|
<!--Copyright 2023 The HuggingFace Team. All rights reserved. |
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with |
|
the License. You may obtain a copy of the License at |
|
|
|
http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on |
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the |
|
specific language governing permissions and limitations under the License. |
|
--> |
|
|
|
|
|
|
|
|
|
|
|
[Audio Diffusion](https://github.com/teticio/audio-diffusion) by Robert Dargavel Smith. |
|
|
|
Audio Diffusion leverages the recent advances in image generation using diffusion models by converting audio samples to |
|
and from mel spectrogram images. |
|
|
|
The original codebase of this implementation can be found [here](https://github.com/teticio/audio-diffusion), including |
|
training scripts and example notebooks. |
|
|
|
|
|
|
|
| Pipeline | Tasks | Colab |
|
|---|---|:---:| |
|
| [pipeline_audio_diffusion.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/audio_diffusion/pipeline_audio_diffusion.py) | *Unconditional Audio Generation* | [](https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/audio_diffusion_pipeline.ipynb) | |
|
|
|
|
|
|
|
|
|
|
|
|
|
```python |
|
import torch |
|
from IPython.display import Audio |
|
from diffusers import DiffusionPipeline |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
pipe = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-256").to(device) |
|
|
|
output = pipe() |
|
display(output.images[0]) |
|
display(Audio(output.audios[0], rate=mel.get_sample_rate())) |
|
``` |
|
|
|
|
|
|
|
```python |
|
import torch |
|
from IPython.display import Audio |
|
from diffusers import DiffusionPipeline |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
pipe = DiffusionPipeline.from_pretrained("teticio/latent-audio-diffusion-256").to(device) |
|
|
|
output = pipe() |
|
display(output.images[0]) |
|
display(Audio(output.audios[0], rate=pipe.mel.get_sample_rate())) |
|
``` |
|
|
|
|
|
|
|
```python |
|
import torch |
|
from IPython.display import Audio |
|
from diffusers import DiffusionPipeline |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
pipe = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256").to(device) |
|
|
|
output = pipe() |
|
display(output.images[0]) |
|
display(Audio(output.audios[0], rate=pipe.mel.get_sample_rate())) |
|
``` |
|
|
|
|
|
|
|
```python |
|
output = pipe( |
|
raw_audio=output.audios[0, 0], |
|
start_step=int(pipe.get_default_steps() / 2), |
|
mask_start_secs=1, |
|
mask_end_secs=1, |
|
) |
|
display(output.images[0]) |
|
display(Audio(output.audios[0], rate=pipe.mel.get_sample_rate())) |
|
``` |
|
|
|
|
|
[[autodoc]] AudioDiffusionPipeline |
|
- all |
|
- __call__ |
|
|
|
|
|
[[autodoc]] Mel |
|
|