Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| import folder_paths | |
| import comfy.clip_model | |
| import comfy.clip_vision | |
| import comfy.ops | |
| # code for model from: https://github.com/TencentARC/PhotoMaker/blob/main/photomaker/model.py under Apache License Version 2.0 | |
| VISION_CONFIG_DICT = { | |
| "hidden_size": 1024, | |
| "image_size": 224, | |
| "intermediate_size": 4096, | |
| "num_attention_heads": 16, | |
| "num_channels": 3, | |
| "num_hidden_layers": 24, | |
| "patch_size": 14, | |
| "projection_dim": 768, | |
| "hidden_act": "quick_gelu", | |
| } | |
| class MLP(nn.Module): | |
| def __init__(self, in_dim, out_dim, hidden_dim, use_residual=True, operations=comfy.ops): | |
| super().__init__() | |
| if use_residual: | |
| assert in_dim == out_dim | |
| self.layernorm = operations.LayerNorm(in_dim) | |
| self.fc1 = operations.Linear(in_dim, hidden_dim) | |
| self.fc2 = operations.Linear(hidden_dim, out_dim) | |
| self.use_residual = use_residual | |
| self.act_fn = nn.GELU() | |
| def forward(self, x): | |
| residual = x | |
| x = self.layernorm(x) | |
| x = self.fc1(x) | |
| x = self.act_fn(x) | |
| x = self.fc2(x) | |
| if self.use_residual: | |
| x = x + residual | |
| return x | |
| class FuseModule(nn.Module): | |
| def __init__(self, embed_dim, operations): | |
| super().__init__() | |
| self.mlp1 = MLP(embed_dim * 2, embed_dim, embed_dim, use_residual=False, operations=operations) | |
| self.mlp2 = MLP(embed_dim, embed_dim, embed_dim, use_residual=True, operations=operations) | |
| self.layer_norm = operations.LayerNorm(embed_dim) | |
| def fuse_fn(self, prompt_embeds, id_embeds): | |
| stacked_id_embeds = torch.cat([prompt_embeds, id_embeds], dim=-1) | |
| stacked_id_embeds = self.mlp1(stacked_id_embeds) + prompt_embeds | |
| stacked_id_embeds = self.mlp2(stacked_id_embeds) | |
| stacked_id_embeds = self.layer_norm(stacked_id_embeds) | |
| return stacked_id_embeds | |
| def forward( | |
| self, | |
| prompt_embeds, | |
| id_embeds, | |
| class_tokens_mask, | |
| ) -> torch.Tensor: | |
| # id_embeds shape: [b, max_num_inputs, 1, 2048] | |
| id_embeds = id_embeds.to(prompt_embeds.dtype) | |
| num_inputs = class_tokens_mask.sum().unsqueeze(0) # TODO: check for training case | |
| batch_size, max_num_inputs = id_embeds.shape[:2] | |
| # seq_length: 77 | |
| seq_length = prompt_embeds.shape[1] | |
| # flat_id_embeds shape: [b*max_num_inputs, 1, 2048] | |
| flat_id_embeds = id_embeds.view( | |
| -1, id_embeds.shape[-2], id_embeds.shape[-1] | |
| ) | |
| # valid_id_mask [b*max_num_inputs] | |
| valid_id_mask = ( | |
| torch.arange(max_num_inputs, device=flat_id_embeds.device)[None, :] | |
| < num_inputs[:, None] | |
| ) | |
| valid_id_embeds = flat_id_embeds[valid_id_mask.flatten()] | |
| prompt_embeds = prompt_embeds.view(-1, prompt_embeds.shape[-1]) | |
| class_tokens_mask = class_tokens_mask.view(-1) | |
| valid_id_embeds = valid_id_embeds.view(-1, valid_id_embeds.shape[-1]) | |
| # slice out the image token embeddings | |
| image_token_embeds = prompt_embeds[class_tokens_mask] | |
| stacked_id_embeds = self.fuse_fn(image_token_embeds, valid_id_embeds) | |
| assert class_tokens_mask.sum() == stacked_id_embeds.shape[0], f"{class_tokens_mask.sum()} != {stacked_id_embeds.shape[0]}" | |
| prompt_embeds.masked_scatter_(class_tokens_mask[:, None], stacked_id_embeds.to(prompt_embeds.dtype)) | |
| updated_prompt_embeds = prompt_embeds.view(batch_size, seq_length, -1) | |
| return updated_prompt_embeds | |
| class PhotoMakerIDEncoder(comfy.clip_model.CLIPVisionModelProjection): | |
