Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
4 |
+
import torch
|
5 |
+
|
6 |
+
app = FastAPI()
|
7 |
+
|
8 |
+
# 全局加载模型
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codet5-small")
|
10 |
+
model = T5ForConditionalGeneration.from_pretrained("Salesforce/codet5-small")
|
11 |
+
|
12 |
+
class CodeRequest(BaseModel):
|
13 |
+
code: str
|
14 |
+
max_length: int = 512
|
15 |
+
|
16 |
+
@app.post("/v1/analyze")
|
17 |
+
async def analyze_code(request: CodeRequest):
|
18 |
+
try:
|
19 |
+
# 构造提示词
|
20 |
+
prompt = f"Analyze security vulnerabilities in this code:\n{request.code}"
|
21 |
+
|
22 |
+
# 生成分析结果
|
23 |
+
inputs = tokenizer(prompt, return_tensors="pt",
|
24 |
+
max_length=512, truncation=True)
|
25 |
+
outputs = model.generate(
|
26 |
+
inputs.input_ids,
|
27 |
+
max_length=request.max_length,
|
28 |
+
num_beams=5,
|
29 |
+
early_stopping=True
|
30 |
+
)
|
31 |
+
|
32 |
+
# 解码结果
|
33 |
+
analysis = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
34 |
+
|
35 |
+
return {
|
36 |
+
"status": "success",
|
37 |
+
"analysis": analysis,
|
38 |
+
"model": "Salesforce/codet5-small"
|
39 |
+
}
|
40 |
+
|
41 |
+
except Exception as e:
|
42 |
+
raise HTTPException(status_code=500, detail=str(e))
|