import re import os import time import requests import base64 import asyncio from datetime import datetime, timedelta from bs4 import BeautifulSoup from sqlalchemy import select from fastapi import FastAPI, Request, HTTPException, BackgroundTasks, UploadFile, File, Form from fastapi.responses import JSONResponse, StreamingResponse, RedirectResponse import openai # For sentiment analysis using TextBlob from textblob import TextBlob # SQLAlchemy Imports (Async) from sqlalchemy.ext.asyncio import create_async_engine, AsyncSession from sqlalchemy.orm import sessionmaker, declarative_base from sqlalchemy import Column, Integer, String, DateTime, Text, Float # --- Environment Variables and API Keys --- SPOONACULAR_API_KEY = os.getenv("SPOONACULAR_API_KEY", "default_fallback_value") PAYSTACK_SECRET_KEY = os.getenv("PAYSTACK_SECRET_KEY", "default_fallback_value") DATABASE_URL = os.getenv("DATABASE_URL", "default_fallback_value") # Example using SQLite NVIDIA_API_KEY = os.getenv("NVIDIA_API_KEY", "default_fallback_value") openai.api_key = os.getenv("OPENAI_API_KEY", "default_fallback_value") # WhatsApp Business API credentials (Cloud API) WHATSAPP_PHONE_NUMBER_ID = os.getenv("WHATSAPP_PHONE_NUMBER_ID", "default_value") WHATSAPP_ACCESS_TOKEN = os.getenv("WHATSAPP_ACCESS_TOKEN", "default_value") MANAGEMENT_WHATSAPP_NUMBER = os.getenv("MANAGEMENT_WHATSAPP_NUMBER", "default_value") # --- Database Setup --- Base = declarative_base() class ChatHistory(Base): __tablename__ = "chat_history" id = Column(Integer, primary_key=True, index=True) user_id = Column(String, index=True) timestamp = Column(DateTime, default=datetime.utcnow) direction = Column(String) # 'inbound' or 'outbound' message = Column(Text) class Order(Base): __tablename__ = "orders" id = Column(Integer, primary_key=True, index=True) order_id = Column(String, unique=True, index=True) user_id = Column(String, index=True) dish = Column(String) quantity = Column(String) price = Column(String, default="0") status = Column(String, default="Pending Payment") payment_reference = Column(String, nullable=True) delivery_address = Column(String, default="") # New field for address timestamp = Column(DateTime, default=datetime.utcnow) class UserProfile(Base): __tablename__ = "user_profiles" id = Column(Integer, primary_key=True, index=True) user_id = Column(String, unique=True, index=True) phone_number = Column(String, unique=True, index=True, nullable=True) name = Column(String, default="Valued Customer") email = Column(String, default="unknown@example.com") preferences = Column(Text, default="") last_interaction = Column(DateTime, default=datetime.utcnow) loyalty_points = Column(Integer, default=0) # New field for loyalty points preferred_language = Column(String, default="English") # New field for language preference class SentimentLog(Base): __tablename__ = "sentiment_logs" id = Column(Integer, primary_key=True, index=True) user_id = Column(String, index=True) timestamp = Column(DateTime, default=datetime.utcnow) sentiment_score = Column(Float) message = Column(Text) class OrderTracking(Base): __tablename__ = "order_tracking" id = Column(Integer, primary_key=True, index=True) order_id = Column(String, index=True) status = Column(String) # e.g., "Order Placed", "Payment Confirmed", etc. message = Column(Text, nullable=True) # Optional additional details timestamp = Column(DateTime, default=datetime.utcnow) class Feedback(Base): __tablename__ = "feedback" id = Column(Integer, primary_key=True, index=True) user_id = Column(String, index=True) rating = Column(Integer) comment = Column(Text, nullable=True) timestamp = Column(DateTime, default=datetime.utcnow) # --- Create Engine and Session --- engine = create_async_engine(DATABASE_URL, echo=True) async_session = sessionmaker(engine, class_=AsyncSession, expire_on_commit=False) async def init_db(): async with engine.begin() as conn: await conn.run_sync(Base.metadata.create_all) # --- Global In-Memory Stores --- user_state = {} # e.g., { user_id: ConversationState } conversation_context = {} # { user_id: [ { "timestamp": ..., "role": "user"/"bot", "message": ... }, ... ] } proactive_timer = {} # --- Utility Functions --- async