| def __init__(self): | |
| self.load_device = comfy.model_management.text_encoder_device() | |
| offload_device = comfy.model_management.text_encoder_offload_device() | |
| dtype = comfy.model_management.text_encoder_dtype(self.load_device) | |
| super().__init__(VISION_CONFIG_DICT, dtype, offload_device, comfy.ops.manual_cast) | |
| self.visual_projection_2 = comfy.ops.manual_cast.Linear(1024, 1280, bias=False) | |
| self.fuse_module = FuseModule(2048, comfy.ops.manual_cast) | |
| def forward(self, id_pixel_values, prompt_embeds, class_tokens_mask): | |
| b, num_inputs, c, h, w = id_pixel_values.shape | |
| id_pixel_values = id_pixel_values.view(b * num_inputs, c, h, w) | |
| shared_id_embeds = self.vision_model(id_pixel_values)[2] | |
| id_embeds = self.visual_projection(shared_id_embeds) | |
| id_embeds_2 = self.visual_projection_2(shared_id_embeds) | |
| id_embeds = id_embeds.view(b, num_inputs, 1, -1) | |
| id_embeds_2 = id_embeds_2.view(b, num_inputs, 1, -1) | |
| id_embeds = torch.cat((id_embeds, id_embeds_2), dim=-1) | |
| updated_prompt_embeds = self.fuse_module(prompt_embeds, id_embeds, class_tokens_mask) | |
| return updated_prompt_embeds | |
| class PhotoMakerLoader: | |
| def INPUT_TYPES(s): | |
| return {"required": { "photomaker_model_name": (folder_paths.get_filename_list("photomaker"), )}} | |
| RETURN_TYPES = ("PHOTOMAKER",) | |
| FUNCTION = "load_photomaker_model" | |
| CATEGORY = "_for_testing/photomaker" | |
| def load_photomaker_model(self, photomaker_model_name): | |
| photomaker_model_path = folder_paths.get_full_path("photomaker", photomaker_model_name) | |
| photomaker_model = PhotoMakerIDEncoder() | |
| data = comfy.utils.load_torch_file(photomaker_model_path, safe_load=True) | |
| if "id_encoder" in data: | |
| data = data["id_encoder"] | |
| photomaker_model.load_state_dict(data) | |
| return (photomaker_model,) | |
| class PhotoMakerEncode: | |
| def INPUT_TYPES(s): | |
| return {"required": { "photomaker": ("PHOTOMAKER",), | |
| "image": ("IMAGE",), | |
| "clip": ("CLIP", ), | |
| "text": ("STRING", {"multiline": True, "dynamicPrompts": True, "default": "photograph of photomaker"}), | |
| }} | |
| RETURN_TYPES = ("CONDITIONING",) | |
| FUNCTION = "apply_photomaker" | |
| CATEGORY = "_for_testing/photomaker" | |
| def apply_photomaker(self, photomaker, image, clip, text): | |
| special_token = "photomaker" | |
| pixel_values = comfy.clip_vision.clip_preprocess(image.to(photomaker.load_device)).float() | |
| try: | |
| index = text.split(" ").index(special_token) + 1 | |
| except ValueError: | |
| index = -1 | |
| tokens = clip.tokenize(text, return_word_ids=True) | |
| out_tokens = {} | |
| for k in tokens: | |
| out_tokens[k] = [] | |
| for t in tokens[k]: | |
| f = list(filter(lambda x: x[2] != index, t)) | |
| while len(f) < len(t): | |
| f.append(t[-1]) | |
| out_tokens[k].append(f) | |
| cond, pooled = clip.encode_from_tokens(out_tokens, return_pooled=True) | |
| if index > 0: | |
| token_index = index - 1 | |
| num_id_images = 1 | |
| class_tokens_mask = [True if token_index <= i < token_index+num_id_images else False for i in range(77)] | |
| out = photomaker(id_pixel_values=pixel_values.unsqueeze(0), prompt_embeds=cond.to(photomaker.load_device), | |
| class_tokens_mask=torch.tensor(class_tokens_mask, dtype=torch.bool, device=photomaker.load_device).unsqueeze(0)) | |
| else: | |
| out = cond | |
| return ([[out, {"pooled_output": pooled}]], ) | |
| NODE_CLASS_MAPPINGS = { | |
| "PhotoMakerLoader": PhotoMakerLoader, | |
| "PhotoMakerEncode": PhotoMakerEncode, | |
| } | |