Spaces:
Runtime error
Runtime error
| """A GPU worker class.""" | |
| import gc | |
| import os | |
| from typing import Any, Dict, List, Optional, Set, Tuple | |
| import torch | |
| import torch.distributed | |
| from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig, | |
| ModelConfig, ParallelConfig, SchedulerConfig, | |
| VisionLanguageConfig) | |
| from vllm.distributed import (broadcast_tensor_dict, | |
| ensure_model_parallel_initialized, | |
| init_distributed_environment) | |
| from vllm.distributed.device_communicators import pynccl_utils | |
| from vllm.distributed.device_communicators.custom_all_reduce import ( | |
| init_custom_ar) | |
| from vllm.lora.request import LoRARequest | |
| from vllm.model_executor import set_random_seed | |
| from vllm.sequence import SamplerOutput, SequenceGroupMetadata | |
| from vllm.worker.cache_engine import CacheEngine | |
| # from vllm.worker.model_runner import ModelRunner | |
| from vllm.worker.worker_base import WorkerBase | |
| from serve.model_runner import ModelRunner | |
| class Worker(WorkerBase): | |
| """A worker class that executes (a partition of) the model on a GPU. | |
| Each worker is associated with a single GPU. The worker is responsible for | |
| maintaining the KV cache and executing the model on the GPU. In case of | |
| distributed inference, each worker is assigned a partition of the model. | |
| """ | |
| def __init__( | |
| self, | |
| model_config: ModelConfig, | |
| parallel_config: ParallelConfig, | |
| scheduler_config: SchedulerConfig, | |
| device_config: DeviceConfig, | |
| cache_config: CacheConfig, | |
| load_config: LoadConfig, | |
| local_rank: int, | |
| rank: int, | |
| distributed_init_method: str, | |
| lora_config: Optional[LoRAConfig] = None, | |
| vision_language_config: Optional[VisionLanguageConfig] = None, | |
| is_driver_worker: bool = False, | |
| ) -> None: | |
| self.model_config = model_config | |
| self.parallel_config = parallel_config | |
| self.scheduler_config = scheduler_config | |
| self.device_config = device_config | |
| self.cache_config = cache_config | |
| self.local_rank = local_rank | |
| self.rank = rank | |
| self.distributed_init_method = distributed_init_method | |
| self.lora_config = lora_config | |
| self.load_config = load_config | |
| self.is_driver_worker = is_driver_worker | |
| if self.is_driver_worker: | |
| assert self.rank == 0, "The driver worker must have rank 0." | |
| if self.model_config.trust_remote_code: | |
| # note: lazy import to avoid importing torch before initializing | |
| from vllm.utils import init_cached_hf_modules | |
| init_cached_hf_modules() | |
| self.vision_language_config = vision_language_config | |
| if self.vision_language_config: | |
| assert not self.lora_config, ( | |
| "To be tested: vision language model with LoRA settings.") | |
| self.model_runner = ModelRunner( | |
| model_config, | |
| parallel_config, | |
| scheduler_config, | |
| device_config, | |
| load_config=load_config, | |
| lora_config=self.lora_config, | |
| kv_cache_dtype=self.cache_config.cache_dtype, | |
| is_driver_worker=is_driver_worker, | |
| vision_language_config=vision_language_config, | |
| ) | |
| # Uninitialized cache engine. Will be initialized by | |
| # initialize_cache. | |
| self.cache_engine: CacheEngine | |
| self.gpu_cache: List[torch.Tensor] | |
| def init_device(self) -> None: | |
| if self.device_config.device.type == "cuda": | |
| # torch.distributed.all_reduce does not free the input tensor until | |
| # the synchronization point. This causes the memory usage to grow | |
| # as the number of all_reduce calls increases. This env var disables | |
| # this behavior. | |
| # Related issue: | |
| # https://discuss.pytorch.org/t/cuda-allocation-lifetime-for-inputs-to-distributed-all-reduce/191573 | |
| os.environ["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1" | |
| # This env var set by Ray causes exceptions with graph building. | |
| os.environ.pop("NCCL_ASYNC_ERROR_HANDLING", None) | |
| self.device = torch.device(f"cuda:{self.local_rank}") | |
| torch.cuda.set_device(self.device) | |
| _check_if_gpu_supports_dtype(self.model_config.dtype) | |
| torch.cuda.empty_cache() | |
| self.init_gpu_memory = torch.cuda.mem_get_info()[0] | |
| else: | |
| raise RuntimeError( | |
| f"Not support device type: {self.device_config.device}") | |
| # Initialize the distributed environment. | |
| init_worker_distributed_environment(self.parallel_config, self.rank, | |
