace=configuration.workspace_id,
project=configuration.dataset_id,
strategy_name=strategy_with_spare_credit,
)
def is_prediction_registration_forbidden(
prediction: Prediction,
persist_predictions: bool,
roboflow_image_id: Optional[str],
) -> bool:
return (
roboflow_image_id is None
or persist_predictions is False
or prediction.get("is_stub", False) is True
or (len(prediction.get("predictions", [])) == 0 and "top" not in prediction)
)
|