File size: 24,370 Bytes
3f14bfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da7b702
3f14bfe
 
da7b702
3f14bfe
 
 
 
 
 
 
 
da7b702
c092fef
3f14bfe
 
 
 
 
 
 
 
 
 
 
 
 
 
da7b702
 
 
 
 
 
3f14bfe
 
 
 
 
 
 
 
 
 
 
da7b702
 
3f14bfe
 
 
 
 
 
 
 
 
da7b702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b8dcfd
da7b702
0b8dcfd
3f14bfe
 
 
 
 
 
 
da7b702
3f14bfe
da7b702
3f14bfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da7b702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f14bfe
da7b702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f14bfe
 
 
 
 
 
 
 
 
 
 
 
da7b702
3f14bfe
da7b702
 
3f14bfe
 
 
 
da7b702
3f14bfe
 
da7b702
3f14bfe
 
 
 
 
 
 
da7b702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f14bfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da7b702
 
3f14bfe
 
 
 
 
da7b702
3f14bfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da7b702
3f14bfe
 
 
 
 
 
da7b702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f14bfe
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
import re
import os
import time
import requests
import base64
import asyncio
from datetime import datetime, timedelta
from bs4 import BeautifulSoup
from sqlalchemy import select

from fastapi import FastAPI, Request, HTTPException, BackgroundTasks, UploadFile, File, Form
from fastapi.responses import JSONResponse, StreamingResponse, RedirectResponse

import openai

# For sentiment analysis using TextBlob
from textblob import TextBlob

# SQLAlchemy Imports (Async)
from sqlalchemy.ext.asyncio import create_async_engine, AsyncSession
from sqlalchemy.orm import sessionmaker, declarative_base
from sqlalchemy import Column, Integer, String, DateTime, Text, Float

# --- Environment Variables and API Keys ---
SPOONACULAR_API_KEY = os.getenv("SPOONACULAR_API_KEY", "default_fallback_value")
PAYSTACK_SECRET_KEY = os.getenv("PAYSTACK_SECRET_KEY", "default_fallback_value")
DATABASE_URL = os.getenv("DATABASE_URL", "default_fallback_value")  # Example using SQLite
NVIDIA_API_KEY = os.getenv("NVIDIA_API_KEY", "default_fallback_value")
openai.api_key = os.getenv("OPENAI_API_KEY", "default_fallback_value")

# WhatsApp Business API credentials (Cloud API)
WHATSAPP_PHONE_NUMBER_ID = os.getenv("WHATSAPP_PHONE_NUMBER_ID", "default_value")
WHATSAPP_ACCESS_TOKEN = os.getenv("WHATSAPP_ACCESS_TOKEN", "default_value")
MANAGEMENT_WHATSAPP_NUMBER = os.getenv("MANAGEMENT_WHATSAPP_NUMBER", "default_value")

# --- Database Setup ---
Base = declarative_base()

class ChatHistory(Base):
    __tablename__ = "chat_history"
    id = Column(Integer, primary_key=True, index=True)
    user_id = Column(String, index=True)
    timestamp = Column(DateTime, default=datetime.utcnow)
    direction = Column(String)  # 'inbound' or 'outbound'
    message = Column(Text)

class Order(Base):
    __tablename__ = "orders"
    id = Column(Integer, primary_key=True, index=True)
    order_id = Column(String, unique=True, index=True)
    user_id = Column(String, index=True)
    dish = Column(String)
    quantity = Column(String)
    price = Column(String, default="0")
    status = Column(String, default="Pending Payment")
    payment_reference = Column(String, nullable=True)
    delivery_address = Column(String, default="")  # New field for address
    timestamp = Column(DateTime, default=datetime.utcnow)

