import glob import os from multiprocessing import Process, Queue from pathlib import Path import cv2 import evo.main_ape as main_ape import numpy as np import torch from evo.core import sync from evo.core.metrics import PoseRelation from evo.core.trajectory import PoseTrajectory3D from evo.tools import file_interface from dpvo.config import cfg from dpvo.dpvo import DPVO from dpvo.plot_utils import plot_trajectory from dpvo.stream import image_stream from dpvo.utils import Timer SKIP = 0 def show_image(image, t=0): image = image.permute(1, 2, 0).cpu().numpy() cv2.imshow('image', image / 255.0) cv2.waitKey(t) @torch.no_grad() def run(cfg, network, imagedir, calib, stride=1, viz=False, show_img=False): slam = None queue = Queue(maxsize=8) reader = Process(target=image_stream, args=(queue, imagedir, calib, stride, 0)) reader.start() while 1: (t, image, intrinsics) = queue.get() if t < 0: break image = torch.from_numpy(image).permute(2,0,1).cuda() intrinsics = torch.from_numpy(intrinsics).cuda() if show_img: show_image(image, 1) if slam is None: slam = DPVO(cfg, network, ht=image.shape[1], wd=image.shape[2], viz=viz) with Timer("SLAM", enabled=False): slam(t, image, intrinsics) reader.join() return slam.terminate() if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--network', type=str, default='dpvo.pth') parser.add_argument('--config', default="config/default.yaml") parser.add_argument('--stride', type=int, default=2) parser.add_argument('--viz', action="store_true") parser.add_argument('--show_img', action="store_true") parser.add_argument('--trials', type=int, default=1) parser.add_argument('--iclnuim_dir', default="datasets/ICL_NUIM", type=Path) parser.add_argument('--backend_thresh', type=float, default=64.0) parser.add_argument('--plot', action="store_true") parser.add_argument('--opts', nargs='+', default=[]) parser.add_argument('--save_trajectory', action="store_true") args = parser.parse_args() cfg.merge_from_file(args.config) cfg.BACKEND_THRESH = args.backend_thresh cfg.merge_from_list(args.opts) print("\nRunning with config...") print(cfg, "\n") torch.manual_seed(1234) scenes = [ "living_room_traj0_loop", "living_room_traj1_loop", "living_room_traj2_loop", "living_room_traj3_loop", "office_room_traj0_loop", "office_room_traj1_loop", "office_room_traj2_loop", "office_room_traj3_loop", ] results = {} for scene in scenes: imagedir = args.iclnuim_dir / scene if scene.startswith("living"): groundtruth = args.iclnuim_dir / f"TrajectoryGT" / f"livingRoom{scene[-6]}.gt.freiburg" elif scene.startswith("office"): groundtruth = args.iclnuim_dir / f"TrajectoryGT" / f"traj{scene[-6]}.gt.freiburg" traj_ref = file_interface.read_tum_trajectory_file(groundtruth) scene_results = [] for i in range(args.trials): traj_est, timestamps = run(cfg, args.network, imagedir, "calib/icl_nuim.txt", args.stride, args.viz, args.show_img) images_list = sorted(glob.glob(os.path.join(imagedir, "*.png")))[::args.stride] tstamps = np.arange(1, len(images_list)+1, args.stride, dtype=np.float64) traj_est = PoseTrajectory3D( positions_xyz=traj_est[:,:3], orientations_quat_wxyz=traj_est[:, [6, 3, 4, 5]], timestamps=tstamps) traj_ref, traj_est = sync.associate_trajectories(traj_ref, traj_est) result = main_ape.ape(traj_ref, traj_est, est_name='traj', pose_relation=PoseRelation.translation_part, align=True, correct_scale=True) ate_score = result.stats["rmse"] if args.plot: scene_name = scene.rstrip("_loop").title() Path("trajectory_plots").mkdir(exist_ok=True) plot_trajectory(traj_est, traj_ref, f"ICL_NUIM {scene_name} Trial #{i+1} (ATE: {ate_score:.03f})", f"trajectory_plots/ICL_NUIM_{scene_name}_Trial{i+1:02d}.pdf", align=True, correct_scale=True) if args.save_trajectory: Path("saved_trajectories").mkdir(exist_ok=True) file_interface.write_tum_trajectory_file(f"saved_trajectories/ICL_NUIM_{scene_name}_Trial{i+1:02d}.txt", traj_est) scene_results.append(ate_score) results[scene] = np.median(scene_results) print(scene, sorted(scene_results)) xs = [] for scene in results: print(scene, results[scene]) xs.append(results[scene]) print("AVG: ", np.mean(xs))