File size: 8,379 Bytes
bb8ff6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import abc, sys
import gradio as gr

from gen_table import *
from meta_data import *

# import pandas as pd
# pd.set_option('display.max_colwidth', 0)

head_style = """

<style>

@media (min-width: 1536px)

{

    .gradio-container {

        min-width: var(--size-full) !important;

    }

}

</style>

"""

TAB_CSS = """

/* 1. Target the real tab‐list container (old & new class names + role attr) */

#leaderboard_tabs [role="tablist"],

#leaderboard_tabs .gradio-tabs-tablist,

#leaderboard_tabs .tab-container[role="tablist"] {

  display: flex       !important;

  flex-wrap: wrap     !important;  /* allow multi‑row */

  white-space: normal !important;  /* cancel nowrap */

  overflow-x: visible!important;  /* don’t clip off */

  height: auto        !important;  /* grow as tall as needed */

  max-width: none     !important;  /* cancel any max‑width */

}



/* 2. Stop each button from flexing */

#leaderboard_tabs [role="tab"],

#leaderboard_tabs .tab-container[role="tablist"] .tab-button,

#leaderboard_tabs .gradio-tabs-tab {

  flex: none !important;

}



/* 3. Hide every possible “more/overflow” toggle */

#leaderboard_tabs .overflow-menu,

#leaderboard_tabs [class*="overflow-button"],

#leaderboard_tabs button[aria-label*="More"],

#leaderboard_tabs .gradio-tabs-overflow,

#leaderboard_tabs .gradio-tabs-overflow-button {

  display: none !important;

}

"""

with gr.Blocks(title="Cybersecurity Leaderboard", head=
head_style) as demo:
    struct = load_results()
    timestamp = struct['time']
    EVAL_TIME = format_timestamp(timestamp)
    results = struct['results']
    model_list=[]
    task_list=[]
    benchmark_list=[]
    for task in results:
        task_list+=[task]
        for benchmark in results[task]:
            if benchmark!='category':
                benchmark_list+=[benchmark]
                model_list+=list(results[task][benchmark].keys())

    model_list=list(set(model_list))
    N_MODEL=len(model_list) 
    N_TASK=len(task_list)
    N_DATA = len(list(set(benchmark_list))) 
    DATASETS = benchmark_list

    gr.Markdown(LEADERBORAD_INTRODUCTION.format(N_DATA,N_TASK,EVAL_TIME))
    structs = [abc.abstractproperty() for _ in range(N_TASK)] #N_DATA

    with gr.Tabs(elem_id="leaderboard_tabs", elem_classes='tab-buttons') as tabs:
        with gr.TabItem('🏅 Cybersecurity Main Leaderboard', elem_id='main', id=0):
            gr.Markdown(LEADERBOARD_MD['MAIN'].format(N_DATA,N_DATA))
            _, check_box = BUILD_L1_DF(results, DEFAULT_TASK)
            table = generate_table(results, DEFAULT_TASK)

            type_map = check_box['type_map']

            checkbox_group = gr.CheckboxGroup(
                choices=check_box['all'],
                value=check_box['required'],
                label='Aspects of Cybersecurity Work',
                interactive=True,
            )

            headers = check_box['essential'] + checkbox_group.value
            with gr.Row():
                model_name = gr.Textbox(
                    value='Input the Model Name (fuzzy, case insensitive)', 
                    label='Model Name', 
                    interactive=True,
                    visible=True)
            data_component = gr.components.DataFrame(
                value=table[headers],
                type='pandas',
                datatype=[type_map[x] for x in headers],
                interactive=False,
                wrap=True,
                visible=True)

            def filter_df(fields, model_name):
                headers = check_box['essential'] + fields
                df = generate_table(results, fields)
                
                default_val = 'Input the Model Name (fuzzy, case insensitive)'
                if model_name != default_val:
                    print(model_name)
                    model_name = model_name.lower()
                    method_names = [x.split('</a>')[0].split('>')[-1].lower() for x in df['Model']]
                    flag = [model_name in name for name in method_names]
                    df['TEMP_FLAG'] = flag
                    df = df[df['TEMP_FLAG'] == True] 
                    df.pop('TEMP_FLAG')

                comp = gr.components.DataFrame(
                    value=df[headers],
                    type='pandas',
                    datatype=[type_map[x] for x in headers],
                    interactive=False,
                    wrap=True, 
                    visible=True)
                return comp

            for cbox in [checkbox_group]:
                cbox.change(fn=filter_df, inputs=[checkbox_group, model_name], outputs=data_component)
            model_name.submit(fn=filter_df, inputs=[checkbox_group, model_name], outputs=data_component)

        with gr.TabItem('🔍 About', elem_id='about', id=1):
            with open("about.md", 'r', encoding="utf-8") as file:
                gr.Markdown(file.read())

        for i, task in enumerate(task_list):
            with gr.TabItem(f'📊 {task} Leaderboard', elem_id=task, id=i + 2):
                if task in LEADERBOARD_MD:
                    gr.Markdown(LEADERBOARD_MD[task])

                s = structs[i]
                s.table, s.check_box = BUILD_L2_DF(results, task)
                s.type_map = s.check_box['type_map']

                s.checkbox_group = gr.CheckboxGroup(
                    choices=s.check_box['all'],
                    value=s.check_box['required'],
                    label=f'{task} CheckBoxes',
                    interactive=True,
                )
                s.headers = s.check_box['essential'] + s.checkbox_group.value

                with gr.Row():
                    s.model_name = gr.Textbox(
                        value='Input the Model Name (fuzzy, case insensitive)', 
                        label='Model Name', 
                        interactive=True,
                        visible=True)
                s.data_component = gr.components.DataFrame(
                    value=s.table[s.headers],
                    type='pandas',
                    datatype=[s.type_map[x] for x in s.headers],
                    interactive=False,
                    wrap=True,
                    visible=True)
                s.dataset = gr.Textbox(value=task, label=task, visible=False)

                def filter_df_l2(dataset_name, fields, model_name):
                    s = structs[task_list.index(dataset_name)]
                    headers = s.check_box['essential'] + fields
                    df = cp.deepcopy(s.table)
                    default_val = 'Input the Model Name (fuzzy, case insensitive)'
                    if model_name != default_val:
                        print(model_name)
                        model_name = model_name.lower()
                        method_names = [x.split('</a>')[0].split('>')[-1].lower() for x in df['Method']]
                        flag = [model_name in name for name in method_names]
                        df['TEMP_FLAG'] = flag
                        df = df[df['TEMP_FLAG'] == True] 
                        df.pop('TEMP_FLAG')

                    comp = gr.components.DataFrame(
                        value=df[headers],
                        type='pandas',
                        datatype=[s.type_map[x] for x in headers],
                        interactive=False,
                        wrap=True,
                        visible=True)
                    return comp

                for cbox in [s.checkbox_group]:
                    cbox.change(
                        fn=filter_df_l2,
                        inputs=[s.dataset, s.checkbox_group, s.model_name],
                        outputs=s.data_component)
                s.model_name.submit(
                    fn=filter_df_l2, 
                    inputs=[s.dataset, s.checkbox_group, s.model_name],
                    outputs=s.data_component)

    with gr.Row():
        with gr.Accordion('Citation', open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                elem_id='citation-button')

if __name__ == '__main__':
    demo.launch(server_name='0.0.0.0', share=True)