Spaces:
Sleeping
Sleeping
File size: 24,370 Bytes
3f14bfe da7b702 3f14bfe da7b702 3f14bfe da7b702 c092fef 3f14bfe da7b702 3f14bfe da7b702 3f14bfe da7b702 0b8dcfd da7b702 0b8dcfd 3f14bfe da7b702 3f14bfe da7b702 3f14bfe da7b702 3f14bfe da7b702 3f14bfe da7b702 3f14bfe da7b702 3f14bfe da7b702 3f14bfe da7b702 3f14bfe da7b702 3f14bfe da7b702 3f14bfe da7b702 3f14bfe da7b702 3f14bfe da7b702 3f14bfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
import re
import os
import time
import requests
import base64
import asyncio
from datetime import datetime, timedelta
from bs4 import BeautifulSoup
from sqlalchemy import select
from fastapi import FastAPI, Request, HTTPException, BackgroundTasks, UploadFile, File, Form
from fastapi.responses import JSONResponse, StreamingResponse, RedirectResponse
import openai
# For sentiment analysis using TextBlob
from textblob import TextBlob
# SQLAlchemy Imports (Async)
from sqlalchemy.ext.asyncio import create_async_engine, AsyncSession
from sqlalchemy.orm import sessionmaker, declarative_base
from sqlalchemy import Column, Integer, String, DateTime, Text, Float
# --- Environment Variables and API Keys ---
SPOONACULAR_API_KEY = os.getenv("SPOONACULAR_API_KEY", "default_fallback_value")
PAYSTACK_SECRET_KEY = os.getenv("PAYSTACK_SECRET_KEY", "default_fallback_value")
DATABASE_URL = os.getenv("DATABASE_URL", "default_fallback_value") # Example using SQLite
NVIDIA_API_KEY = os.getenv("NVIDIA_API_KEY", "default_fallback_value")
openai.api_key = os.getenv("OPENAI_API_KEY", "default_fallback_value")
# WhatsApp Business API credentials (Cloud API)
WHATSAPP_PHONE_NUMBER_ID = os.getenv("WHATSAPP_PHONE_NUMBER_ID", "default_value")
WHATSAPP_ACCESS_TOKEN = os.getenv("WHATSAPP_ACCESS_TOKEN", "default_value")
MANAGEMENT_WHATSAPP_NUMBER = os.getenv("MANAGEMENT_WHATSAPP_NUMBER", "default_value")
# --- Database Setup ---
Base = declarative_base()
class ChatHistory(Base):
__tablename__ = "chat_history"
id = Column(Integer, primary_key=True, index=True)
user_id = Column(String, index=True)
timestamp = Column(DateTime, default=datetime.utcnow)
direction = Column(String) # 'inbound' or 'outbound'
message = Column(Text)
class Order(Base):
__tablename__ = "orders"
id = Column(Integer, primary_key=True, index=True)
order_id = Column(String, unique=True, index=True)
user_id = Column(String, index=True)
dish = Column(String)
quantity = Column(String)
price = Column(String, default="0")
status = Column(String, default="Pending Payment")
payment_reference = Column(String, nullable=True)
delivery_address = Column(String, default="") # New field for address
timestamp = Column(DateTime, default=datetime.utcnow)
class UserProfile(Base):
__tablename__ = "user_profiles"
id = Column(Integer, primary_key=True, index=True)
user_id = Column(String, unique=True, index=True)
phone_number = Column(String, unique=True, index=True, nullable=True)
name = Column(String, default="Valued Customer")
email = Column(String, default="[email protected]")
preferences = Column(Text, default="")
last_interaction = Column(DateTime, default=datetime.utcnow)
loyalty_points = Column(Integer, default=0) # New field for loyalty points
preferred_language = Column(String, default="English") # New field for language preference
class SentimentLog(Base):
__tablename__ = "sentiment_logs"
id = Column(Integer, primary_key=True, index=True)
user_id = Column(String, index=True)
timestamp = Column(DateTime, default=datetime.utcnow)
sentiment_score = Column(Float)
message = Column(Text)
class OrderTracking(Base):
__tablename__ = "order_tracking"
id = Column(Integer, primary_key=True, index=True)
order_id = Column(String, index=True)
status = Column(String) # e.g., "Order Placed", "Payment Confirmed", etc.
