File size: 13,483 Bytes
5435413 5056db8 5435413 5056db8 5435413 2aa7dab 5435413 2aa7dab 5435413 2aa7dab 5435413 2aa7dab 5435413 2aa7dab 5435413 2aa7dab 5435413 2aa7dab 5435413 2aa7dab 5435413 2aa7dab 5435413 2aa7dab 5435413 2aa7dab 5435413 2aa7dab 5435413 2aa7dab 5435413 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import type { GradioClient } from '$lib/types';
import {
initializeTrainerScanProgress,
getNextPendingImage,
markImageProcessingStarted,
markImageProcessingCompleted,
markImageProcessingFailed,
getScanningStats,
getCurrentProcessingImage
} from '$lib/db/trainerScanning';
import { savePicletInstance, generatedDataToPicletInstance } from '$lib/db/piclets';
import { extractPicletMetadata } from './picletMetadata';
import { removeBackground } from '$lib/utils/professionalImageProcessing';
import type { PicletStats } from '$lib/types';
export interface TrainerScanState {
isScanning: boolean;
currentImage: string | null;
currentTrainer: string | null;
progress: {
total: number;
completed: number;
failed: number;
pending: number;
};
error: string | null;
}
export class TrainerScanService {
private joyCaptionClient: GradioClient;
private zephyrClient: GradioClient;
private fluxClient: GradioClient;
private isScanning = false;
private shouldStop = false;
private stateCallbacks: ((state: TrainerScanState) => void)[] = [];
constructor(
joyCaptionClient: GradioClient,
zephyrClient: GradioClient,
fluxClient: GradioClient
) {
this.joyCaptionClient = joyCaptionClient;
this.zephyrClient = zephyrClient;
this.fluxClient = fluxClient;
}
// Subscribe to state changes
onStateChange(callback: (state: TrainerScanState) => void) {
this.stateCallbacks.push(callback);
}
// Notify all subscribers of state changes
private notifyStateChange(state: Partial<TrainerScanState>) {
const fullState = { ...this.getCurrentState(), ...state };
this.stateCallbacks.forEach(callback => callback(fullState));
}
// Get current scanning state
private async getCurrentState(): Promise<TrainerScanState> {
const stats = await getScanningStats();
return {
isScanning: this.isScanning,
currentImage: null,
currentTrainer: null,
progress: {
total: stats.total,
completed: stats.completed,
failed: stats.failed,
pending: stats.pending
},
error: null
};
}
// Initialize scanning database with image paths from file
async initializeFromFile(): Promise<void> {
try {
const response = await fetch('/trainer_image_paths.txt');
if (!response.ok) {
throw new Error(`Failed to fetch trainer_image_paths.txt: ${response.statusText}`);
}
const content = await response.text();
if (!content) {
throw new Error('trainer_image_paths.txt is empty');
}
const imagePaths = content.trim().split('\n')
.map(path => typeof path === 'string' ? path.trim() : '')
.filter(path => path.length > 0);
console.log(`Loaded ${imagePaths.length} trainer image paths`);
if (imagePaths.length === 0) {
throw new Error('No valid image paths found in trainer_image_paths.txt');
}
await initializeTrainerScanProgress(imagePaths);
this.notifyStateChange(await this.getCurrentState());
} catch (error) {
console.error('Failed to initialize trainer scan progress:', error);
throw new Error('Failed to load trainer image paths');
}
}
// Start automated scanning
async startScanning(): Promise<void> {
if (this.isScanning) {
throw new Error('Scanning is already in progress');
}
// Initialize database if needed
const stats = await getScanningStats();
if (stats.total === 0) {
await this.initializeFromFile();
}
// Check for interrupted processing
const currentProcessing = await getCurrentProcessingImage();
if (currentProcessing) {
// Reset interrupted processing back to pending
await markImageProcessingFailed(currentProcessing.imagePath, 'Process interrupted');
}
this.isScanning = true;
this.shouldStop = false;
this.notifyStateChange({ isScanning: true, error: null });
try {
await this.processingLoop();
} catch (error) {
console.error('Scanning error:', error);
this.notifyStateChange({ error: error instanceof Error ? error.message : 'Unknown error' });
} finally {
this.isScanning = false;
this.notifyStateChange({ isScanning: false, currentImage: null, currentTrainer: null });
// Log final summary
const finalStats = await getScanningStats();
console.log(`π Scanning session complete:`, {
total: finalStats.total,
completed: finalStats.completed,
failed: finalStats.failed,
pending: finalStats.pending,
successRate: finalStats.total > 0 ? Math.round((finalStats.completed / finalStats.total) * 100) + '%' : '0%'
});
}
}
// Stop scanning
stopScanning(): void {
this.shouldStop = true;
}
// Main processing loop
private async processingLoop(): Promise<void> {
while (!this.shouldStop) {
const nextImage = await getNextPendingImage();
if (!nextImage) {
// No more pending images
break;
}
this.notifyStateChange({
currentImage: nextImage.imagePath,
currentTrainer: typeof nextImage.trainerName === 'string' ? nextImage.trainerName : null
});
try {
await this.processImage(nextImage.imagePath, nextImage.remoteUrl);
console.log(`β
Successfully processed: ${nextImage.imagePath} (${nextImage.trainerName})`);
// Add small delay between images to prevent overwhelming the system
await new Promise(resolve => setTimeout(resolve, 1000));
} catch (error) {
const errorMessage = error instanceof Error ? error.message : 'Unknown error';
console.error(`β Failed to process ${nextImage.imagePath} (${nextImage.trainerName}):`, {
imagePath: nextImage.imagePath,
trainerName: nextImage.trainerName,
remoteUrl: nextImage.remoteUrl,
error: errorMessage,
fullError: error
});
await markImageProcessingFailed(nextImage.imagePath, errorMessage);
// Continue to next image - don't let individual failures stop the whole process
console.log(`π Continuing to next image despite failure...`);
}
// Update progress
this.notifyStateChange(await this.getCurrentState());
}
}
// Process a single remote image
private async processImage(imagePath: string, remoteUrl: string): Promise<void> {
await markImageProcessingStarted(imagePath);
try {
console.log(`π Processing ${imagePath}: Fetching remote image...`);
// Fetch remote image
const imageFile = await this.fetchRemoteImage(remoteUrl, imagePath);
console.log(`π Processing ${imagePath}: Captioning image...`);
// Caption the image
const imageCaption = await this.captionImage(imageFile);
console.log(`π Processing ${imagePath}: Generating concept...`);
// Generate monster concept
const picletConcept = await this.generatePicletConcept(imageCaption);
console.log(`π Processing ${imagePath}: Generating stats...`);
// Generate stats
const picletStats = await this.generatePicletStats(picletConcept);
console.log(`π Processing ${imagePath}: Generating image prompt...`);
// Generate image prompt
const imagePrompt = await this.generateImagePrompt(picletConcept);
console.log(`π Processing ${imagePath}: Generating monster image...`);
// Generate monster image
const picletImageUrl = await this.generateMonsterImage(imagePrompt);
console.log(`π Processing ${imagePath}: Processing generated image...`);
// Process generated image (remove background)
const imageData = await this.processGeneratedImage(picletImageUrl);
console.log(`π Processing ${imagePath}: Creating piclet instance...`);
// Create piclet instance
const generatedData = {
name: this.extractNameFromConcept(picletConcept),
imageUrl: picletImageUrl,
imageData,
imageCaption,
concept: picletConcept,
imagePrompt,
stats: picletStats,
createdAt: new Date()
};
const picletInstance = await generatedDataToPicletInstance(generatedData, 5);
const savedId = await savePicletInstance(picletInstance);
await markImageProcessingCompleted(imagePath, savedId);
} catch (error) {
// Add context about which step failed
const enhancedError = new Error(`Failed during processing of ${imagePath}: ${error instanceof Error ? error.message : 'Unknown error'}`);
enhancedError.cause = error;
throw enhancedError;
}
}
// Fetch remote image and convert to File
private async fetchRemoteImage(remoteUrl: string, originalPath: string): Promise<File> {
const response = await fetch(remoteUrl);
if (!response.ok) {
throw new Error(`Failed to fetch ${remoteUrl}: ${response.statusText}`);
}
const blob = await response.blob();
const fileName = originalPath.split('/').pop() || 'trainer_image.jpg';
return new File([blob], fileName, { type: blob.type });
}
// Caption image using Joy Caption
private async captionImage(imageFile: File): Promise<string> {
const result = await this.joyCaptionClient.predict("/caption", [imageFile, "descriptive", "any", false]);
const captionResult = result.data[0] as string;
if (!captionResult || captionResult.trim() === '') {
throw new Error('Failed to generate image caption');
}
return captionResult.trim();
}
// Generate piclet concept using Zephyr
private async generatePicletConcept(imageCaption: string): Promise<string> {
const prompt = `Based on this image description, create a unique creature concept for a Pokemon-style monster collection game called "Pictuary":
"${imageCaption}"
Create a creative, original monster concept that:
1. Is inspired by elements from the image but is clearly a fantastical creature
2. Has a unique name and personality
3. Includes special abilities related to its appearance
4. Is suitable for a family-friendly game
Write a detailed monster concept (2-3 paragraphs).`;
const result = await this.zephyrClient.predict("/chat", [
[["user", prompt]],
512, // max tokens
0.7, // temperature
0.9, // top_p
]);
const conceptResult = result.data[0][1][1] as string;
if (!conceptResult || conceptResult.trim() === '') {
throw new Error('Failed to generate piclet concept');
}
return conceptResult.trim();
}
// Generate piclet stats
private async generatePicletStats(concept: string): Promise<PicletStats> {
return await extractPicletMetadata(concept, this.zephyrClient);
}
// Generate image prompt for monster creation
private async generateImagePrompt(concept: string): Promise<string> {
const prompt = `Extract ONLY the visual appearance from this monster concept and describe it in one concise sentence:
"${concept}"
Focus on: colors, body shape, eyes, limbs, mouth, and key visual features. Omit backstory, abilities, and non-visual details.`;
const result = await this.zephyrClient.predict("/chat", [
[["user", prompt]],
256, // max tokens
0.5, // temperature
0.9, // top_p
]);
const promptResult = result.data[0][1][1] as string;
if (!promptResult || promptResult.trim() === '') {
throw new Error('Failed to generate image prompt');
}
return promptResult.trim();
}
// Generate monster image using Flux
private async generateMonsterImage(imagePrompt: string): Promise<string> {
const fullPrompt = `${imagePrompt}, digital art, creature design, fantasy monster, clean background, professional illustration`;
const result = await this.fluxClient.predict("/infer", [
fullPrompt,
"", // negative prompt
832, // width
1216, // height
1, // num inference steps
3.0, // guidance scale
0, // seed
]);
const imageUrl = result.data[0] as string;
if (!imageUrl) {
throw new Error('Failed to generate monster image');
}
return imageUrl;
}
// Process generated image (remove background)
private async processGeneratedImage(imageUrl: string): Promise<string> {
try {
return await removeBackground(imageUrl);
} catch (error) {
console.warn('Background removal failed, using original image:', error);
return imageUrl;
}
}
// Extract name from concept text
private extractNameFromConcept(concept: string): string {
// Try to find a name in common patterns
const patterns = [
/(?:called|named)\s+([A-Z][a-z]+(?:\s+[A-Z][a-z]+)?)/,
/^([A-Z][a-z]+(?:\s+[A-Z][a-z]+)?)/,
/this\s+([A-Z][a-z]+(?:\s+[A-Z][a-z]+)?)/,
];
for (const pattern of patterns) {
const match = concept.match(pattern);
if (match && match[1]) {
return match[1].trim();
}
}
// Fallback to generating a random trainer-inspired name
const trainerNames = ['Snap', 'Blaze', 'Nimbus', 'Breaker', 'Trinket'];
const randomName = trainerNames[Math.floor(Math.random() * trainerNames.length)];
return `Trainer${randomName}`;
}
} |