| self.distributed_init_method, | |
| self.local_rank) | |
| # Set random seed. | |
| set_random_seed(self.model_config.seed) | |
| def load_model(self, args): | |
| self.model_runner.load_model(args) | |
| def determine_num_available_blocks(self) -> Tuple[int, int]: | |
| """Profiles the peak memory usage of the model to determine how many | |
| KV blocks may be allocated without OOMs. | |
| The engine will first conduct a profiling of the existing memory usage. | |
| Then, it calculate the maximum possible number of GPU and CPU blocks | |
| that can be allocated with the remaining free memory. | |
| .. tip:: | |
| You may limit the usage of GPU memory | |
| by adjusting the `gpu_memory_utilization` parameter. | |
| """ | |
| # Profile the memory usage of the model and get the maximum number of | |
| # cache blocks that can be allocated with the remaining free memory. | |
| torch.cuda.empty_cache() | |
| # Execute a forward pass with dummy inputs to profile the memory usage | |
| # of the model. | |
| self.model_runner.profile_run() | |
| # Calculate the number of blocks that can be allocated with the | |
| # profiled peak memory. | |
| torch.cuda.synchronize() | |
| free_gpu_memory, total_gpu_memory = torch.cuda.mem_get_info() | |
| # NOTE(woosuk): Here we assume that the other processes using the same | |
| # GPU did not change their memory usage during the profiling. | |
| peak_memory = self.init_gpu_memory - free_gpu_memory | |
| assert peak_memory > 0, ( | |
| "Error in memory profiling. This happens when the GPU memory was " | |
| "not properly cleaned up before initializing the vLLM instance.") | |
| cache_block_size = self.get_cache_block_size_bytes() | |
| num_gpu_blocks = int( | |
| (total_gpu_memory * self.cache_config.gpu_memory_utilization - | |
| peak_memory) // cache_block_size) | |
| num_cpu_blocks = int(self.cache_config.swap_space_bytes // | |
| cache_block_size) | |
| num_gpu_blocks = max(num_gpu_blocks, 0) | |
| num_cpu_blocks = max(num_cpu_blocks, 0) | |
| if self.model_runner.lora_manager: | |
| self.model_runner.remove_all_loras() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| return num_gpu_blocks, num_cpu_blocks | |
| def initialize_cache(self, num_gpu_blocks: int, | |
| num_cpu_blocks: int) -> None: | |
| """Allocate GPU and CPU KV cache with the specified number of blocks. | |
| This also warms up the model, which may record CUDA graphs. | |
| """ | |
| raise_if_cache_size_invalid(num_gpu_blocks, | |
| self.cache_config.block_size, | |
| self.model_config.max_model_len) | |
| self.cache_config.num_gpu_blocks = num_gpu_blocks | |
| self.cache_config.num_cpu_blocks = num_cpu_blocks | |
| self._init_cache_engine() | |
| self._warm_up_model() | |
| def _init_cache_engine(self): | |
| assert self.cache_config.num_gpu_blocks is not None | |
| self.cache_engine = CacheEngine(self.cache_config, self.model_config, | |
| self.parallel_config) | |
| self.gpu_cache = self.cache_engine.gpu_cache | |
| self.model_runner.set_block_size(self.cache_engine.block_size) | |
| def _warm_up_model(self) -> None: | |
| if not self.model_config.enforce_eager: | |
| self.model_runner.capture_model(self.gpu_cache) | |
| # Reset the seed to ensure that the random state is not affected by | |
| # the model initialization and profiling. | |
| set_random_seed(self.model_config.seed) | |
| def cache_swap( | |
| self, | |
| blocks_to_swap_in: Dict[int, int], | |
| blocks_to_swap_out: Dict[int, int], | |
| blocks_to_copy: Dict[int, List[int]], | |
| ) -> None: | |
| # Issue cache operations. | |
| # TODO(woosuk): Profile swapping overhead and optimize if needed. | |
| if blocks_to_swap_in: | |
| self.cache_engine.swap_in(blocks_to_swap_in) | |
| if blocks_to_swap_out: | |
| self.cache_engine.swap_out(blocks_to_swap_out) | |
| if blocks_to_copy: | |
| self.cache_engine.copy(blocks_to_copy) | |
| def execute_model( | |
| self, | |
| seq_group_metadata_list: Optional[List[SequenceGroupMetadata]] = None, | |
| blocks_to_swap_in: Optional[Dict[int, int]] = None, | |
| blocks_to_swap_out: Optional[Dict[int, int]] = None, | |
| blocks_to_copy: Optional[Dict[int, List[int]]] = None, | |
| num_lookahead_slots: int = 0, | |
| ) -> List[SamplerOutput]: | |
| if self.is_driver_worker: | |
| assert seq_group_metadata_list is not None | |
| num_seq_groups = len(seq_group_metadata_list) | |
| assert blocks_to_swap_in is not None | |
| assert blocks_to_swap_out is not None | |
| assert blocks_to_copy is not None | |
| data: Dict[str, Any] = { | |