def log_chat_to_db(user_id: str, direction: str, message: str): async with async_session() as session: entry = ChatHistory(user_id=user_id, direction=direction, message=message) session.add(entry) await session.commit() async def log_sentiment(user_id: str, message: str, score: float): async with async_session() as session: entry = SentimentLog(user_id=user_id, sentiment_score=score, message=message) session.add(entry) await session.commit() def analyze_sentiment(text: str) -> float: blob = TextBlob(text) return blob.sentiment.polarity # --- New Features Implementation --- async def send_main_menu(user_id: str): menu_message = ( "Hi there! 👋 Welcome to [Delivery Service Co.]. I’m here to help with your deliveries. " "What would you like to do today?" ) quick_replies = [ {"title": "Track an Order", "payload": "track_order"}, {"title": "Schedule a Delivery", "payload": "schedule_delivery"}, {"title": "FAQs & Support", "payload": "faqs"}, {"title": "Loyalty Points", "payload": "loyalty_points"}, {"title": "Talk to an Agent", "payload": "live_agent"}, ] await log_chat_to_db(user_id, "outbound", menu_message) return {"response": menu_message, "quick_replies": quick_replies} async def track_order(user_id: str, order_id: str): # Simulate fetching real-time tracking data tracking_data = { "status": "On the way", "estimated_time": "30 minutes", "driver_location": "https://maps.google.com/?q=6.5244,3.3792", # Example location } tracking_message = ( f"🚚 Your order ({order_id}) is currently {tracking_data['status']} and is expected to arrive in {tracking_data['estimated_time']}. " f"Tap below to track your package in real-time." ) quick_replies = [ {"title": "Track on Map", "url": tracking_data["driver_location"]}, {"title": "Back to Menu", "payload": "main_menu"}, ] await log_chat_to_db(user_id, "outbound", tracking_message) return {"response": tracking_message, "quick_replies": quick_replies} async def recommend_package(user_id: str, package_description: str): # Simulate AI analysis package_size = "Medium" price = 2500 recommendation_message = ( f"Based on your description, we recommend a {package_size} package for ₦{price}. " "Does this sound right?" ) quick_replies = [ {"title": "Yes, proceed", "payload": f"confirm_package:{package_size}:{price}"}, {"title": "No, adjust size", "payload": "adjust_package"}, ] await log_chat_to_db(user_id, "outbound", recommendation_message) return {"response": recommendation_message, "quick_replies": quick_replies} async def check_loyalty_points(user_id: str): # Simulate fetching loyalty points points = 200 discount = 500 loyalty_message = ( f"🎉 You’ve earned 50 points for this delivery! You now have {points} points. " f"Redeem them for a ₦{discount} discount on your next order." ) quick_replies = [ {"title": "Redeem Points", "payload": "redeem_points"}, {"title": "Back to Menu", "payload": "main_menu"}, ] await log_chat_to_db(user_id, "outbound", loyalty_message) return {"response": loyalty_message, "quick_replies": quick_replies} async def send_proactive_update(user_id: str, order_id: str, status: str): if status == "picked_up": message = f"🚚 Your order ({order_id}) has been picked up and is on the way!" elif status == "nearby": message = f"🚚 Your driver is 10 minutes away! Please ensure someone is available to receive the package." await log_chat_to_db(user_id, "outbound", message) return {"response": message} async def set_language(user_id: str, language: str): supported_languages = ["English", "Français", "Español"] if language in supported_languages: user_state[user_id]["language"] = language message = f"Language set to {language}. How can I assist you today?" else: message = "Sorry, that language is not supported. Please choose from: English, Français, Español." quick_replies = [{"title": lang, "payload": f"set_language:{lang}"} for lang in supported_languages] await log_chat_to_db(user_id, "outbound", message) return {"response": message, "quick_replies": quick_replies} async def request_feedback(user_id: str): feedback_message = "How was your delivery experience? Tap to rate:" quick_replies = [ {"title": "⭐️⭐️⭐️⭐️⭐️", "payload": "rate:5"}, {"title": "⭐️⭐️⭐️⭐️", "payload": "rate:4"}, {"title": "⭐️⭐️⭐️", "payload": "rate:3"}, {"title": "⭐️⭐️", "payload": "rate:2"}, {"title": "⭐️", "payload": "rate:1"}, ] await log_chat_to_db(user_id, "outbound", feedback_message) return {"response": feedback_message, "quick_replies": quick_replies} async def show_environmental_impact(user_id: str): impact_message = "🌍 Your delivery saved 2kg of CO2 emissions! Thank you for choosing eco-friendly shipping." await log_chat_to_db(user_id, "outbound", impact_message) return {"response": impact_message} async def start_onboarding(user_id: str): tutorial_message = ( "Let me guide you through how to schedule a delivery. Tap ‘Next’ to continue." ) quick_replies = [ {"title": "Next", "payload": "tutorial_step_1"}, {"title": "Skip Tutorial", "payload": "main_menu"}, ] await log_chat_to_db(user_id, "outbound", tutorial_message) return {"response": tutorial_message, "quick_replies": quick_replies} async def suggest_faqs(user_id: str, user_input: str): # Simulate AI-powered FAQ suggestions suggested_faqs = [ "How long does delivery take?", "Can I change my delivery time?", "What are your pricing options?", ] faq_message = ( f"It looks like you’re asking about delivery times. Here are some related FAQs:" ) quick_replies = [{"title": faq, "payload": f"faq:{faq}"} for faq in suggested_faqs] await log_chat_to_db(user_id, "outbound", faq_message) return {"response": faq_message, "quick_replies": quick_replies} async def schedule_offline(user_id: str): offline_message = ( "You’re offline. Your delivery has been scheduled and will be confirmed once you’re back online." ) await log_chat_to_db(user_id, "outbound", offline_message) return {"response": offline_message} # --- FastAPI Setup & Endpoints --- app = FastAPI() @app.on_event("startup") async def on_startup(): await init_db() @app.post("/chatbot") async def chatbot_response(request: Request, background_tasks: BackgroundTasks): data = await request.json() user_id = data.get("user_id") phone_number = data.get("phone_number") user_message = data.get("message", "").strip() is_image = data.get("is_image", False) image_b64 = data.get("image_base64", None) if not user_id: raise HTTPException(status_code=400, detail="Missing user_id in payload.") # Initialize conversation context for the user if not present. if user_id not in conversation_context: conversation_context[user_id] = [] # Append the inbound message to the conversation context. conversation_context[user_id].append({ "timestamp": datetime.utcnow().isoformat(), "role": "user", "message": user_message }) background_tasks.add_task(log_chat_to_db, user_id, "inbound", user_message) await update_user_last_interaction(user_id) await get_or_create_user_profile(user_id, phone_number) # Handle image queries if is_image and image_b64: if len(image_b64) >= 180_000: raise HTTPException(status_code=400, detail="Image too large.") return StreamingResponse(stream_image_completion(image_b64), media_type="text/plain") sentiment_score = analyze_sentiment(user_message) background_tasks.add_task(log_sentiment, user_id, user_message, sentiment_score) sentiment_modifier = "" if sentiment_score < -0.3: sentiment_modifier = "I'm sorry if you're having a tough time. " elif sentiment_score > 0.3: sentiment_modifier = "Great to hear from you! " # --- Order Tracking Handling --- order_id_match = re.search(r"ord-\d+", user_message.lower()) if order_id_match: order_id = order_id_match.group(0) try: # Call the /track_order endpoint tracking_response = await track_order(order_id) return JSONResponse(content={"response": tracking_response}) except HTTPException as e: return JSONResponse(content={"response": f"⚠️ {e.detail}"}) # --- Order Flow Handling --- order_response = process_order_flow(user_id, user_message) if order_response: background_tasks.add_task(log_chat_to_db, user_id, "outbound", order_response) conversation_context[user_id].append({ "timestamp": datetime.utcnow().isoformat(), "role": "bot", "message": order_response }) return JSONResponse(content={"response": sentiment_modifier + order_response}) # --- Menu Display --- if "menu" in user_message.lower(): if user_id in user_state: del user_state[user_id] menu_with_images = [] for index, item in enumerate(menu_items, start=1): image_url = google_image_scrape(item["name"]) menu_with_images.append({ "number": index, "name": item["name"], "description": item["description"], "price": item["price"], "image_url": image_url }) response_payload = { "response": sentiment_modifier + "Here’s our delicious menu:", "menu": menu_with_images, "follow_up": ( "To order, type the *number* or *name* of the dish you'd like. " "For example, type '1' or 'Jollof Rice' to order Jollof Rice.