Commit
·
094f22f
1
Parent(s):
bc58ccd
added updates
Browse files- UHI_explainer_ref_data.parquet +3 -0
- app.py +11 -21
- examples.csv +0 -0
- explainer.py +0 -110
- model.py +102 -37
UHI_explainer_ref_data.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d5b020cfc8a638dfc6c2ed9f0b5ad6ad9ed4472f4d6a5d4a75960e89da07388
|
3 |
+
size 223375
|
app.py
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
import gradio as gr
|
2 |
import shap
|
3 |
-
from model import
|
4 |
-
from explainer import UhiExplainer
|
5 |
import numpy as np
|
6 |
import pandas as pd
|
7 |
import plotly.graph_objects as go
|
8 |
|
9 |
-
|
|
|
|
|
10 |
|
11 |
def filter_map(uhi, longitude, latitude):
|
12 |
'''
|
@@ -45,8 +46,8 @@ def filter_map(uhi, longitude, latitude):
|
|
45 |
return fig
|
46 |
|
47 |
def predict(
|
48 |
-
longitude, latitude,
|
49 |
-
|
50 |
relative_humidity, m150_NDVI, m150_NDBI,
|
51 |
m300_SI, m300_NPCRI, m300_Coastal_Aerosol,
|
52 |
m300_Total_Building_Area_m2, m300_Building_Construction_Year, m300_Ground_Elevation,
|
@@ -60,10 +61,10 @@ def predict(
|
|
60 |
|
61 |
# Create a dictionary with input data and dataset var names
|
62 |
input_data = {
|
63 |
-
"
|
64 |
"100m_Ground_Elevation": m100_Ground_Elevation,
|
65 |
"Avg_Wind_Speed": avg_wind_speed,
|
66 |
-
"
|
67 |
"Traffic_Volume": traffic_volume,
|
68 |
"150m_Ground_Elevation": m150_Ground_Elevation,
|
69 |
"Relative_Humidity": relative_humidity,
|
@@ -87,23 +88,12 @@ def predict(
|
|
87 |
input_df = pd.DataFrame(input_data, index=[0])
|
88 |
|
89 |
#predict
|
90 |
-
|
91 |
-
|
92 |
-
# explain the prediction
|
93 |
-
explainer = UhiExplainer(
|
94 |
-
model=MODEL.model,
|
95 |
-
explainer_type=shap.DeepExplainer,
|
96 |
-
X=input_df,
|
97 |
-
feature_names=input_df.columns,
|
98 |
-
ref_data=input_df,
|
99 |
-
shap_values=None # Compute SHAP values on the fly
|
100 |
-
)
|
101 |
-
reason = explainer.reasoning(index=0, location=(longitude, latitude))
|
102 |
|
103 |
# generate map
|
104 |
-
plot = filter_map(
|
105 |
|
106 |
-
return
|
107 |
|
108 |
def load_examples(csv_file):
|
109 |
'''
|
|
|
1 |
import gradio as gr
|
2 |
import shap
|
3 |
+
from model import UhiPredictor
|
|
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
import plotly.graph_objects as go
|
7 |
|
8 |
+
ref_data = pd.read_parquet("UHI_explainer_ref_data.parquet")
|
9 |
+
cols = pd.read_parquet("UHI_explainer_ref_data.parquet").columns
|
10 |
+
MODEL = UhiPredictor("mixed_buffers_ResNet_model.keras", "mixed_buffers_standard_scaler.pkl", shap.DeepExplainer, ref_data, cols)
|
11 |
|
12 |
def filter_map(uhi, longitude, latitude):
|
13 |
'''
|
|
|
46 |
return fig
|
47 |
|
48 |
def predict(
|
49 |
+
longitude, latitude, m150_NPCRI, m100_Ground_Elevation, avg_wind_speed,
|
50 |
+
wind_direction_deg, traffic_volume, m150_Ground_Elevation,
|
51 |