class UserProfile(Base):
    __tablename__ = "user_profiles"
    id = Column(Integer, primary_key=True, index=True)
    user_id = Column(String, unique=True, index=True)
    phone_number = Column(String, unique=True, index=True, nullable=True)
    name = Column(String, default="Valued Customer")
    email = Column(String, default="[email protected]")
    preferences = Column(Text, default="")
    last_interaction = Column(DateTime, default=datetime.utcnow)
    loyalty_points = Column(Integer, default=0)  # New field for loyalty points
    preferred_language = Column(String, default="English")  # New field for language preference

class SentimentLog(Base):
    __tablename__ = "sentiment_logs"
    id = Column(Integer, primary_key=True, index=True)
    user_id = Column(String, index=True)
    timestamp = Column(DateTime, default=datetime.utcnow)
    sentiment_score = Column(Float)
    message = Column(Text)

class OrderTracking(Base):
    __tablename__ = "order_tracking"
    id = Column(Integer, primary_key=True, index=True)
    order_id = Column(String, index=True)
    status = Column(String)  # e.g., "Order Placed", "Payment Confirmed", etc.
    message = Column(Text, nullable=True)  # Optional additional details
    timestamp = Column(DateTime, default=datetime.utcnow)

class Feedback(Base):
    __tablename__ = "feedback"
    id = Column(Integer, primary_key=True, index=True)
    user_id = Column(String, index=True)
    rating = Column(Integer)
    comment = Column(Text, nullable=True)
    timestamp = Column(DateTime, default=datetime.utcnow)

# --- Create Engine and Session ---
engine = create_async_engine(DATABASE_URL, echo=True)
async_session = sessionmaker(engine, class_=AsyncSession, expire_on_commit=False)

async def init_db():
    async with engine.begin() as conn:
        await conn.run_sync(Base.metadata.create_all)

# --- Global In-Memory Stores ---
user_state = {}       # e.g., { user_id: ConversationState }
conversation_context = {}  # { user_id: [ { "timestamp": ..., "role": "user"/"bot", "message": ... }, ... ] }
proactive_timer = {}

# --- Utility Functions ---
async def log_chat_to_db(user_id: str, direction: str, message: str):
    async with async_session() as session:
        entry = ChatHistory(user_id=user_id, direction=direction, message=message)
        session.add(entry)
        await session.commit()

async def log_sentiment(user_id: str, message: str, score: float):
    async with async_session() as session:
        entry = SentimentLog(user_id=user_id, sentiment_score=score, message=message)
        session.add(entry)
        await session.commit()

def analyze_sentiment(text: str) -> float:
    blob = TextBlob(text)
    return blob.sentiment.polarity

# --- New Features Implementation ---
async def send_main_menu(user_id: str):
    menu_message = (
        "Hi there! 👋 Welcome to [Delivery Service Co.]. I’m here to help with your deliveries. "
        "What would you like to do today?"
    )
    quick_replies = [
        {"title": "Track an Order", "payload": "track_order"},
        {"title": "Schedule a Delivery", "payload": "schedule_delivery"},
        {"title": "FAQs & Support", "payload": "faqs"},
        {"title": "Loyalty Points", "payload": "loyalty_points"},
        {"title": "Talk to an Agent", "payload": "live_agent"},
    ]
    await log_chat_to_db(user_id, "outbound", menu_message)
    return {"response": menu_message, "quick_replies": quick_replies}

async def track_order(user_id: str, order_id: str):
    # Simulate fetching real-time tracking data
    tracking_data = {
        "status": "On the way",
        "estimated_time": "30 minutes",
        "driver_location": "https://maps.google.com/?q=6.5244,3.3792",  # Example location
    }
    tracking_message = (
        f"🚚 Your order ({order_id}) is currently {tracking_data['status']} and is expected to arrive in {tracking_data['estimated_time']}. "
        f"Tap below to track your package in real-time."
    )
    quick_replies = [
        {"title": "Track on Map", "url": tracking_data["driver_location"]},
        {"title": "Back to Menu", "payload": "main_menu"},
    ]
    await log_chat_to_db(user_id, "outbound", tracking_message)
    return {"response": tracking_message, "quick_replies": quick_replies}

