Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,39 @@
|
|
1 |
-
|
2 |
-
from
|
3 |
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
4 |
-
import torch
|
5 |
|
6 |
-
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codet5-small")
|
10 |
-
model = T5ForConditionalGeneration.from_pretrained("Salesforce/codet5-small")
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
@app.post("/
|
17 |
-
async def analyze_code(
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
# 生成分析结果
|
23 |
-
inputs = tokenizer(prompt, return_tensors="pt",
|
24 |
-
max_length=512, truncation=True)
|
25 |
-
outputs = model.generate(
|
26 |
-
inputs.input_ids,
|
27 |
-
max_length=request.max_length,
|
28 |
-
num_beams=5,
|
29 |
-
early_stopping=True
|
30 |
-
)
|
31 |
-
|
32 |
-
# 解码结果
|
33 |
-
analysis = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
34 |
-
|
35 |
-
return {
|
36 |
-
"status": "success",
|
37 |
-
"analysis": analysis,
|
38 |
-
"model": "Salesforce/codet5-small"
|
39 |
-
}
|
40 |
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from fastapi import FastAPI
|
3 |
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
|
|
4 |
|
5 |
+
# 设置缓存路径(必须放在最前面)
|
6 |
+
os.environ["HF_HOME"] = "/app/.cache/huggingface"
|
7 |
+
os.environ["TRANSFORMERS_CACHE"] = "/app/.cache/huggingface"
|
8 |
|
9 |
+
app = FastAPI()
|
|
|
|
|
10 |
|
11 |
+
# 加载模型
|
12 |
+
try:
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codet5-small")
|
14 |
+
model = T5ForConditionalGeneration.from_pretrained("Salesforce/codet5-small")
|
15 |
+
except Exception as e:
|
16 |
+
print(f"模型加载失败: {str(e)}")
|
17 |
+
raise
|
18 |
|
19 |
+
@app.post("/analyze")
|
20 |
+
async def analyze_code(code: str):
|
21 |
+
prompt = f"Analyze security vulnerabilities:\n{code}"
|
22 |
+
|
23 |
+
inputs = tokenizer(prompt, return_tensors="pt",
|
24 |
+
max_length=512, truncation=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
outputs = model.generate(
|
27 |
+
inputs.input_ids,
|
28 |
+
max_length=512,
|
29 |
+
num_beams=5,
|
30 |
+
early_stopping=True
|
31 |
+
)
|
32 |
+
|
33 |
+
return {
|
34 |
+
"result": tokenizer.decode(outputs[0], skip_special_tokens=True)
|
35 |
+
}
|
36 |
+
|
37 |
+
@app.get("/health")
|
38 |
+
def health_check():
|
39 |
+
return {"status": "ok", "cache_path": os.environ["HF_HOME"]}
|