relative_humidity, m150_NDVI, m150_NDBI,
|
52 |
m300_SI, m300_NPCRI, m300_Coastal_Aerosol,
|
53 |
m300_Total_Building_Area_m2, m300_Building_Construction_Year, m300_Ground_Elevation,
|
|
|
61 |
|
62 |
# Create a dictionary with input data and dataset var names
|
63 |
input_data = {
|
64 |
+
"150m_NPCRI": m150_NPCRI,
|
65 |
"100m_Ground_Elevation": m100_Ground_Elevation,
|
66 |
"Avg_Wind_Speed": avg_wind_speed,
|
67 |
+
"Wind_Direction_deg": wind_direction_deg,
|
68 |
"Traffic_Volume": traffic_volume,
|
69 |
"150m_Ground_Elevation": m150_Ground_Elevation,
|
70 |
"Relative_Humidity": relative_humidity,
|
|
|
88 |
input_df = pd.DataFrame(input_data, index=[0])
|
89 |
|
90 |
#predict
|
91 |
+
output = MODEL.predict(input_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
# generate map
|
94 |
+
plot = filter_map(output["predicted_uhi_index"], longitude, latitude)
|
95 |
|
96 |
+
return output["predicted_uhi_index"] , output["uhi_status"], output["feature_contributions"], plot
|
97 |
|
98 |
def load_examples(csv_file):
|
99 |
'''
|
examples.csv
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
explainer.py
DELETED
@@ -1,110 +0,0 @@
|
|
1 |
-
"""This module provides an explainer for the model."""
|
2 |
-
|
3 |
-
import shap
|
4 |
-
import pandas as pd
|
5 |
-
import numpy as np
|
6 |
-
|
7 |
-
class UhiExplainer:
|
8 |
-
"""
|
9 |
-
A class for SHAP-based model explanation.
|
10 |
-
|
11 |
-
Attributes:
|
12 |
-
- model: Trained model (e.g., RandomForestRegressor, XGBRegressor).
|
13 |
-
- explainer_type: SHAP explainer class (e.g., shap.TreeExplainer, shap.KernelExplainer).
|
14 |
-
- X: Data (Pandas DataFrame) used to compute SHAP values.
|
15 |
-
- feature_names: List of feature names.
|
16 |
-
- explainer: SHAP explainer instance.
|
17 |
-
- shap_values: Computed SHAP values.
|
18 |
-
|
19 |
-
Methods:
|
20 |
-
- apply_shap(): Computes SHAP values.
|
21 |
-
- summary_plot(): Generates a SHAP summary plot.
|
22 |
-
- bar_plot(): Generates a bar chart of feature importance.
|
23 |
-
- dependence_plot(): Generates a dependence plot for a feature.
|
24 |
-
- force_plot(): Generates a force plot for an individual prediction.
|
25 |
-
- init_js(): Initializes SHAP for Jupyter Notebook.
|
26 |
-
- reasoning(): Provides insights on why a record received a high or low UHI index.
|
27 |
-
"""
|
28 |
-
|
29 |
-
def __init__(self, model, explainer_type, X, feature_names, ref_data=None, shap_values=None):
|
30 |
-
"""
|
31 |
-
Initializes the Explainer with a trained model, explainer type, and dataset.
|
32 |
-
|
33 |
-
Parameters:
|
34 |
-
- model: Trained model (e.g., RandomForestRegressor, XGBRegressor).
|
35 |
-
- explainer_type: SHAP explainer class (e.g., shap.TreeExplainer, shap.KernelExplainer).
|
36 |
-
- X: Data (Pandas DataFrame) used to compute SHAP values.
|
37 |
-
- feature_names: List of feature names.