async def recommend_package(user_id: str, package_description: str):
    # Simulate AI analysis
    package_size = "Medium"
    price = 2500
    recommendation_message = (
        f"Based on your description, we recommend a {package_size} package for ₦{price}. "
        "Does this sound right?"
    )
    quick_replies = [
        {"title": "Yes, proceed", "payload": f"confirm_package:{package_size}:{price}"},
        {"title": "No, adjust size", "payload": "adjust_package"},
    ]
    await log_chat_to_db(user_id, "outbound", recommendation_message)
    return {"response": recommendation_message, "quick_replies": quick_replies}

async def check_loyalty_points(user_id: str):
    # Simulate fetching loyalty points
    points = 200
    discount = 500
    loyalty_message = (
        f"🎉 You’ve earned 50 points for this delivery! You now have {points} points. "
        f"Redeem them for a ₦{discount} discount on your next order."
    )
    quick_replies = [
        {"title": "Redeem Points", "payload": "redeem_points"},
        {"title": "Back to Menu", "payload": "main_menu"},
    ]
    await log_chat_to_db(user_id, "outbound", loyalty_message)
    return {"response": loyalty_message, "quick_replies": quick_replies}

async def send_proactive_update(user_id: str, order_id: str, status: str):
    if status == "picked_up":
        message = f"🚚 Your order ({order_id}) has been picked up and is on the way!"
    elif status == "nearby":
        message = f"🚚 Your driver is 10 minutes away! Please ensure someone is available to receive the package."
    await log_chat_to_db(user_id, "outbound", message)
    return {"response": message}

async def set_language(user_id: str, language: str):
    supported_languages = ["English", "Français", "Español"]
    if language in supported_languages:
        user_state[user_id]["language"] = language
        message = f"Language set to {language}. How can I assist you today?"
    else:
        message = "Sorry, that language is not supported. Please choose from: English, Français, Español."
    quick_replies = [{"title": lang, "payload": f"set_language:{lang}"} for lang in supported_languages]
    await log_chat_to_db(user_id, "outbound", message)
    return {"response": message, "quick_replies": quick_replies}

async def request_feedback(user_id: str):
    feedback_message = "How was your delivery experience? Tap to rate:"
    quick_replies = [
        {"title": "⭐️⭐️⭐️⭐️⭐️", "payload": "rate:5"},
        {"title": "⭐️⭐️⭐️⭐️", "payload": "rate:4"},
        {"title": "⭐️⭐️⭐️", "payload": "rate:3"},
        {"title": "⭐️⭐️", "payload": "rate:2"},
        {"title": "⭐️", "payload": "rate:1"},
    ]
    await log_chat_to_db(user_id, "outbound", feedback_message)
    return {"response": feedback_message, "quick_replies": quick_replies}

async def show_environmental_impact(user_id: str):
    impact_message = "🌍 Your delivery saved 2kg of CO2 emissions! Thank you for choosing eco-friendly shipping."
    await log_chat_to_db(user_id, "outbound", impact_message)
    return {"response": impact_message}

async def start_onboarding(user_id: str):
    tutorial_message = (
        "Let me guide you through how to schedule a delivery. Tap ‘Next’ to continue."
    )
    quick_replies = [
        {"title": "Next", "payload": "tutorial_step_1"},
        {"title": "Skip Tutorial", "payload": "main_menu"},
    ]
    await log_chat_to_db(user_id, "outbound", tutorial_message)
    return {"response": tutorial_message, "quick_replies": quick_replies}

async def suggest_faqs(user_id: str, user_input: str):
    # Simulate AI-powered FAQ suggestions
    suggested_faqs = [
        "How long does delivery take?",
        "Can I change my delivery time?",
        "What are your pricing options?",
    ]
    faq_message = (
        f"It looks like you’re asking about delivery times. Here are some related FAQs:"
    )
    quick_replies = [{"title": faq, "payload": f"faq:{faq}"} for faq in suggested_faqs]
    await log_chat_to_db(user_id, "outbound", faq_message)
    return {"response": faq_message, "quick_replies": quick_replies}

async def schedule_offline(user_id: str):
    offline_message = (
        "You’re offline. Your delivery has been scheduled and will be confirmed once you’re back online."
    )
    await log_chat_to_db(user_id, "outbound", offline_message)
    return {"response": offline_message}

