import numpy as np import gradio as gr import pickle import plotly.graph_objects as go import plotly.express as px import pandas as pd # Remove the global variable and instead use gr.State # define a Dataframe styler to highlight the Feasible? column to be green and red def highlight_success(val): color = 'lightgreen' if val == 'Success' else 'lightcoral' return f'color:white;background-color: {color}' def sim_espray_constrained(x, noise_se=None): # Define the equations conc = x[:, 0] flow_rate = x[:, 1] voltage = x[:, 2] solvent = x[:, 3] diameter = (np.sqrt(conc) * np.sqrt(flow_rate)) / np.log2(voltage) * 10 + 0.4 + solvent # Diameter in micrometers if noise_se is not None: diameter = diameter + noise_se * np.random.randn(*diameter.shape) exp_con = (np.log(flow_rate) * (solvent - 0.5) + 1.40 >= 0).astype(float) return np.column_stack((diameter, exp_con)) X_init = np.array([[0.5, 15, 10, 0], [0.5, 0.1, 10, 1], [3, 20, 15, 0], [1, 20, 10, 1], [0.2, 0.02, 10, 1]]) Y_init = sim_espray_constrained(X_init) exp_record_df = pd.DataFrame(X_init, columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent']) exp_record_df['Size (um)'] = Y_init[:, 0] # map 1 to CHCl3 and 0 to DMAc exp_record_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in exp_record_df['Solvent']] exp_record_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in Y_init[:, 1]] gr_exp_record_df = gr.DataFrame(value=exp_record_df.style.map(highlight_success, subset=['Feasible?']).format(precision=3), label="Prior Experiments") def import_results(): strategies = ['qEI', 'qEI_vi_mixed_con', 'qEICF_vi_mixed_con', 'rnd'] # Load results from pickle file with open('best_distances.pkl', 'rb') as f: best_distances = pickle.load(f) # vstack all values in best_distances best_distances_vstack = {k: np.vstack(best_distances[k]) for k in strategies} best_distances_all_trials = -np.vstack([best_distances_vstack[k] for k in strategies]) best_distances_all_trials_df = pd.DataFrame(best_distances_all_trials) best_distances_all_trials_df['strategy'] = np.repeat(['Vanilla BO', 'Constrained BO', 'CCBO', 'Random'], 20) best_distances_all_trials_df['trial'] = list(range(20)) * len(strategies) best_distances_df_long = pd.melt(best_distances_all_trials_df, id_vars=['strategy', 'trial'], var_name='iteration', value_name='regret') return best_distances_df_long def calc_human_performance(df): # convert back solvent to 0 and 1 df['Solvent'] = [0 if x == 'DMAc' else 1 for x in df['Solvent']] TARGET_SIZE = 3.0 # Example target size ROUNDS = len(df) // 2 X_human = df[['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent']].values X_human_init = X_init.copy() Y_human_init = Y_init.copy() best_human_distance = [] for iter in range(ROUNDS + 1): Y_distance = -np.abs(Y_human_init[:, 0] - TARGET_SIZE) best_human_distance.append(np.ma.masked_array(Y_distance, mask=~Y_human_init[:, 1].astype(bool)).max()) new_x = X_human[2 * iter:2 * (iter + 1)] X_human_init = np.vstack([X_human_init, new_x]) Y_human_init = np.vstack([Y_human_init, sim_espray_constrained(new_x)]) return -np.array(best_human_distance) def plot_results(exp_data_df): # Extract human performance best_human_distance = calc_human_performance(exp_data_df) # Import results best_distances_df_long = import_results() fig = go.Figure() strategies = best_distances_df_long['strategy'].unique() for strategy in strategies: strategy_data = best_distances_df_long[best_distances_df_long['strategy'] == strategy] # Calculate mean and standard deviation mean_regret = strategy_data.groupby('iteration')['regret'].mean() std_regret = strategy_data.groupby('iteration')['regret'].std() iterations = mean_regret.index color = px.colors.qualitative.Set2[strategies.tolist().index(strategy)] # Add trace for mean line mean_trace = go.Scatter( x=iterations, y=mean_regret, mode='lines', name=strategy, line=dict(width=2, color=color) ) fig.add_trace(mean_trace) # Add trace for