|
38 |
-
- ref_data (optional): The reference dataset (background dataset) is used by SHAP to estimate the expected output of the model
|
39 |
-
- shap_values (optional): Precomputed SHAP values
|
40 |
-
"""
|
41 |
-
self.model = model
|
42 |
-
self.explainer_type = explainer_type
|
43 |
-
self.X = np.array(X) if isinstance(X, pd.DataFrame) else X # Ensure NumPy format
|
44 |
-
if ref_data is not None:
|
45 |
-
ref_data = np.array(ref_data) if isinstance(ref_data, pd.DataFrame) else ref_data # Ensure NumPy format
|
46 |
-
self.feature_names = feature_names
|
47 |
-
self.explainer = explainer_type(model, ref_data) # Initialize explainer
|
48 |
-
# Compute SHAP values
|
49 |
-
if shap_values is not None:
|
50 |
-
self.shap_values = shap_values
|
51 |
-
else:
|
52 |
-
self.shap_values = self.explainer.shap_values(self.X, check_additivity=False) if self.explainer_type == shap.DeepExplainer else self.explainer.shap_values(self.X)
|
53 |
-
# Apply squeeze only if the array has three dimensions and the last dimension is 1
|
54 |
-
if self.shap_values.ndim == 3 and self.shap_values.shape[-1] == 1:
|
55 |
-
self.shap_values = np.squeeze(self.shap_values)
|
56 |
-
|
57 |
-
def reasoning(self, index=0, location=(None, None)):
|
58 |
-
"""
|
59 |
-
Provides insights on why the record received a high or low UHI index.
|
60 |
-
|
61 |
-
Parameters:
|
62 |
-
index (int): The index of the observation of interest.
|
63 |
-
location (tuple) (optional): The location of the record (long, lat).
|
64 |
-
|
65 |
-
Returns:
|
66 |
-
dict: The insights for the selected record.
|
67 |
-
"""
|
68 |
-
|
69 |
-
# Ensure expected_value is a single value (not tensor)
|
70 |
-
if self.explainer_type == shap.DeepExplainer:
|
71 |
-
expected_value = np.array(self.explainer.expected_value)
|
72 |
-
else:
|
73 |
-
expected_value = self.explainer.expected_value
|
74 |
-
|
75 |
-
# Extract single value if expected_value is an array
|
76 |
-
if isinstance(expected_value, np.ndarray):
|
77 |
-
expected_value = expected_value[0]
|
78 |
-
|
79 |
-
# Validate record index
|
80 |
-
if index >= len(self.shap_values) or index < 0:
|
81 |
-
return {"error": "Invalid record index"}
|
82 |
-
|
83 |
-
# Extract SHAP values for the specified record
|
84 |
-
record_shap_values = self.shap_values[index]
|
85 |
-
|
86 |
-
# Compute SHAP-based final prediction
|
87 |
-
shap_final_prediction = expected_value + sum(record_shap_values)
|
88 |
-
|
89 |
-
# Structure feature contributions
|
90 |
-
feature_contributions = [
|
91 |
-
{
|
92 |
-
"feature": feature,
|
93 |
-
"shap_value": value,
|
94 |
-
"impact": "increase" if value > 0 else "decrease"
|
95 |
-
}
|
96 |
-
for feature, value in zip(self.feature_names, record_shap_values)
|
97 |
-
]
|
98 |
-
|
99 |
-
# Create JSON structure
|
100 |
-
shap_json = {
|
101 |
-
"record_index": index,
|
102 |
-
"longitude": location[0],
|
103 |
-
"latitude": location[1],
|
104 |
-
"base_value": expected_value,
|
105 |
-
"shap_final_prediction": shap_final_prediction, # SHAP-based predicted value
|
106 |
-
"uhi_status": "Urban Heat Island" if shap_final_prediction > 1 else "Cooler Region",
|
107 |
-
"feature_contributions": feature_contributions,
|
108 |
-
}
|
109 |
-
|
110 |
-
return shap_json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.py
CHANGED
@@ -2,21 +2,46 @@ import numpy as np
|
|
2 |
import pandas as pd
|
3 |
from tensorflow.keras.models import load_model
|
4 |
import pickle
|
|
|
5 |
|
6 |
-
class
|
7 |
"""
|
8 |
-
Urban Heat Island
|
9 |
-
|
10 |
INPUTS
|
11 |
---
|
12 |
-
model_path:
|
13 |
-
scaler_path:
|
|
|
|
|
|
|
14 |
"""
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
self.model = load_model(model_path)
|
17 |
with open(scaler_path, 'rb') as f:
|
18 |
self.scaler = pickle.load(f)
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def preprocess(self, df: pd.DataFrame) -> pd.DataFrame:
|
21 |
"""
|
22 |
Preprocess the input DataFrame to create new features for the model.
