|
<! |
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with |
|
the License. You may obtain a copy of the License at |
|
|
|
http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on |
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the |
|
specific language governing permissions and limitations under the License. |
|
|
|
|
|
|
|
|
|
Stable Diffusion 2 is a text-to-image _latent diffusion_ model built upon the work of [Stable Diffusion 1](https://stability.ai/blog/stable-diffusion-public-release). |
|
The project to train Stable Diffusion 2 was led by Robin Rombach and Katherine Crowson from [Stability AI](https://stability.ai/) and [LAION](https://laion.ai/). |
|
|
|
*The Stable Diffusion 2.0 release includes robust text-to-image models trained using a brand new text encoder (OpenCLIP), developed by LAION with support from Stability AI, which greatly improves the quality of the generated images compared to earlier V1 releases. The text-to-image models in this release can generate images with default resolutions of both 512x512 pixels and 768x768 pixels. |
|
These models are trained on an aesthetic subset of the [LAION-5B dataset](https://laion.ai/blog/laion-5b/) created by the DeepFloyd team at Stability AI, which is then further filtered to remove adult content using [LAION’s NSFW filter](https://openreview.net/forum?id=M3Y74vmsMcY).* |
|
|
|
For more details about how Stable Diffusion 2 works and how it differs from Stable Diffusion 1, please refer to the official [launch announcement post](https://stability.ai/blog/stable-diffusion-v2-release). |
|
|
|
|
|
|
|
|
|
|
|
Note that the architecture is more or less identical to [Stable Diffusion 1](./stable_diffusion/overview) so please refer to [this page](./stable_diffusion/overview) for API documentation. |
|
|
|
- *Text-to-Image (512x512 resolution)*: [stabilityai/stable-diffusion-2-base](https://huggingface.co/stabilityai/stable-diffusion-2-base) with [`StableDiffusionPipeline`] |
|
- *Text-to-Image (768x768 resolution)*: [stabilityai/stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) with [`StableDiffusionPipeline`] |
|
- *Image Inpainting (512x512 resolution)*: [stabilityai/stable-diffusion-2-inpainting](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting) with [`StableDiffusionInpaintPipeline`] |
|
- *Super-Resolution (x4 resolution resolution)*: [stable-diffusion-x4-upscaler](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler) [`StableDiffusionUpscalePipeline`] |
|
- *Depth-to-Image (512x512 resolution)*: [stabilityai/stable-diffusion-2-depth](https://huggingface.co/stabilityai/stable-diffusion-2-depth) with [`StableDiffusionDepth2ImagePipeline`] |
|
|
|
We recommend using the [`DPMSolverMultistepScheduler`] as it's currently the fastest scheduler there is. |
|
|
|
|
|
### Text-to-Image |
|
|
|
- *Text-to-Image (512x512 resolution)*: [stabilityai/stable-diffusion-2-base](https://huggingface.co/stabilityai/stable-diffusion-2-base) with [`StableDiffusionPipeline`] |
|
|
|
```python |
|
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler |
|
import torch |
|
|
|
repo_id = "stabilityai/stable-diffusion-2-base" |
|
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, revision="fp16") |
|
|
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) |
|
pipe = pipe.to("cuda") |
|
|
|
prompt = "High quality photo of an astronaut riding a horse in space" |
|
image = pipe(prompt, num_inference_steps=25).images[0] |
|
image.save("astronaut.png") |
|
``` |
|
|
|
- *Text-to-Image (768x768 resolution)*: [stabilityai/stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) with [`StableDiffusionPipeline`] |
|
|
|
```python |
|
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler |
|
import torch |
|
|
|
repo_id = "stabilityai/stable-diffusion-2" |
|
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, revision="fp16") |
|
|
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) |
|
pipe = pipe.to("cuda") |
|
|
|
prompt = "High quality photo of an astronaut riding a horse in space" |
|
image = pipe(prompt, guidance_scale=9, num_inference_steps=25).images[0] |
