from itertools import count from multiprocessing import Process, Queue from pathlib import Path import cv2 import evo.main_ape as main_ape import numpy as np import torch from evo.core import sync from evo.core.metrics import PoseRelation from evo.core.trajectory import PoseTrajectory3D from evo.tools import file_interface, plot from dpvo.config import cfg from dpvo.dpvo import DPVO from dpvo.plot_utils import plot_trajectory from dpvo.utils import Timer SKIP = 0 def show_image(image, t=0): image = image.permute(1, 2, 0).cpu().numpy() cv2.imshow('image', image / 255.0) cv2.waitKey(t) # From https://github.com/utiasSTARS/pykitti/blob/d3e1bb81676e831886726cc5ed79ce1f049aef2c/pykitti/utils.py#L68 def read_calib_file(filepath): """Read in a calibration file and parse into a dictionary.""" data = {} with open(filepath, 'r') as f: for line in f.readlines(): key, value = line.split(':', 1) # The only non-float values in these files are dates, which # we don't care about anyway try: data[key] = np.array([float(x) for x in value.split()]) except ValueError: pass return data def kitti_image_stream(queue, kittidir, sequence, stride, skip=0): """ image generator """ images_dir = kittidir / "dataset" / "sequences" / sequence image_list = sorted((images_dir / "image_2").glob("*.png"))[skip::stride] calib = read_calib_file(images_dir / "calib.txt") intrinsics = calib['P0'][[0, 5, 2, 6]] for t, imfile in enumerate(image_list): image_left = cv2.imread(str(imfile)) H, W, _ = image_left.shape H, W = (H - H%4, W - W%4) image_left = image_left[..., :H, :W, :] queue.put((t, image_left, intrinsics)) queue.put((-1, image_left, intrinsics)) @torch.no_grad() def run(cfg, network, kittidir, sequence, stride=1, viz=False, show_img=False): slam = None queue = Queue(maxsize=8) reader = Process(target=kitti_image_stream, args=(queue, kittidir, sequence, stride, 0)) reader.start() for step in count(start=1): (t, image, intrinsics) = queue.get() if t < 0: break image = torch.as_tensor(image, device='cuda').permute(2,0,1) intrinsics = torch.as_tensor(intrinsics, dtype=torch.float, device='cuda') if show_img: show_image(image, 1) if slam is None: slam = DPVO(cfg, network, ht=image.shape[-2], wd=image.shape[-1], viz=viz) intrinsics = intrinsics.cuda() with Timer("SLAM", enabled=False): slam(t, image, intrinsics) reader.join() return slam.terminate() if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--network', type=str, default='dpvo.pth') parser.add_argument('--config', default="config/default.yaml") parser.add_argument('--stride', type=int, default=2) parser.add_argument('--viz', action="store_true") parser.add_argument('--show_img', action="store_true") parser.add_argument('--trials', type=int, default=1) parser.add_argument('--kittidir', type=Path, default="datasets/KITTI") parser.add_argument('--backend_thresh', type=float, default=32.0) parser.add_argument('--plot', action="store_true") parser.add_argument('--opts', nargs='+', default=[]) parser.add_argument('--save_trajectory', action="store_true") args = parser.parse_args() cfg.merge_from_file(args.config) cfg.BACKEND_THRESH = args.backend_thresh cfg.merge_from_list(args.opts) print("\nRunning with config...") print(cfg, "\n") torch.manual_seed(1234) kitti_scenes = [f"{i:02d}" for i in range(11)] results = {} for scene in kitti_scenes: groundtruth = args.kittidir / "dataset" / "poses" / f"{scene}.txt" poses_ref = file_interface.read_kitti_poses_file(groundtruth) print(f"Evaluating KITTI {scene} with {poses_ref.num_poses // args.stride} poses") scene_results = [] for trial_num in range(args.trials): traj_est, timestamps = run(cfg, args.network, args.kittidir, scene, args.stride, args.viz, args.show_img) traj_est = PoseTrajectory3D( positions_xyz=traj_est[:,:3], orientations_quat_wxyz=traj_est[:, [6, 3, 4, 5]], timestamps=timestamps * args.stride) traj_ref = PoseTrajectory3D( positions_xyz=poses_ref.positions_xyz, orientations_quat_wxyz=poses_ref.orientations_quat_wxyz, timestamps=np.arange(poses_ref.num_poses, dtype=np.float64)) traj_ref, traj_est = sync.associate_trajectories(traj_ref, traj_est) result = main_ape.ape(traj_ref, traj_est, est_name='traj', pose_relation=PoseRelation.translation_part, align=True, correct_scale=True) ate_score = result.stats["rmse"] if args.plot: plot_trajectory(traj_est, traj_ref, f"kitti sequence {scene} Trial #{trial_num+1}", f"trajectory_plots/kitti_seq{scene}_trial{trial_num+1:02d}.pdf", align=True, correct_scale=True) if args.save_trajectory: Path("saved_trajectories").mkdir(exist_ok=True) file_interface.write_tum_trajectory_file(f"saved_trajectories/KITTI_{scene}.txt", traj_est) # file_interface.write_kitti_poses_file(f"saved_trajectories/{scene}.txt", traj_est) # standard kitti format scene_results.append(ate_score) results[scene] = np.median(scene_results) print(scene, sorted(scene_results)) xs = [] for scene in results: print(scene, results[scene]) xs.append(results[scene]) print("AVG: ", np.mean(xs))