|
@@ -31,8 +56,9 @@ class UhiModel:
|
|
31 |
pd.DataFrame
|
32 |
The preprocessed DataFrame with additional features.
|
33 |
"""
|
34 |
-
|
35 |
-
|
|
|
36 |
|
37 |
m100_Elevation_Wind_X = df["100m_Ground_Elevation"] * df["Avg_Wind_Speed"] * Wind_X
|
38 |
m150_Elevation_Wind_Y = df["150m_Ground_Elevation"] * df["Avg_Wind_Speed"] * Wind_Y
|
@@ -51,7 +77,7 @@ class UhiModel:
|
|
51 |
m300_GHG_Proxy = df["300m_Building_Count"] * df["Traffic_Volume"] * df["Solar_Flux"]
|
52 |
|
53 |
output = {
|
54 |
-
"50m_1NPCRI": df["
|
55 |
"100m_Elevation_Wind_X": m100_Elevation_Wind_X,
|
56 |
"150m_Traffic_Volume": df["Traffic_Volume"],
|
57 |
"150m_Elevation_Wind_Y": m150_Elevation_Wind_Y,
|
@@ -79,54 +105,93 @@ class UhiModel:
|
|
79 |
output = pd.DataFrame(output, index=[0])
|
80 |
|
81 |
return output
|
82 |
-
|
83 |
-
def scale(self, X):
|
84 |
"""
|
85 |
-
Apply the scaler used to train the model to the new data
|
86 |
|
87 |
INPUT
|
88 |
-----
|
89 |
-
X:
|
90 |
-
|
91 |
OUTPUT
|
92 |
------
|
93 |
-
|
94 |
"""
|
|
|
95 |
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
return
|
99 |
|
100 |
-
def predict(self, X: pd.DataFrame) ->
|
101 |
"""
|
102 |
-
Make a prediction on one sample
|
103 |
|
104 |
INPUT
|
105 |
-----
|
106 |
-
X: pd.DataFrame
|
107 |
-
|
108 |
|
109 |
OUTPUT
|
110 |
------
|
111 |
-
|
112 |
-
Predicted UHI index.
|
113 |
"""
|
114 |
-
|
115 |
-
# Check that input contains only one sample
|
116 |
if X.shape[0] != 1:
|
117 |
-
raise ValueError(f"Input array must contain only one sample, but {X.shape[0]} samples were found")
|
118 |
-
|
119 |
-
# Preprocess the input data to create new features
|
120 |
-
X_processed = self.preprocess(X)
|
121 |
|
122 |
-
#
|
123 |
-
|
|
|
124 |
|
125 |
-
#
|
126 |
y_pred = self.model.predict(X_scaled)
|
127 |
-
|
128 |
-
# Extract the predicted UHI index (assuming it's a single value)
|
129 |
uhi = y_pred[0][0] if y_pred.ndim == 2 else y_pred[0]
|
130 |
|
131 |
-
#
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import pandas as pd
|
3 |
from tensorflow.keras.models import load_model
|
4 |
import pickle
|
5 |
+
import shap
|
6 |
|
7 |
+
class UhiPredictor:
|
8 |
"""
|
9 |
+
Urban Heat Island Predictor Class that predicts new instances and explains the prediction using SHAP.
|
10 |
+
|
11 |
INPUTS
|
12 |
---
|
13 |
+
model_path: str - Path to the trained model file.