message = Column(Text, nullable=True) # Optional additional details
timestamp = Column(DateTime, default=datetime.utcnow)
class Feedback(Base):
__tablename__ = "feedback"
id = Column(Integer, primary_key=True, index=True)
user_id = Column(String, index=True)
rating = Column(Integer)
comment = Column(Text, nullable=True)
timestamp = Column(DateTime, default=datetime.utcnow)
# --- Create Engine and Session ---
engine = create_async_engine(DATABASE_URL, echo=True)
async_session = sessionmaker(engine, class_=AsyncSession, expire_on_commit=False)
async def init_db():
async with engine.begin() as conn:
await conn.run_sync(Base.metadata.create_all)
# --- Global In-Memory Stores ---
user_state = {} # e.g., { user_id: ConversationState }
conversation_context = {} # { user_id: [ { "timestamp": ..., "role": "user"/"bot", "message": ... }, ... ] }
proactive_timer = {}
# --- Utility Functions ---
async def log_chat_to_db(user_id: str, direction: str, message: str):
async with async_session() as session:
entry = ChatHistory(user_id=user_id, direction=direction, message=message)
session.add(entry)
await session.commit()
async def log_sentiment(user_id: str, message: str, score: float):
async with async_session() as session:
entry = SentimentLog(user_id=user_id, sentiment_score=score, message=message)
session.add(entry)
await session.commit()
def analyze_sentiment(text: str) -> float:
blob = TextBlob(text)
return blob.sentiment.polarity
# --- New Features Implementation ---
async def send_main_menu(user_id: str):
menu_message = (
"Hi there! 👋 Welcome to [Delivery Service Co.]. I’m here to help with your deliveries. "
"What would you like to do today?"
)
quick_replies = [
{"title": "Track an Order", "payload": "track_order"},
{"title": "Schedule a Delivery", "payload": "schedule_delivery"},
{"title": "FAQs & Support", "payload": "faqs"},
{"title": "Loyalty Points", "payload": "loyalty_points"},
{"title": "Talk to an Agent", "payload": "live_agent"},
]
await log_chat_to_db(user_id, "outbound", menu_message)
return {"response": menu_message, "quick_replies": quick_replies}
async def track_order(user_id: str, order_id: str):
# Simulate fetching real-time tracking data
tracking_data = {
"status": "On the way",
"estimated_time": "30 minutes",
"driver_location": "https://maps.google.com/?q=6.5244,3.3792", # Example location
}
tracking_message = (
f"🚚 Your order ({order_id}) is currently {tracking_data['status']} and is expected to arrive in {tracking_data['estimated_time']}. "
f"Tap below to track your package in real-time."
)
quick_replies = [
{"title": "Track on Map", "url": tracking_data["driver_location"]},
{"title": "Back to Menu", "payload": "main_menu"},
]
await log_chat_to_db(user_id, "outbound", tracking_message)
return {"response": tracking_message, "quick_replies": quick_replies}
async def recommend_package(user_id: str, package_description: str):
# Simulate AI analysis
package_size = "Medium"
price = 2500
recommendation_message = (
f"Based on your description, we recommend a {package_size} package for ₦{price}. "
"Does this sound right?"
)
quick_replies = [
{"title": "Yes, proceed", "payload": f"confirm_package:{package_size}:{price}"},
{"title": "No, adjust size", "payload": "adjust_package"},
]
await log_chat_to_db(user_id, "outbound", recommendation_message)
return {"response": recommendation_message, "quick_replies": quick_replies}
async def check_loyalty_points(user_id: str):
# Simulate fetching loyalty points
points = 200
discount = 500
loyalty_message = (
f"🎉 You’ve earned 50 points for this delivery! You now have {points} points. "
f"Redeem them for a ₦{discount} discount on your next order."
)
quick_replies = [
{"title": "Redeem Points", "payload": "redeem_points"},
{"title": "Back to Menu", "payload": "main_menu"},
]
await log_chat_to_db(user_id, "outbound", loyalty_message)
return {"response": loyalty_message, "quick_replies": quick_replies}
async def send_proactive_update(user_id: str, order_id: str, status: str):
if status == "picked_up":
message = f"🚚 Your order ({order_id}) has been picked up and is on the way!"
elif status == "nearby":
message = f"🚚 Your driver is 10 minutes away! Please ensure someone is available to receive the package."
await log_chat_to_db(user_id, "outbound", message)
return {"response": message}
async def set_language(user_id: str, language: str):
supported_languages = ["English", "Français", "Español"]
if language in supported_languages:
user_state[user_id]["language"] = language
message = f"Language set to {language}. How can I assist you today?"