\n\n" "You can also ask for nutritional facts by typing, for example, 'Nutritional facts for Jollof Rice'." ) } background_tasks.add_task(log_chat_to_db, user_id, "outbound", str(response_payload)) conversation_context[user_id].append({ "timestamp": datetime.utcnow().isoformat(), "role": "bot", "message": response_payload["response"] }) return JSONResponse(content=response_payload) # --- Dish Selection via Menu --- if any(item["name"].lower() in user_message.lower() for item in menu_items) or \ any(str(index) == user_message.strip() for index, item in enumerate(menu_items, start=1)): selected_dish = None if user_message.strip().isdigit(): dish_number = int(user_message.strip()) if 1 <= dish_number <= len(menu_items): selected_dish = menu_items[dish_number - 1]["name"] else: for item in menu_items: if item["name"].lower() in user_message.lower(): selected_dish = item["name"] break if selected_dish: state = ConversationState() state.flow = "order" # Set step to 2 since the dish is already selected state.step = 2 state.data["dish"] = selected_dish state.update_last_active() user_state[user_id] = state response_text = f"You selected {selected_dish}. How many servings would you like?" background_tasks.add_task(log_chat_to_db, user_id, "outbound", response_text) conversation_context[user_id].append({ "timestamp": datetime.utcnow().isoformat(), "role": "bot", "message": response_text }) return JSONResponse(content={"response": sentiment_modifier + response_text}) else: response_text = "Sorry, I couldn't find that dish in the menu. Please try again." background_tasks.add_task(log_chat_to_db, user_id, "outbound", response_text) conversation_context[user_id].append({ "timestamp": datetime.utcnow().isoformat(), "role": "bot", "message": response_text }) return JSONResponse(content={"response": sentiment_modifier + response_text}) # --- Nutritional Facts --- if "nutritional facts for" in user_message.lower(): dish_name = user_message.lower().replace("nutritional facts for", "").strip().title() dish = next((item for item in menu_items if item["name"].lower() == dish_name.lower()), None) if dish: response_text = f"Nutritional facts for {dish['name']}:\n{dish['nutrition']}" else: response_text = f"Sorry, I couldn't find nutritional facts for {dish_name}." background_tasks.add_task(log_chat_to_db, user_id, "outbound", response_text) conversation_context[user_id].append({ "timestamp": datetime.utcnow().isoformat(), "role": "bot", "message": response_text }) return JSONResponse(content={"response": sentiment_modifier + response_text}) # --- Fallback: LLM Response Streaming with Conversation Context --- recent_context = conversation_context.get(user_id, [])[-5:] context_str = "\n".join([f"{entry['role'].capitalize()}: {entry['message']}" for entry in recent_context]) prompt = f"Conversation context:\n{context_str}\nUser query: {user_message}\nGenerate a helpful, personalized response for a restaurant chatbot." def stream_response(): for chunk in stream_text_completion(prompt): yield chunk fallback_log = f"LLM fallback response for prompt: {prompt}" background_tasks.add_task(log_chat_to_db, user_id, "outbound", fallback_log) return StreamingResponse(stream_response(), media_type="text/plain") # --- Other Endpoints (Chat History, Order Details, User Profile, Analytics, Voice, Payment Callback) --- @app.get("/chat_history/{user_id}") async def get_chat_history(user_id: str): async with async_session() as session: result = await session.execute( ChatHistory.__table__.select().where(ChatHistory.user_id == user_id) ) history = result.fetchall() return [dict(row) for row in history] @app.get("/order/{order_id}") async def get_order(order_id: str): async with async_session() as session: result = await session.execute( Order.