# --- FastAPI Setup & Endpoints ---
app = FastAPI()

@app.on_event("startup")
async def on_startup():
    await init_db()

@app.post("/chatbot")
async def chatbot_response(request: Request, background_tasks: BackgroundTasks):
    data = await request.json()
    user_id = data.get("user_id")
    phone_number = data.get("phone_number")
    user_message = data.get("message", "").strip()
    is_image = data.get("is_image", False)
    image_b64 = data.get("image_base64", None)

    if not user_id:
        raise HTTPException(status_code=400, detail="Missing user_id in payload.")

    # Initialize conversation context for the user if not present.
    if user_id not in conversation_context:
        conversation_context[user_id] = []
    # Append the inbound message to the conversation context.
    conversation_context[user_id].append({
        "timestamp": datetime.utcnow().isoformat(),
        "role": "user",
        "message": user_message
    })

    background_tasks.add_task(log_chat_to_db, user_id, "inbound", user_message)
    await update_user_last_interaction(user_id)
    await get_or_create_user_profile(user_id, phone_number)

    # Handle image queries
    if is_image and image_b64:
        if len(image_b64) >= 180_000:
            raise HTTPException(status_code=400, detail="Image too large.")
        return StreamingResponse(stream_image_completion(image_b64), media_type="text/plain")

    sentiment_score = analyze_sentiment(user_message)
    background_tasks.add_task(log_sentiment, user_id, user_message, sentiment_score)
    sentiment_modifier = ""
    if sentiment_score < -0.3:
        sentiment_modifier = "I'm sorry if you're having a tough time. "
    elif sentiment_score > 0.3:
        sentiment_modifier = "Great to hear from you! "

    # --- Order Tracking Handling ---
    order_id_match = re.search(r"ord-\d+", user_message.lower())
    if order_id_match:
        order_id = order_id_match.group(0)
        try:
            # Call the /track_order endpoint
            tracking_response = await track_order(order_id)
            return JSONResponse(content={"response": tracking_response})
        except HTTPException as e:
            return JSONResponse(content={"response": f"⚠️ {e.detail}"})

    # --- Order Flow Handling ---
    order_response = process_order_flow(user_id, user_message)
    if order_response:
        background_tasks.add_task(log_chat_to_db, user_id, "outbound", order_response)
        conversation_context[user_id].append({
            "timestamp": datetime.utcnow().isoformat(),
            "role": "bot",
            "message": order_response
        })
        return JSONResponse(content={"response": sentiment_modifier + order_response})

    # --- Menu Display ---
    if "menu" in user_message.lower():
        if user_id in user_state:
            del user_state[user_id]
        menu_with_images = []
        for index, item in enumerate(menu_items, start=1):
            image_url = google_image_scrape(item["name"])
            menu_with_images.append({
                "number": index,
                "name": item["name"],
                "description": item["description"],
                "price": item["price"],
                "image_url": image_url
            })
        response_payload = {
            "response": sentiment_modifier + "Here’s our delicious menu:",
            "menu": menu_with_images,
            "follow_up": (
                "To order, type the *number* or *name* of the dish you'd like. "
                "For example, type '1' or 'Jollof Rice' to order Jollof Rice.\n\n"
                "You can also ask for nutritional facts by typing, for example, 'Nutritional facts for Jollof Rice'."
            )
        }
        background_tasks.add_task(log_chat_to_db, user_id, "outbound", str(response_payload))
        conversation_context[user_id].append({
            "timestamp": datetime.utcnow().isoformat(),
            "role": "bot",
            "message": response_payload["response"]
        })
        return JSONResponse(content=response_payload)