else:
message = "Sorry, that language is not supported. Please choose from: English, Français, Español."
quick_replies = [{"title": lang, "payload": f"set_language:{lang}"} for lang in supported_languages]
await log_chat_to_db(user_id, "outbound", message)
return {"response": message, "quick_replies": quick_replies}
async def request_feedback(user_id: str):
feedback_message = "How was your delivery experience? Tap to rate:"
quick_replies = [
{"title": "⭐️⭐️⭐️⭐️⭐️", "payload": "rate:5"},
{"title": "⭐️⭐️⭐️⭐️", "payload": "rate:4"},
{"title": "⭐️⭐️⭐️", "payload": "rate:3"},
{"title": "⭐️⭐️", "payload": "rate:2"},
{"title": "⭐️", "payload": "rate:1"},
]
await log_chat_to_db(user_id, "outbound", feedback_message)
return {"response": feedback_message, "quick_replies": quick_replies}
async def show_environmental_impact(user_id: str):
impact_message = "🌍 Your delivery saved 2kg of CO2 emissions! Thank you for choosing eco-friendly shipping."
await log_chat_to_db(user_id, "outbound", impact_message)
return {"response": impact_message}
async def start_onboarding(user_id: str):
tutorial_message = (
"Let me guide you through how to schedule a delivery. Tap ‘Next’ to continue."
)
quick_replies = [
{"title": "Next", "payload": "tutorial_step_1"},
{"title": "Skip Tutorial", "payload": "main_menu"},
]
await log_chat_to_db(user_id, "outbound", tutorial_message)
return {"response": tutorial_message, "quick_replies": quick_replies}
async def suggest_faqs(user_id: str, user_input: str):
# Simulate AI-powered FAQ suggestions
suggested_faqs = [
"How long does delivery take?",
"Can I change my delivery time?",
"What are your pricing options?",
]
faq_message = (
f"It looks like you’re asking about delivery times. Here are some related FAQs:"
)
quick_replies = [{"title": faq, "payload": f"faq:{faq}"} for faq in suggested_faqs]
await log_chat_to_db(user_id, "outbound", faq_message)
return {"response": faq_message, "quick_replies": quick_replies}
async def schedule_offline(user_id: str):
offline_message = (
"You’re offline. Your delivery has been scheduled and will be confirmed once you’re back online."
)
await log_chat_to_db(user_id, "outbound", offline_message)
return {"response": offline_message}
# --- FastAPI Setup & Endpoints ---
app = FastAPI()
@app.on_event("startup")
async def on_startup():
await init_db()
@app.post("/chatbot")
async def chatbot_response(request: Request, background_tasks: BackgroundTasks):
data = await request.json()
user_id = data.get("user_id")
phone_number = data.get("phone_number")
user_message = data.get("message", "").strip()
is_image = data.get("is_image", False)
image_b64 = data.get("image_base64", None)
if not user_id:
raise HTTPException(status_code=400, detail="Missing user_id in payload.")
# Initialize conversation context for the user if not present.
if user_id not in conversation_context:
conversation_context[user_id] = []
# Append the inbound message to the conversation context.
conversation_context[user_id].append({
"timestamp": datetime.utcnow().isoformat(),
"role": "user",
"message": user_message
})
background_tasks.add_task(log_chat_to_db, user_id, "inbound", user_message)
await update_user_last_interaction(user_id)
await get_or_create_user_profile(user_id, phone_number)
# Handle image queries
if is_image and image_b64:
if len(image_b64) >= 180_000:
raise HTTPException(status_code=400, detail="Image too large.")
