from flask import Flask, request, jsonify import torch from PIL import Image from io import BytesIO import torchvision.transforms as transforms from transformers import AutoModelForSequenceClassification, AutoTokenizer # Load Meta Sapiens Pose model sapiens_model = torch.jit.load('/models/sapiens_pose/model.pt') sapiens_model.eval() # Load MotionBERT model motionbert_model = AutoModelForSequenceClassification.from_pretrained('/models/motionbert') motionbert_tokenizer = AutoTokenizer.from_pretrained('/models/motionbert') # Flask app app = Flask(__name__) # Define a transformation for input images transform = transforms.Compose([ transforms.Resize((256, 256)), # Resize image to the required size transforms.ToTensor(), # Convert image to PyTorch tensor ]) @app.route('/pose_estimation', methods=['POST']) def pose_estimation(): try: # Accept an image file as input for pose estimation image = request.files['image'] img = Image.open(BytesIO(image.read())) # Preprocess the image img_tensor = transform(img).unsqueeze(0) # Add batch dimension # Perform pose estimation with torch.no_grad(): pose_result = sapiens_model(img_tensor) return jsonify({"pose_result": pose_result.tolist()}) except Exception as e: return jsonify({"error": str(e)}), 500 @app.route('/sequence_analysis', methods=['POST']) def sequence_analysis(): try: # Accept keypoint data as input for sequence analysis keypoints = request.json['keypoints'] inputs = motionbert_tokenizer(keypoints, return_tensors="pt") with torch.no_grad(): sequence_output = motionbert_model(**inputs) return jsonify({"sequence_analysis": sequence_output.logits.tolist()}) except Exception as e: return jsonify({"error": str(e)}), 500 if __name__ == '__main__': app.run(host='0.0.0.0', port=7860)