Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import scipy.ndimage | |
| import torch | |
| import comfy.utils | |
| from nodes import MAX_RESOLUTION | |
| def composite(destination, source, x, y, mask = None, multiplier = 8, resize_source = False): | |
| source = source.to(destination.device) | |
| if resize_source: | |
| source = torch.nn.functional.interpolate(source, size=(destination.shape[2], destination.shape[3]), mode="bilinear") | |
| source = comfy.utils.repeat_to_batch_size(source, destination.shape[0]) | |
| x = max(-source.shape[3] * multiplier, min(x, destination.shape[3] * multiplier)) | |
| y = max(-source.shape[2] * multiplier, min(y, destination.shape[2] * multiplier)) | |
| left, top = (x // multiplier, y // multiplier) | |
| right, bottom = (left + source.shape[3], top + source.shape[2],) | |
| if mask is None: | |
| mask = torch.ones_like(source) | |
| else: | |
| mask = mask.to(destination.device, copy=True) | |
| mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(source.shape[2], source.shape[3]), mode="bilinear") | |
| mask = comfy.utils.repeat_to_batch_size(mask, source.shape[0]) | |
| # calculate the bounds of the source that will be overlapping the destination | |
| # this prevents the source trying to overwrite latent pixels that are out of bounds | |
| # of the destination | |
| visible_width, visible_height = (destination.shape[3] - left + min(0, x), destination.shape[2] - top + min(0, y),) | |
| mask = mask[:, :, :visible_height, :visible_width] | |
| inverse_mask = torch.ones_like(mask) - mask | |
| source_portion = mask * source[:, :, :visible_height, :visible_width] | |
| destination_portion = inverse_mask * destination[:, :, top:bottom, left:right] | |
| destination[:, :, top:bottom, left:right] = source_portion + destination_portion | |
| return destination | |
| class LatentCompositeMasked: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "destination": ("LATENT",), | |
| "source": ("LATENT",), | |
| "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), | |
| "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), | |
| "resize_source": ("BOOLEAN", {"default": False}), | |
| }, | |
| "optional": { | |
| "mask": ("MASK",), | |
| } | |
| } | |
| RETURN_TYPES = ("LATENT",) | |
| FUNCTION = "composite" | |
| CATEGORY = "latent" | |
| def composite(self, destination, source, x, y, resize_source, mask = None): | |
| output = destination.copy() | |
| destination = destination["samples"].clone() | |
| source = source["samples"] | |
| output["samples"] = composite(destination, source, x, y, mask, 8, resize_source) | |
| return (output,) | |
| class ImageCompositeMasked: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "destination": ("IMAGE",), | |
| "source": ("IMAGE",), | |
| "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), | |
| "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), | |
| "resize_source": ("BOOLEAN", {"default": False}), | |
| }, | |
| "optional": { | |
| "mask": ("MASK",), | |
| } | |
| } | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "composite" | |
| CATEGORY = "image" | |
| def composite(self, destination, source, x, y, resize_source, mask = None): | |
| destination = destination.clone().movedim(-1, 1) | |
| output = composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1) | |
| return (output,) | |
| class MaskToImage: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "mask": ("MASK",), | |
| } | |
| } | |
| CATEGORY = "mask" | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "mask_to_image" | |
| def mask_to_image(self, mask): | |
| result = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3) | |
| return (result,) | |
| class ImageToMask: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "image": ("IMAGE",), | |
| "channel": (["red", "green", "blue", "alpha"],), | |
| } | |
| } | |
| CATEGORY = "mask" | |
| RETURN_TYPES = ("MASK",) | |
| FUNCTION = "image_to_mask" | |
| def image_to_mask(self, image, channel): | |
| channels = ["red", "green", "blue", "alpha"] | |
| mask = image[:, :, :, channels.index(channel)] | |
| return (mask,) | |
| class ImageColorToMask: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "image": ("IMAGE",), | |
| "color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}), | |
| } | |
| } | |
| CATEGORY = "mask" | |
| RETURN_TYPES = ("MASK",) | |
| FUNCTION = "image_to_mask" | |
| def image_to_mask(self, image, color): | |
| temp = (torch.clamp(image, 0, 1.0) * 255.0).round().to(torch.int) | |
| temp = torch.bitwise_left_shift(temp[:,:,:,0], 16) + torch.bitwise_left_shift(temp[:,:,:,1], 8) + temp[:,:,:,2] | |
| mask = torch.where(temp == color, 255, 0).float() | |
| return (mask,) | |
| class SolidMask: | |
| def INPUT_TYPES(cls): | |
| return { | |
| "required": { | |
| "value": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), | |
| "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), | |
| "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), | |
| } | |
| } | |
| CATEGORY = "mask" | |
| RETURN_TYPES = ("MASK",) | |
| FUNCTION = "solid" | |
| def solid(self, value, width, height): | |
| out = torch.full((1, height, width), value, dtype=torch.float32, device="cpu") | |
| return (out,) | |
| class InvertMask: | |
| def INPUT_TYPES(cls): | |
| return { | |
| "required": { | |
| "mask": ("MASK",), | |
| } | |
| } | |
| CATEGORY = "mask" | |
| RETURN_TYPES = ("MASK",) | |
| FUNCTION = "invert" | |
| def invert(self, mask): | |
| out = 1.0 - mask | |
| return (out,) | |
| class CropMask: | |
| def INPUT_TYPES(cls): | |
| return { | |
| "required": { | |
| "mask": ("MASK",), | |