return StreamingResponse(stream_image_completion(image_b64), media_type="text/plain")
sentiment_score = analyze_sentiment(user_message)
background_tasks.add_task(log_sentiment, user_id, user_message, sentiment_score)
sentiment_modifier = ""
if sentiment_score < -0.3:
sentiment_modifier = "I'm sorry if you're having a tough time. "
elif sentiment_score > 0.3:
sentiment_modifier = "Great to hear from you! "
# --- Order Tracking Handling ---
order_id_match = re.search(r"ord-\d+", user_message.lower())
if order_id_match:
order_id = order_id_match.group(0)
try:
# Call the /track_order endpoint
tracking_response = await track_order(order_id)
return JSONResponse(content={"response": tracking_response})
except HTTPException as e:
return JSONResponse(content={"response": f"⚠️ {e.detail}"})
# --- Order Flow Handling ---
order_response = process_order_flow(user_id, user_message)
if order_response:
background_tasks.add_task(log_chat_to_db, user_id, "outbound", order_response)
conversation_context[user_id].append({
"timestamp": datetime.utcnow().isoformat(),
"role": "bot",
"message": order_response
})
return JSONResponse(content={"response": sentiment_modifier + order_response})
# --- Menu Display ---
if "menu" in user_message.lower():
if user_id in user_state:
del user_state[user_id]
menu_with_images = []
for index, item in enumerate(menu_items, start=1):
image_url = google_image_scrape(item["name"])
menu_with_images.append({
"number": index,
"name": item["name"],
"description": item["description"],
"price": item["price"],
"image_url": image_url
})
response_payload = {
"response": sentiment_modifier + "Here’s our delicious menu:",
"menu": menu_with_images,
"follow_up": (
"To order, type the *number* or *name* of the dish you'd like. "
"For example, type '1' or 'Jollof Rice' to order Jollof Rice.\n\n"
"You can also ask for nutritional facts by typing, for example, 'Nutritional facts for Jollof Rice'."
)
}
background_tasks.add_task(log_chat_to_db, user_id, "outbound", str(response_payload))
conversation_context[user_id].append({
"timestamp": datetime.utcnow().isoformat(),
"role": "bot",
"message": response_payload["response"]
})
return JSONResponse(content=response_payload)
# --- Dish Selection via Menu ---
if any(item["name"].lower() in user_message.lower() for item in menu_items) or \
any(str(index) == user_message.strip() for index, item in enumerate(menu_items, start=1)):
selected_dish = None
if user_message.strip().isdigit():
dish_number = int(user_message.strip())
if 1 <= dish_number <= len(menu_items):
selected_dish = menu_items[dish_number - 1]["name"]
else:
for item in menu_items:
if item["name"].lower() in user_message.lower():
selected_dish = item["name"]
break
if selected_dish:
state = ConversationState()
state.flow = "order"
# Set step to 2 since the dish is already selected
state.step = 2
state.data["dish"] = selected_dish
state.update_last_active()
user_state[user_id] = state
response_text = f"You selected {selected_dish}. How many servings would you like?"
background_tasks.add_task(log_chat_to_db, user_id, "outbound", response_text)
conversation_context[user_id].append({
"timestamp": datetime.utcnow().isoformat(),
"role": "bot",
"message": response_text
})
return JSONResponse(content={"response": sentiment_modifier + response_text})
else:
response_text = "Sorry, I couldn't find that dish in the menu. Please try again."
background_tasks.add_task(log_chat_to_db, user_id, "outbound", response_text)
conversation_context[user_id].append({
"timestamp": datetime.utcnow().isoformat(),
"role": "bot",
"message": response_text
})
return JSONResponse(content={"response": sentiment_modifier + response_text})
# --- Nutritional Facts ---
if "nutritional facts for" in user_message.lower():
dish_name = user_message.lower().replace("nutritional facts for", "").strip().title()
dish = next((item for item in menu_items if item["name"].lower() == dish_name.lower()), None)
if dish:
response_text = f"Nutritional facts for {dish['name']}:\n{dish['nutrition']}"
else:
response_text = f"Sorry, I couldn't find nutritional facts for {dish_name}."
background_tasks.add_task(log_chat_to_db, user_id, "outbound", response_text)
conversation_context[user_id].append({
"timestamp": datetime.utcnow().isoformat(),
"role": "bot",
"message": response_text
})
return JSONResponse(content={"response": sentiment_modifier + response_text})
# --- Fallback: LLM Response Streaming with Conversation Context ---
recent_context = conversation_context.get(user_id, [])[-5:]
context_str = "\n".join([f"{entry['role'].capitalize()}: {entry['message']}" for entry in recent_context])
prompt = f"Conversation context:\n{context_str}\nUser query: {user_message}\nGenerate a helpful, personalized response for a restaurant chatbot."
def stream_response():
for chunk in stream_text_completion(prompt):
yield chunk
fallback_log = f"LLM fallback response for prompt: {prompt}"
background_tasks.add_task(log_chat_to_db, user_id, "outbound", fallback_log)
return StreamingResponse(stream_response(), media_type="text/plain")
# --- Other Endpoints (Chat History, Order Details, User Profile, Analytics, Voice, Payment Callback) ---
@app.get("/chat_history/{user_id}")
async def get_chat_history(user_id: str):
async with async_session() as session:
result = await session.execute(
ChatHistory.__table__.select().where(ChatHistory.user_id == user_id)
)
history = result.fetchall()
return [dict(row) for row in history]
@app.get("/order/{order_id}")
async def get_order(order_id: str):
async with async_session() as session:
result = await session.execute(
Order.__table__.select().where(Order.order_id == order_id)
)
order = result.fetchone()
if order:
return dict(order)
else:
raise HTTPException(status_code=404, detail="Order not found.")