__table__.select().where(Order.order_id == order_id) ) order = result.fetchone() if order: return dict(order) else: raise HTTPException(status_code=404, detail="Order not found.") @app.get("/user_profile/{user_id}") async def get_user_profile(user_id: str): profile = await get_or_create_user_profile(user_id) return { "user_id": profile.user_id, "phone_number": profile.phone_number, "name": profile.name, "email": profile.email, "preferences": profile.preferences, "last_interaction": profile.last_interaction.isoformat() } @app.get("/analytics") async def get_analytics(): async with async_session() as session: msg_result = await session.execute(ChatHistory.__table__.count()) total_messages = msg_result.scalar() or 0 order_result = await session.execute(Order.__table__.count()) total_orders = order_result.scalar() or 0 sentiment_result = await session.execute("SELECT AVG(sentiment_score) FROM sentiment_logs") avg_sentiment = sentiment_result.scalar() or 0 return { "total_messages": total_messages, "total_orders": total_orders, "average_sentiment": avg_sentiment } @app.post("/voice") async def process_voice(file: UploadFile = File(...)): contents = await file.read() simulated_text = "Simulated speech-to-text conversion result." return {"transcription": simulated_text} # --- Payment Callback Endpoint with Payment Tracking and Redirection --- @app.api_route("/payment_callback", methods=["GET", "POST"]) async def payment_callback(request: Request): # GET: User redirection after payment if request.method == "GET": params = request.query_params order_id = params.get("reference") status = params.get("status", "Paid") if not order_id: raise HTTPException(status_code=400, detail="Missing order reference in callback.") async with async_session() as session: result = await session.execute( Order.__table__.select().where(Order.order_id == order_id) ) order = result.scalar_one_or_none() if order: order.status = status await session.commit() else: raise HTTPException(status_code=404, detail="Order not found.") # Record payment confirmation tracking update await log_order_tracking(order_id, "Payment Confirmed", f"Payment status updated to {status}.") # Notify management via WhatsApp about the payment update await asyncio.to_thread(send_whatsapp_message, MANAGEMENT_WHATSAPP_NUMBER, f"Payment Update:\nOrder ID: {order_id} is now {status}." ) # Redirect user back to the chat interface (adjust URL as needed) redirect_url = f"https://wa.link/am87s2" return RedirectResponse(url=redirect_url) # POST: Server-to-server callback from Paystack else: data = await request.json() order_id = data.get("reference") new_status = data.get("status", "Paid") if not order_id: raise HTTPException(status_code=400, detail="Missing order reference in callback.") async with async_session() as session: result = await session.execute( Order.__table__.select().where(Order.order_id == order_id) ) order = result.scalar_one_or_none() if order: order.status = new_status await session.commit() await log_order_tracking(order_id, "Payment Confirmed", f"Payment status updated to {new_status}.") await asyncio.to_thread(send_whatsapp_message, MANAGEMENT_WHATSAPP_NUMBER, f"Payment Update:\nOrder ID: {order_id} is now {new_status}." ) return JSONResponse(content={"message": "Order updated successfully."}) else: raise HTTPException(status_code=404, detail="Order not found.") @app.get("/track_order/{order_id}") async def track_order(order_id: str): """ Fetch order tracking details for a given order ID. """ async with async_session() as session: result = await session.execute( select(OrderTracking) .where(OrderTracking.order_id == order_id) .order_by(OrderTracking.timestamp) ) tracking_updates = result.scalars().all() if tracking_updates: response = [] for update in tracking_updates: response.append({ "status": update.status, "message": update.message, "timestamp": update.timestamp.isoformat(), }) return JSONResponse(content=response) else: raise HTTPException(status_code=404, detail="No tracking information found for this order.") if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)