| "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), | |
| "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), | |
| "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), | |
| "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), | |
| } | |
| } | |
| CATEGORY = "mask" | |
| RETURN_TYPES = ("MASK",) | |
| FUNCTION = "crop" | |
| def crop(self, mask, x, y, width, height): | |
| mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1])) | |
| out = mask[:, y:y + height, x:x + width] | |
| return (out,) | |
| class MaskComposite: | |
| def INPUT_TYPES(cls): | |
| return { | |
| "required": { | |
| "destination": ("MASK",), | |
| "source": ("MASK",), | |
| "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), | |
| "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), | |
| "operation": (["multiply", "add", "subtract", "and", "or", "xor"],), | |
| } | |
| } | |
| CATEGORY = "mask" | |
| RETURN_TYPES = ("MASK",) | |
| FUNCTION = "combine" | |
| def combine(self, destination, source, x, y, operation): | |
| output = destination.reshape((-1, destination.shape[-2], destination.shape[-1])).clone() | |
| source = source.reshape((-1, source.shape[-2], source.shape[-1])) | |
| left, top = (x, y,) | |
| right, bottom = (min(left + source.shape[-1], destination.shape[-1]), min(top + source.shape[-2], destination.shape[-2])) | |
| visible_width, visible_height = (right - left, bottom - top,) | |
| source_portion = source[:, :visible_height, :visible_width] | |
| destination_portion = destination[:, top:bottom, left:right] | |
| if operation == "multiply": | |
| output[:, top:bottom, left:right] = destination_portion * source_portion | |
| elif operation == "add": | |
| output[:, top:bottom, left:right] = destination_portion + source_portion | |
| elif operation == "subtract": | |
| output[:, top:bottom, left:right] = destination_portion - source_portion | |
| elif operation == "and": | |
| output[:, top:bottom, left:right] = torch.bitwise_and(destination_portion.round().bool(), source_portion.round().bool()).float() | |
| elif operation == "or": | |
| output[:, top:bottom, left:right] = torch.bitwise_or(destination_portion.round().bool(), source_portion.round().bool()).float() | |
| elif operation == "xor": | |
| output[:, top:bottom, left:right] = torch.bitwise_xor(destination_portion.round().bool(), source_portion.round().bool()).float() | |
| output = torch.clamp(output, 0.0, 1.0) | |
| return (output,) | |
| class FeatherMask: | |
| def INPUT_TYPES(cls): | |
| return { | |
| "required": { | |
| "mask": ("MASK",), | |
| "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), | |
| "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), | |
| "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), | |
| "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), | |
| } | |
| } | |
| CATEGORY = "mask" | |
| RETURN_TYPES = ("MASK",) | |
| FUNCTION = "feather" | |
| def feather(self, mask, left, top, right, bottom): | |
| output = mask.reshape((-1, mask.shape[-2], mask.shape[-1])).clone() | |
| left = min(left, output.shape[-1]) | |
| right = min(right, output.shape[-1]) | |
| top = min(top, output.shape[-2]) | |
| bottom = min(bottom, output.shape[-2]) | |
| for x in range(left): | |
| feather_rate = (x + 1.0) / left | |
| output[:, :, x] *= feather_rate | |
| for x in range(right): | |
| feather_rate = (x + 1) / right | |
| output[:, :, -x] *= feather_rate | |
| for y in range(top): | |
| feather_rate = (y + 1) / top | |
| output[:, y, :] *= feather_rate | |
| for y in range(bottom): | |
| feather_rate = (y + 1) / bottom | |
| output[:, -y, :] *= feather_rate | |
| return (output,) | |
| class GrowMask: | |
| def INPUT_TYPES(cls): | |
| return { | |
| "required": { | |
| "mask": ("MASK",), | |
| "expand": ("INT", {"default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1}), | |
| "tapered_corners": ("BOOLEAN", {"default": True}), | |
| }, | |
| } | |
| CATEGORY = "mask" | |
| RETURN_TYPES = ("MASK",) | |
| FUNCTION = "expand_mask" | |
| def expand_mask(self, mask, expand, tapered_corners): | |
| c = 0 if tapered_corners else 1 | |
| kernel = np.array([[c, 1, c], | |
| [1, 1, 1], | |
| [c, 1, c]]) | |
| mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1])) | |
| out = [] | |
| for m in mask: | |
| output = m.numpy() | |
| for _ in range(abs(expand)): | |
| if expand < 0: | |
| output = scipy.ndimage.grey_erosion(output, footprint=kernel) | |
| else: | |
| output = scipy.ndimage.grey_dilation(output, footprint=kernel) | |
| output = torch.from_numpy(output) | |
| out.append(output) | |
| return (torch.stack(out, dim=0),) | |
| class ThresholdMask: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "mask": ("MASK",), | |
| "value": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), | |
| } | |
| } | |
| CATEGORY = "mask" | |
| RETURN_TYPES = ("MASK",) | |
| FUNCTION = "image_to_mask" | |
| def image_to_mask(self, mask, value): | |
| mask = (mask > value).float() | |
| return (mask,) | |
| NODE_CLASS_MAPPINGS = { | |
| "LatentCompositeMasked": LatentCompositeMasked, | |
| "ImageCompositeMasked": ImageCompositeMasked, | |
| "MaskToImage": MaskToImage, | |
| "ImageToMask": ImageToMask, | |
| "ImageColorToMask": ImageColorToMask, | |
| "SolidMask": SolidMask, | |
| "InvertMask": InvertMask, | |
| "CropMask": CropMask, | |
| "MaskComposite": MaskComposite, | |
| "FeatherMask": FeatherMask, | |
| "GrowMask": GrowMask, | |
| "ThresholdMask": ThresholdMask, | |
| } | |
| NODE_DISPLAY_NAME_MAPPINGS = { | |
| "ImageToMask": "Convert Image to Mask", | |
| "MaskToImage": "Convert Mask to Image", | |
| } | |