|
14 |
+
scaler_path: str - Path to the standard scaler file.
|
15 |
+
explainer_type: SHAP explainer class (e.g., shap.TreeExplainer, shap.KernelExplainer).
|
16 |
+
ref_data: pd.DataFrame or np.array - Background dataset for SHAP explainer.
|
17 |
+
feature_names: list - Feature names for SHAP analysis.
|
18 |
"""
|
19 |
+
|
20 |
+
def __init__(self, model_path, scaler_path, explainer_type, ref_data, feature_names):
|
21 |
+
"""
|
22 |
+
Initializes the UHI predictor with a trained model, scaler, and SHAP explainer.
|
23 |
+
|
24 |
+
INPUTS
|
25 |
+
---
|
26 |
+
model_path: str - Path to the model file.
|
27 |
+
scaler_path: str - Path to the standard scaler file.
|
28 |
+
explainer_type: SHAP explainer class (e.g., shap.TreeExplainer, shap.KernelExplainer).
|
29 |
+
ref_data: pd.DataFrame or np.array - Background dataset for SHAP explainer.
|
30 |
+
feature_names: list - Feature names for SHAP explanation.
|
31 |
+
"""
|
32 |
+
# Load the model and scaler
|
33 |
self.model = load_model(model_path)
|
34 |
with open(scaler_path, 'rb') as f:
|
35 |
self.scaler = pickle.load(f)
|
36 |
+
|
37 |
+
# Ensure reference data is in NumPy format
|
38 |
+
ref_data = np.array(ref_data) if isinstance(ref_data, pd.DataFrame) else ref_data
|
39 |
+
|
40 |
+
# Initialize SHAP explainer
|
41 |
+
self.explainer_type = explainer_type
|
42 |
+
self.explainer = self.explainer_type(self.model, ref_data)
|
43 |
+
self.feature_names = feature_names
|
44 |
+
|
45 |
def preprocess(self, df: pd.DataFrame) -> pd.DataFrame:
|
46 |
"""
|
47 |
Preprocess the input DataFrame to create new features for the model.
|
|
|
56 |
pd.DataFrame
|
57 |
The preprocessed DataFrame with additional features.
|
58 |
"""
|
59 |
+
Wind_Direction_radians = np.radians(df["Wind_Direction_deg"])
|
60 |
+
Wind_X = np.sin(Wind_Direction_radians)
|
61 |
+
Wind_Y = np.cos(Wind_Direction_radians)
|
62 |
|
63 |
m100_Elevation_Wind_X = df["100m_Ground_Elevation"] * df["Avg_Wind_Speed"] * Wind_X
|
64 |
m150_Elevation_Wind_Y = df["150m_Ground_Elevation"] * df["Avg_Wind_Speed"] * Wind_Y
|
|
|
77 |
m300_GHG_Proxy = df["300m_Building_Count"] * df["Traffic_Volume"] * df["Solar_Flux"]
|
78 |
|
79 |
output = {
|
80 |
+
"50m_1NPCRI": df["150m_NPCRI"],
|
81 |
"100m_Elevation_Wind_X": m100_Elevation_Wind_X,
|
82 |
"150m_Traffic_Volume": df["Traffic_Volume"],
|
83 |
"150m_Elevation_Wind_Y": m150_Elevation_Wind_Y,
|
|
|
105 |
output = pd.DataFrame(output, index=[0])
|
106 |
|
107 |
return output
|
108 |
+
|
109 |
+
def scale(self, X: pd.DataFrame) -> np.ndarray:
|
110 |
"""
|
111 |
+
Apply the scaler used to train the model to the new data.
|
112 |
|
113 |
INPUT
|
114 |
-----
|
115 |
+
X: pd.DataFrame - The data to be scaled.
|
116 |
+
|
117 |
OUTPUT
|
118 |
------
|
119 |
+
np.ndarray - The scaled data.