@app.get("/user_profile/{user_id}")
async def get_user_profile(user_id: str):
profile = await get_or_create_user_profile(user_id)
return {
"user_id": profile.user_id,
"phone_number": profile.phone_number,
"name": profile.name,
"email": profile.email,
"preferences": profile.preferences,
"last_interaction": profile.last_interaction.isoformat()
}
@app.get("/analytics")
async def get_analytics():
async with async_session() as session:
msg_result = await session.execute(ChatHistory.__table__.count())
total_messages = msg_result.scalar() or 0
order_result = await session.execute(Order.__table__.count())
total_orders = order_result.scalar() or 0
sentiment_result = await session.execute("SELECT AVG(sentiment_score) FROM sentiment_logs")
avg_sentiment = sentiment_result.scalar() or 0
return {
"total_messages": total_messages,
"total_orders": total_orders,
"average_sentiment": avg_sentiment
}
@app.post("/voice")
async def process_voice(file: UploadFile = File(...)):
contents = await file.read()
simulated_text = "Simulated speech-to-text conversion result."
return {"transcription": simulated_text}
# --- Payment Callback Endpoint with Payment Tracking and Redirection ---
@app.api_route("/payment_callback", methods=["GET", "POST"])
async def payment_callback(request: Request):
# GET: User redirection after payment
if request.method == "GET":
params = request.query_params
order_id = params.get("reference")
status = params.get("status", "Paid")
if not order_id:
raise HTTPException(status_code=400, detail="Missing order reference in callback.")
async with async_session() as session:
result = await session.execute(
Order.__table__.select().where(Order.order_id == order_id)
)
order = result.scalar_one_or_none()
if order:
order.status = status
await session.commit()
else:
raise HTTPException(status_code=404, detail="Order not found.")
# Record payment confirmation tracking update
await log_order_tracking(order_id, "Payment Confirmed", f"Payment status updated to {status}.")
# Notify management via WhatsApp about the payment update
await asyncio.to_thread(send_whatsapp_message, MANAGEMENT_WHATSAPP_NUMBER,
f"Payment Update:\nOrder ID: {order_id} is now {status}."
)
# Redirect user back to the chat interface (adjust URL as needed)
redirect_url = f"https://wa.link/am87s2"
return RedirectResponse(url=redirect_url)
# POST: Server-to-server callback from Paystack
else:
data = await request.json()
order_id = data.get("reference")
new_status = data.get("status", "Paid")
if not order_id:
raise HTTPException(status_code=400, detail="Missing order reference in callback.")
async with async_session() as session:
result = await session.execute(
Order.__table__.select().where(Order.order_id == order_id)
)
order = result.scalar_one_or_none()
if order:
order.status = new_status
await session.commit()
await log_order_tracking(order_id, "Payment Confirmed", f"Payment status updated to {new_status}.")
await asyncio.to_thread(send_whatsapp_message, MANAGEMENT_WHATSAPP_NUMBER,
f"Payment Update:\nOrder ID: {order_id} is now {new_status}."
)
return JSONResponse(content={"message": "Order updated successfully."})
else:
raise HTTPException(status_code=404, detail="Order not found.")
@app.get("/track_order/{order_id}")
async def track_order(order_id: str):
"""
Fetch order tracking details for a given order ID.
"""
async with async_session() as session:
result = await session.execute(
select(OrderTracking)
.where(OrderTracking.order_id == order_id)
.order_by(OrderTracking.timestamp)
)
tracking_updates = result.scalars().all()
if tracking_updates:
response = []
for update in tracking_updates:
response.append({
"status": update.status,
"message": update.message,
"timestamp": update.timestamp.isoformat(),
})
return JSONResponse(content=response)
else:
raise HTTPException(status_code=404, detail="No tracking information found for this order.")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000) |