| "num_seq_groups": num_seq_groups, | |
| "blocks_to_swap_in": blocks_to_swap_in, | |
| "blocks_to_swap_out": blocks_to_swap_out, | |
| "blocks_to_copy": blocks_to_copy, | |
| } | |
| broadcast_tensor_dict(data, src=0) | |
| else: | |
| data = broadcast_tensor_dict(src=0) | |
| num_seq_groups = data["num_seq_groups"] | |
| blocks_to_swap_in = data["blocks_to_swap_in"] | |
| blocks_to_swap_out = data["blocks_to_swap_out"] | |
| blocks_to_copy = data["blocks_to_copy"] | |
| assert blocks_to_swap_in is not None | |
| assert blocks_to_swap_out is not None | |
| assert blocks_to_copy is not None | |
| self.cache_swap(blocks_to_swap_in, blocks_to_swap_out, blocks_to_copy) | |
| # If there is no input, we don't need to execute the model. | |
| if num_seq_groups == 0: | |
| return [] | |
| output = self.model_runner.execute_model(seq_group_metadata_list, | |
| self.gpu_cache) | |
| # Worker only supports single-step execution. Wrap the output in a list | |
| # to conform to interface. | |
| return [output] | |
| def add_lora(self, lora_request: LoRARequest) -> bool: | |
| return self.model_runner.add_lora(lora_request) | |
| def remove_lora(self, lora_id: int) -> bool: | |
| return self.model_runner.remove_lora(lora_id) | |
| def list_loras(self) -> Set[int]: | |
| return self.model_runner.list_loras() | |
| def max_model_len(self) -> int: | |
| return self.model_config.max_model_len | |
| def vocab_size(self) -> int: | |
| return self.model_runner.vocab_size | |
| def get_cache_block_size_bytes(self) -> int: | |
| """Get the size of the KV cache block size in bytes. | |
| """ | |
| return CacheEngine.get_cache_block_size(self.cache_config, | |
| self.model_config, | |
| self.parallel_config) | |
| def init_worker_distributed_environment( | |
| parallel_config: ParallelConfig, | |
| rank: int, | |
| distributed_init_method: Optional[str] = None, | |
| local_rank: int = -1, | |
| ) -> None: | |
| """Initialize the distributed environment.""" | |
| init_distributed_environment(parallel_config.world_size, rank, | |
| distributed_init_method, local_rank) | |
| if pynccl_utils.is_initialized(): | |
| pynccl_world_size = pynccl_utils.get_world_size() | |
| if pynccl_world_size != parallel_config.world_size: | |
| raise RuntimeError( | |
| "pynccl is already initialized but the pynccl world " | |
| "size does not match parallel_config.world_size " | |
| f"({pynccl_world_size} vs. {parallel_config.world_size}).") | |
| elif parallel_config.world_size > 1: | |
| # NOTE(woosuk): We don't initialize pynccl process group when world size | |
| # is 1. | |
| pynccl_utils.init_process_group( | |
| world_size=parallel_config.world_size, | |
| local_rank=local_rank, | |
| rank=rank, | |
| init_method=distributed_init_method, | |
| ) | |
| ensure_model_parallel_initialized(parallel_config.tensor_parallel_size, | |
| parallel_config.pipeline_parallel_size) | |
| # Initialize a custom fast all-reduce implementation. | |
| if not parallel_config.disable_custom_all_reduce: | |
| init_custom_ar() | |
| # A small all_reduce for warmup. | |
| torch.distributed.all_reduce(torch.zeros(1).cuda()) | |
| if pynccl_utils.is_initialized(): | |
| pynccl_utils.all_reduce(torch.zeros(1).cuda()) | |
| def _check_if_gpu_supports_dtype(torch_dtype: torch.dtype): | |
| # Check if the GPU supports the dtype. | |
| if torch_dtype == torch.bfloat16: | |
| compute_capability = torch.cuda.get_device_capability() | |
| if compute_capability[0] < 8: | |
| gpu_name = torch.cuda.get_device_name() | |
| raise ValueError( | |
| "Bfloat16 is only supported on GPUs with compute capability " | |
| f"of at least 8.0. Your {gpu_name} GPU has compute capability " | |
| f"{compute_capability[0]}.{compute_capability[1]}. " | |
| "You can use float16 instead by explicitly setting the" | |
| "`dtype` flag in CLI, for example: --dtype=half.") | |
| def raise_if_cache_size_invalid(num_gpu_blocks, block_size, | |
| max_model_len) -> None: | |
| if num_gpu_blocks <= 0: | |
| raise ValueError("No available memory for the cache blocks. " | |
| "Try increasing `gpu_memory_utilization` when " | |
| "initializing the engine.") | |
| max_seq_len = block_size * num_gpu_blocks | |
| if max_model_len > max_seq_len: | |
| raise ValueError( | |
| f"The model's max seq len ({max_model_len}) " | |
| "is larger than the maximum number of tokens that can be " | |
| f"stored in KV cache ({max_seq_len}). Try increasing " | |
| "`gpu_memory_utilization` or decreasing `max_model_len` when " | |
| "initializing the engine.") |