|
image.save("astronaut.png") |
|
``` |
|
|
|
### Image Inpainting |
|
|
|
- *Image Inpainting (512x512 resolution)*: [stabilityai/stable-diffusion-2-inpainting](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting) with [`StableDiffusionInpaintPipeline`] |
|
|
|
```python |
|
import PIL |
|
import requests |
|
import torch |
|
from io import BytesIO |
|
|
|
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler |
|
|
|
|
|
def download_image(url): |
|
response = requests.get(url) |
|
return PIL.Image.open(BytesIO(response.content)).convert("RGB") |
|
|
|
|
|
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" |
|
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" |
|
|
|
init_image = download_image(img_url).resize((512, 512)) |
|
mask_image = download_image(mask_url).resize((512, 512)) |
|
|
|
repo_id = "stabilityai/stable-diffusion-2-inpainting" |
|
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, revision="fp16") |
|
|
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) |
|
pipe = pipe.to("cuda") |
|
|
|
prompt = "Face of a yellow cat, high resolution, sitting on a park bench" |
|
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image, num_inference_steps=25).images[0] |
|
|
|
image.save("yellow_cat.png") |
|
``` |
|
|
|
### Super-Resolution |
|
|
|
- *Image Upscaling (x4 resolution resolution)*: [stable-diffusion-x4-upscaler](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler) with [`StableDiffusionUpscalePipeline`] |
|
|
|
|
|
```python |
|
import requests |
|
from PIL import Image |
|
from io import BytesIO |
|
from diffusers import StableDiffusionUpscalePipeline |
|
import torch |
|
|
|
# load model and scheduler |
|
model_id = "stabilityai/stable-diffusion-x4-upscaler" |
|
pipeline = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16) |
|
pipeline = pipeline.to("cuda") |
|
|
|
# let's download an image |
|
url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale/low_res_cat.png" |
|
response = requests.get(url) |
|
low_res_img = Image.open(BytesIO(response.content)).convert("RGB") |
|
low_res_img = low_res_img.resize((128, 128)) |
|
prompt = "a white cat" |
|
upscaled_image = pipeline(prompt=prompt, image=low_res_img).images[0] |
|
upscaled_image.save("upsampled_cat.png") |
|
``` |
|
|
|
|
|
|
|
- *Depth-Guided Text-to-Image*: [stabilityai/stable-diffusion-2-depth](https://huggingface.co/stabilityai/stable-diffusion-2-depth) [`StableDiffusionDepth2ImagePipeline`] |
|
|
|
|
|
```python |
|
import torch |
|
import requests |
|
from PIL import Image |
|
|
|
from diffusers import StableDiffusionDepth2ImgPipeline |
|
|
|
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-2-depth", |
|
torch_dtype=torch.float16, |
|
).to("cuda") |
|
|
|
|
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
init_image = Image.open(requests.get(url, stream=True).raw) |
|
prompt = "two tigers" |
|
n_propmt = "bad, deformed, ugly, bad anotomy" |
|
image = pipe(prompt=prompt, image=init_image, negative_prompt=n_propmt, strength=0.7).images[0] |
|
``` |
|
|
|
|
|
|
|
The stable diffusion pipeline uses [`DDIMScheduler`] scheduler by default. But `diffusers` provides many other schedulers that can be used with the stable diffusion pipeline such as [`PNDMScheduler`], [`LMSDiscreteScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`] etc. |
|
To use a different scheduler, you can either change it via the [`ConfigMixin.from_config`] method or pass the `scheduler` argument to the `from_pretrained` method of the pipeline. For example, to use the [`EulerDiscreteScheduler`], you can do the following: |
|
|
|
```python |
|
>>> from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler |
|
|
|
>>> pipeline = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2") |
|
>>> pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config) |
|
|
|
>>> |
|
>>> euler_scheduler = EulerDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-2", subfolder="scheduler") |
|
>>> pipeline = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", scheduler=euler_scheduler) |
|
``` |
|
|