    # --- Dish Selection via Menu ---
    if any(item["name"].lower() in user_message.lower() for item in menu_items) or \
       any(str(index) == user_message.strip() for index, item in enumerate(menu_items, start=1)):
        selected_dish = None
        if user_message.strip().isdigit():
            dish_number = int(user_message.strip())
            if 1 <= dish_number <= len(menu_items):
                selected_dish = menu_items[dish_number - 1]["name"]
        else:
            for item in menu_items:
                if item["name"].lower() in user_message.lower():
                    selected_dish = item["name"]
                    break
        if selected_dish:
            state = ConversationState()
            state.flow = "order"
            # Set step to 2 since the dish is already selected
            state.step = 2  
            state.data["dish"] = selected_dish
            state.update_last_active()
            user_state[user_id] = state
            response_text = f"You selected {selected_dish}. How many servings would you like?"
            background_tasks.add_task(log_chat_to_db, user_id, "outbound", response_text)
            conversation_context[user_id].append({
                "timestamp": datetime.utcnow().isoformat(),
                "role": "bot",
                "message": response_text
            })
            return JSONResponse(content={"response": sentiment_modifier + response_text})
        else:
            response_text = "Sorry, I couldn't find that dish in the menu. Please try again."
            background_tasks.add_task(log_chat_to_db, user_id, "outbound", response_text)
            conversation_context[user_id].append({
                "timestamp": datetime.utcnow().isoformat(),
                "role": "bot",
                "message": response_text
            })
            return JSONResponse(content={"response": sentiment_modifier + response_text})

    # --- Nutritional Facts ---
    if "nutritional facts for" in user_message.lower():
        dish_name = user_message.lower().replace("nutritional facts for", "").strip().title()
        dish = next((item for item in menu_items if item["name"].lower() == dish_name.lower()), None)
        if dish:
            response_text = f"Nutritional facts for {dish['name']}:\n{dish['nutrition']}"
        else:
            response_text = f"Sorry, I couldn't find nutritional facts for {dish_name}."
        background_tasks.add_task(log_chat_to_db, user_id, "outbound", response_text)
        conversation_context[user_id].append({
            "timestamp": datetime.utcnow().isoformat(),
            "role": "bot",
            "message": response_text
        })
        return JSONResponse(content={"response": sentiment_modifier + response_text})

    # --- Fallback: LLM Response Streaming with Conversation Context ---
    recent_context = conversation_context.get(user_id, [])[-5:]
    context_str = "\n".join([f"{entry['role'].capitalize()}: {entry['message']}" for entry in recent_context])
    prompt = f"Conversation context:\n{context_str}\nUser query: {user_message}\nGenerate a helpful, personalized response for a restaurant chatbot."
    def stream_response():
        for chunk in stream_text_completion(prompt):
            yield chunk
    fallback_log = f"LLM fallback response for prompt: {prompt}"
    background_tasks.add_task(log_chat_to_db, user_id, "outbound", fallback_log)
    return StreamingResponse(stream_response(), media_type="text/plain")

# --- Other Endpoints (Chat History, Order Details, User Profile, Analytics, Voice, Payment Callback) ---
@app.get("/chat_history/{user_id}")
async def get_chat_history(user_id: str):
    async with async_session() as session:
        result = await session.execute(
            ChatHistory.__table__.select().where(ChatHistory.user_id == user_id)
        )
        history = result.fetchall()
        return [dict(row) for row in history]

@app.get("/order/{order_id}")
async def get_order(order_id: str):
    async with async_session() as session:
        result = await session.execute(
            Order.__table__.select().where(Order.order_id == order_id)
        )
        order = result.fetchone()
        if order:
            return dict(order)
        else:
            raise HTTPException(status_code=404, detail="Order not found.")

