File size: 1,448 Bytes
de2af77 06f56e7 de2af77 50112ef 175905a 50112ef fbb715a 90cdb3b 50112ef 2d662a2 175905a 06cbf78 175905a 06cbf78 175905a 06cbf78 175905a 47d0c0c 2d662a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import streamlit as st
from datasets import load_dataset
import pandas as pd
from datasets import load_dataset
dataset_dict = load_dataset('HUPD/hupd',
name='sample',
data_files="https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather",
icpr_label=None,
train_filing_start_date='2016-01-01',
train_filing_end_date='2016-01-31',
val_filing_start_date='2017-01-22',
val_filing_end_date='2017-01-31',
)
#from google.colab import data_table
#data_table.enable_dataframe_formatter()
df = pd.DataFrame.from_dict(dataset_dict["train"])
df = pd.DataFrame(df,columns =['patent_number','decision', 'abstract', 'claims','filing_date'])
#st.dataframe(df)
PAN = df['patent_number'].drop_duplicates()
make_choice = st.sidebar.selectbox('Select the Patent Application Number:', PAN)
form = st.form(key='patent-form')
#loooong_text = ' '.join(["abcd efg hijk lmnop lmnop qrst uvw xyz"]*1_000)
#abstract = df["abstract"].loc[df["patent_number"] == make_choice]
#abstract = ''.join([abstract]*1_000)
#st.markdown("st.markdown : " + loooong_text)
#st.markdown("Publication abstract is: " + abstract)
abstract = df["abstract"].loc[df["patent_number"] == make_choice]
st.write(abstract.to_html(), unsafe_allow_html=True)
#st.markdown(f"Publication abstract is **{abstract}** π")
claims = df["claims"].loc[df["patent_number"] == make_choice]
st.markdown(f"Publication abstract is **{claims}** π")
|