File size: 7,989 Bytes
764ee8b 5a6c57a 764ee8b 7faf5ad 4f59140 9c45526 764ee8b 5a6c57a 402ce86 5a6c57a e4251f1 5a6c57a 764ee8b 5a6c57a 764ee8b 5a6c57a 764ee8b 4d014d6 1c927ef 4d014d6 764ee8b 80c7823 764ee8b 4f01b22 402ce86 764ee8b 402ce86 764ee8b 5a6c57a 764ee8b 5a6c57a 764ee8b 402ce86 764ee8b 80c7823 764ee8b 7cc4c5c 402ce86 764ee8b 0a1b04e 402ce86 764ee8b 5a6c57a 402ce86 5a6c57a 764ee8b 5a6c57a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import gradio as gr
import gc, copy, re
from rwkv.model import RWKV
from rwkv.utils import PIPELINE, PIPELINE_ARGS
ctx_limit = 4096
title = "RWKV-5-World-0.1B-v1-20230803-ctx4096.pth"
# import urllib.request
# url = f"https://huggingface.co/BlinkDL/rwkv-5-world/resolve/main/{title}"
# urllib.request.urlretrieve(url, title)
model = RWKV(model=title, strategy='cpu bf16')
pipeline = PIPELINE(model, "rwkv_vocab_v20230424")
def generate_prompt(instruction, input=None, history=None):
# parse the chat history into a string of user and assistant messages
history_str = ""
if history is not None:
for pair in history:
history_str += f"Instruction: {pair[0]}\n\nAssistant: {pair[1]}\n\n"
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n').replace('\n\n','\n')
input = input.strip().replace('\r\n','\n').replace('\n\n','\n').replace('\n\n','\n')
if input and len(input) > 0:
return f"""{history_str}Instruction: {instruction}
Input: {input}
Response:"""
else:
return f"""{history_str}User: {instruction}
Assistant:"""
examples = [
["東京で訪れるべき素晴らしい場所とその紹介をいくつか挙げてください。", "", 300, 1.2, 0.5, 0.5, 0.5],
["Écrivez un programme Python pour miner 1 Bitcoin, avec des commentaires.", "", 300, 1.2, 0.5, 0.5, 0.5],
["Write a song about ravens.", "", 300, 1.2, 0.5, 0.5, 0.5],
["Explain the following metaphor: Life is like cats.", "", 300, 1.2, 0.5, 0.5, 0.5],
["Write a story using the following information", "A man named Alex chops a tree down", 300, 1.2, 0.5, 0.5, 0.5],
["Generate a list of adjectives that describe a person as brave.", "", 300, 1.2, 0.5, 0.5, 0.5],
["You have $100, and your goal is to turn that into as much money as possible with AI and Machine Learning. Please respond with detailed plan.", "", 300, 1.2, 0.5, 0.5, 0.5],
]
def evaluate(
instruction,
input=None,
token_count=333,
temperature=1.0,
top_p=0.5,
presencePenalty = 0.5,
countPenalty = 0.5,
history=None # add the history parameter to the evaluate function
):
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
alpha_frequency = countPenalty,
alpha_presence = presencePenalty,
token_ban = [], # ban the generation of some tokens
token_stop = [0]) # stop generation whenever you see any token here
instruction = re.sub(r'\n{2,}', '\n', instruction).strip().replace('\r\n','\n')
input = re.sub(r'\n{2,}', '\n', input).strip().replace('\r\n','\n')
ctx = generate_prompt(instruction, input, history) # pass the history to the generate_prompt function
print(ctx + "\n")
all_tokens = []
out_last = 0
out_str = ''
occurrence = {}
state = None
for i in range(int(token_count)):
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
for n in occurrence:
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
if token in args.token_stop:
break
all_tokens += [token]
for xxx in occurrence:
occurrence[xxx] *= 0.996
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
tmp = pipeline.decode(all_tokens[out_last:])
if '\ufffd' not in tmp:
out_str += tmp
yield out_str.strip()
out_last = i + 1
if '\n\n' in out_str:
break
del out
del state
gc.collect()
yield out_str.strip()
def user(message, chatbot):
chatbot = chatbot or []
return "", chatbot + [[message, None]]
def alternative(chatbot, history):
if not chatbot or not history:
return chatbot, history
chatbot[-1][1] = None
history[0] = copy.deepcopy(history[1])
return chatbot, history
with gr.Blocks(title=title) as demo:
gr.HTML(f"<div style=\"text-align: center;\">\n<h1>🌍World - {title}</h1>\n</div>")
with gr.Tab("Instruct mode"):
gr.Markdown(f"100% RNN RWKV-LM **trained on 100+ natural languages**. Demo limited to ctxlen {ctx_limit}. For best results, <b>keep your prompt short and clear</b>.")
with gr.Row():
with gr.Column():
instruction = gr.Textbox(lines=2, label="Instruction", value='東京で訪れるべき素晴らしい場所とその紹介をいくつか挙げてください。')
input = gr.Textbox(lines=2, label="Input", placeholder="")
token_count = gr.Slider(10, 512, label="Max Tokens", step=10, value=333)
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.2)
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.3)
presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0)
count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.7)
with gr.Column():
with gr.Row():
submit = gr.Button("Submit", variant="primary")
clear = gr.Button("Clear", variant="secondary")
output = gr.Textbox(label="Output", lines=5)
data = gr.Dataset(components=[instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, label="Example Instructions", headers=["Instruction", "Input", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
submit.click(evaluate, [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
clear.click(lambda: None, [], [output])
data.click(lambda x: x, [data], [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty])
with gr.Tab("Chat mode"):
with gr.Row():
chatbot = gr.Chatbot()
with gr.Column():
msg = gr.Textbox(scale=4, show_label=False, placeholder="Enter text and press enter", container=False)
clear = gr.Button("Clear")
with gr.Column():
token_count = gr.Slider(10, 512, label="Max Tokens", step=10, value=333)
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.2)
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.3)
presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0)
count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.7)
def clear_chat():
return "", []
def user_msg(message, history):
history = history or []
return "", history + [[message, None]]
def chat(history):
# get the last user message and the additional parameters
message = history[-1][0]
instruction = msg.value
token_count = token_count.value
temperature = temperature.value
top_p = top_p.value
presence_penalty = presence_penalty.value
count_penalty = count_penalty.value
response = evaluate(instruction, None, token_count, temperature, top_p, presence_penalty, count_penalty, history)
history[-1][1] = response
return history
msg.submit(user_msg, [msg, chatbot], [msg, chatbot], queue=False).then(
chat, chatbot, chatbot, api_name="chat"
)
clear.click(clear_chat, None, [chatbot], queue=False)
demo.queue(max_size=10)
demo.launch(share=False) |