@app.get("/user_profile/{user_id}")
async def get_user_profile(user_id: str):
    profile = await get_or_create_user_profile(user_id)
    return {
        "user_id": profile.user_id,
        "phone_number": profile.phone_number,
        "name": profile.name,
        "email": profile.email,
        "preferences": profile.preferences,
        "last_interaction": profile.last_interaction.isoformat()
    }

@app.get("/analytics")
async def get_analytics():
    async with async_session() as session:
        msg_result = await session.execute(ChatHistory.__table__.count())
        total_messages = msg_result.scalar() or 0
        order_result = await session.execute(Order.__table__.count())
        total_orders = order_result.scalar() or 0
        sentiment_result = await session.execute("SELECT AVG(sentiment_score) FROM sentiment_logs")
        avg_sentiment = sentiment_result.scalar() or 0
    return {
        "total_messages": total_messages,
        "total_orders": total_orders,
        "average_sentiment": avg_sentiment
    }

@app.post("/voice")
async def process_voice(file: UploadFile = File(...)):
    contents = await file.read()
    simulated_text = "Simulated speech-to-text conversion result."
    return {"transcription": simulated_text}

# --- Payment Callback Endpoint with Payment Tracking and Redirection ---
@app.api_route("/payment_callback", methods=["GET", "POST"])
async def payment_callback(request: Request):
    # GET: User redirection after payment
    if request.method == "GET":
        params = request.query_params
        order_id = params.get("reference")
        status = params.get("status", "Paid")
        if not order_id:
            raise HTTPException(status_code=400, detail="Missing order reference in callback.")
        async with async_session() as session:
            result = await session.execute(
                Order.__table__.select().where(Order.order_id == order_id)
            )
            order = result.scalar_one_or_none()
            if order:
                order.status = status
                await session.commit()
            else:
                raise HTTPException(status_code=404, detail="Order not found.")
        # Record payment confirmation tracking update
        await log_order_tracking(order_id, "Payment Confirmed", f"Payment status updated to {status}.")
        # Notify management via WhatsApp about the payment update
        await asyncio.to_thread(send_whatsapp_message, MANAGEMENT_WHATSAPP_NUMBER,
            f"Payment Update:\nOrder ID: {order_id} is now {status}."
        )
        # Redirect user back to the chat interface (adjust URL as needed)
        redirect_url = f"https://wa.link/am87s2"
        return RedirectResponse(url=redirect_url)
    # POST: Server-to-server callback from Paystack
    else:
        data = await request.json()
        order_id = data.get("reference")
        new_status = data.get("status", "Paid")
        if not order_id:
            raise HTTPException(status_code=400, detail="Missing order reference in callback.")
        async with async_session() as session:
            result = await session.execute(
                Order.__table__.select().where(Order.order_id == order_id)
            )
            order = result.scalar_one_or_none()
            if order:
                order.status = new_status
                await session.commit()
                await log_order_tracking(order_id, "Payment Confirmed", f"Payment status updated to {new_status}.")
                await asyncio.to_thread(send_whatsapp_message, MANAGEMENT_WHATSAPP_NUMBER,
                    f"Payment Update:\nOrder ID: {order_id} is now {new_status}."
                )
                return JSONResponse(content={"message": "Order updated successfully."})
            else:
                raise HTTPException(status_code=404, detail="Order not found.")
                
@app.get("/track_order/{order_id}")
async def track_order(order_id: str):
    """
    Fetch order tracking details for a given order ID.
    """
    async with async_session() as session:
        result = await session.execute(
            select(OrderTracking)
            .where(OrderTracking.order_id == order_id)
            .order_by(OrderTracking.timestamp)
        )
        tracking_updates = result.scalars().all()
        if tracking_updates:
            response = []
            for update in tracking_updates:
                response.append({
                    "status": update.status,
                    "message": update.message,
                    "timestamp": update.timestamp.isoformat(),
                })
            return JSONResponse(content=response)
        else:
            raise HTTPException(status_code=404, detail="No tracking information found for this order.")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)