|
120 |
"""
|
121 |
+
return self.scaler.transform(X)
|
122 |
|
123 |
+
def compute_shap_values(self, X):
|
124 |
+
"""
|
125 |
+
Computes SHAP values for the record.
|
126 |
+
"""
|
127 |
+
# Compute SHAP values
|
128 |
+
shap_values = self.explainer.shap_values(X, check_additivity=False) if self.explainer_type == shap.DeepExplainer else self.explainer.shap_values(X)
|
129 |
+
|
130 |
+
# Apply squeeze only if the array has three dimensions and the last dimension is 1
|
131 |
+
if shap_values.ndim == 3 and shap_values.shape[-1] == 1:
|
132 |
+
shap_values = np.squeeze(shap_values)
|
133 |
|
134 |
+
return shap_values
|
135 |
|
136 |
+
def predict(self, X: pd.DataFrame, location=(None, None)) -> dict:
|
137 |
"""
|
138 |
+
Make a prediction on one sample and explain the prediction using SHAP.
|
139 |
|
140 |
INPUT
|
141 |
-----
|
142 |
+
X: pd.DataFrame - The data to predict a UHI index for (must be one sample).
|
143 |
+
location: tuple (longitude, latitude) - Optional location data.
|
144 |
|
145 |
OUTPUT
|
146 |
------
|
147 |
+
dict - A dictionary containing the predicted UHI index and SHAP reasoning.
|
|
|
148 |
"""
|
|
|
|
|
149 |
if X.shape[0] != 1:
|
150 |
+
raise ValueError(f"Input array must contain only one sample, but {X.shape[0]} samples were found.")
|
|
|
|
|
|
|
151 |
|
152 |
+
# Preprocess and scale input data
|
153 |
+
X_processed = self.preprocess(X)
|
154 |
+
X_scaled = self.scale(X_processed).reshape(1, -1)
|
155 |
|
156 |
+
# Predict UHI index
|
157 |
y_pred = self.model.predict(X_scaled)
|
|
|
|
|
158 |
uhi = y_pred[0][0] if y_pred.ndim == 2 else y_pred[0]
|
159 |
|
160 |
+
# Compute SHAP values
|
161 |
+
shap_values = self.compute_shap_values(X_scaled)
|
162 |
+
|
163 |
+
# Extract expected base value, Ensure expected_value is a single value (not tensor)
|
164 |
+
if self.explainer_type == shap.DeepExplainer:
|
165 |
+
expected_value = np.array(self.explainer.expected_value)
|
166 |
+
else:
|
167 |
+
expected_value = self.explainer.expected_value
|
168 |
+
|
169 |
+
# Extract single value if expected_value is an array
|
170 |
+
if isinstance(expected_value, np.ndarray):
|
171 |
+
expected_value = expected_value[0]
|
172 |
+
|
173 |
+
# Compute SHAP-based final prediction
|
174 |
+
shap_final_prediction = expected_value + sum(shap_values)
|
175 |
+
|
176 |
+
# Structure feature contributions
|
177 |
+
feature_contributions = [
|
178 |
+
{
|
179 |
+
"feature": feature,
|
180 |
+
"shap_value": value,
|
181 |
+
"impact": "increase" if value > 0 else "decrease"
|
182 |
+
}
|
183 |
+
for feature, value in zip(self.feature_names, shap_values)
|
184 |
+
]
|
185 |
+
|
186 |
+
# Create the final output
|
187 |
+
prediction_output = {
|
188 |
+
"longitude": location[0],
|
189 |
+
"latitude": location[1],
|
190 |
+
"predicted_uhi_index": uhi,
|
191 |
+
"base_value": expected_value,
|
192 |
+
"shap_final_prediction": shap_final_prediction,
|
193 |
+
"uhi_status": "Urban Heat Island" if shap_final_prediction > 1 else "Cooler Region",
|
194 |
+
"feature_contributions": feature_contributions,
|
195 |
+
}
|
196 |
+
|
197 |
+
return prediction_output
|