shaded area (standard deviation) fig.add_trace(go.Scatter( x=list(iterations) + list(iterations[::-1]), y=list(mean_regret + std_regret) + list((mean_regret - std_regret)[::-1]), fill='toself', fillcolor=mean_trace.line.color.replace('rgb', 'rgba').replace(')', ',0.2)'), line=dict(color='rgba(255,255,255,0)'), showlegend=False, name=f'{strategy} (std dev)' )) # Add trace for human performance fig.add_trace(go.Scatter( x=list(range(len(best_human_distance))), y=best_human_distance, mode='lines+markers', name='Human', line=dict(width=2, color='brown') )) fig.update_layout( title='Performance Comparison', xaxis_title='Iteration', yaxis_title='Regret (μm)', legend_title='Strategy', template='plotly_white', legend=dict( x=0.01, y=0.01, bgcolor='rgba(255, 255, 255, 0.5)', bordercolor='rgba(0, 0, 0, 0.5)', borderwidth=1 ) ) return fig # Update predict function to use state def predict(state, text1, conc1, flow_rate1, voltage1, solvent1, text2, conc2, flow_rate2, voltage2, solvent2): # Get current results storage from state or initialize if None if state is None: results_storage = pd.DataFrame(columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?']) else: results_storage = state.copy() solvent_value1 = 0 if solvent1 == 'DMAc' else 1 solvent_value2 = 0 if solvent2 == 'DMAc' else 1 # Convert inputs to numpy array inputs1 = np.array([[conc1, flow_rate1, voltage1, solvent_value1]]) inputs2 = np.array([[conc2, flow_rate2, voltage2, solvent_value2]]) # Get predictions results1 = sim_espray_constrained(inputs1) results2 = sim_espray_constrained(inputs2) # Format output diameter1 = results1[0, 0] exp_con1 = results1[0, 1] diameter2 = results2[0, 0] exp_con2 = results2[0, 1] # create a dataframe to store the results results_df = pd.DataFrame(np.array([ [conc1, flow_rate1, voltage1, solvent_value1, diameter1, exp_con1], [conc2, flow_rate2, voltage2, solvent_value2, diameter2, exp_con2] ]), columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?']) results_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in results_df['Solvent']] results_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in results_df['Feasible?']] results_storage = pd.concat([results_storage, results_df], ignore_index=True) results_display = results_storage.style.map(highlight_success, subset=['Feasible?']).format(precision=3) return (results_storage, gr_exp_record_df, gr.DataFrame(value=results_display, label="Your Results"), plot_results(results_storage)) # Update reset_results to use state def reset_results(state): results_storage = pd.DataFrame(columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?']) return (results_storage, gr_exp_record_df, gr.DataFrame(value=results_storage.style.map(highlight_success, subset=['Feasible?']).format(precision=3), label="Your Results"), plot_results(results_storage)) inputs = [ gr.Markdown("### Experiment 1"), gr.Number(value=1.2, label="Concentration (%w/v, range: 0.05-5.00)", minimum=0.05, maximum=5.0, precision=3), gr.Number(value=20.0, label="Flow Rate (mL/h, range: 0.01-60.00)", minimum=0.01, maximum=60.0, precision=3), gr.Number(value=15.0, label="Voltage (kV, range: 10.00-18.00)", minimum=10.0, maximum=18.0, precision=3), gr.Dropdown(['DMAc', 'CHCl3'], value='DMAc', label='Solvent'), gr.Markdown("### Experiment 2"), gr.Number(value=2.8, label="Concentration (%w/v, range: 0.05-5.00)", minimum=0.05, maximum=5.0, precision=3), gr.Number(value=20.0, label="Flow Rate (mL/h, range: 0.01-60.00)", minimum=0.01, maximum=60.0, precision=3), gr.Number(value=15.0, label="Voltage (kV, 10.00-18.00)", minimum=10.0, maximum=18.0, precision=3), gr.Dropdown(['DMAc', 'CHCl3'], value='CHCl3', label='Solvent') ] outputs = [gr_exp_record_df, gr.DataFrame(label="Your Results"), gr.Plot(label="Performance Comparison")] description = "
If you think you may perform better than CCBO, try this interactive game to optimize electrospray! Rules are simple: