# -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # Contact: ps-license@tuebingen.mpg.de import os import yaml import torch import shutil import logging import operator from tqdm import tqdm from os import path as osp from functools import reduce from typing import List, Union from collections import OrderedDict from torch.optim.lr_scheduler import _LRScheduler class CustomScheduler(_LRScheduler): def __init__(self, optimizer, lr_lambda): self.lr_lambda = lr_lambda super(CustomScheduler, self).__init__(optimizer) def get_lr(self): return [base_lr * self.lr_lambda(self.last_epoch) for base_lr in self.base_lrs] def lr_decay_fn(epoch): if epoch == 0: return 1.0 if epoch % big_epoch == 0: return big_decay else: return small_decay def save_obj(v, f, file_name='output.obj'): obj_file = open(file_name, 'w') for i in range(len(v)): obj_file.write('v ' + str(v[i][0]) + ' ' + str(v[i][1]) + ' ' + str(v[i][2]) + '\n') for i in range(len(f)): obj_file.write('f ' + str(f[i][0]+1) + '/' + str(f[i][0]+1) + ' ' + str(f[i][1]+1) + '/' + str(f[i][1]+1) + ' ' + str(f[i][2]+1) + '/' + str(f[i][2]+1) + '\n') obj_file.close() def check_data_pararell(train_weight): new_state_dict = OrderedDict() for k, v in train_weight.items(): name = k[7:] if k.startswith('module') else k # remove `module.` new_state_dict[name] = v return new_state_dict def get_from_dict(dict, keys): return reduce(operator.getitem, keys, dict) def tqdm_enumerate(iter): i = 0 for y in tqdm(iter): yield i, y i += 1 def iterdict(d): for k,v in d.items(): if isinstance(v, dict): d[k] = dict(v) iterdict(v) return d def accuracy(output, target): _, pred = output.topk(1) pred = pred.view(-1) correct = pred.eq(target).sum() return correct.item(), target.size(0) - correct.item() def lr_decay(optimizer, step, lr, decay_step, gamma): lr = lr * gamma ** (step/decay_step) for param_group in optimizer.param_groups: param_group['lr'] = lr return lr def step_decay(optimizer, step, lr, decay_step, gamma): lr = lr * gamma ** (step / decay_step) for param_group in optimizer.param_groups: param_group['lr'] = lr return lr def read_yaml(filename): return yaml.load(open(filename, 'r')) def write_yaml(filename, object): with open(filename, 'w') as f: yaml.dump(object, f) def save_dict_to_yaml(obj, filename, mode='w'): with open(filename, mode) as f: yaml.dump(obj, f, default_flow_style=False) def save_to_file(obj, filename, mode='w'): with open(filename, mode) as f: f.write(obj) def concatenate_dicts(dict_list, dim=0): rdict = dict.fromkeys(dict_list[0].keys()) for k in rdict.keys(): rdict[k] = torch.cat([d[k] for d in dict_list], dim=dim) return rdict def bool_to_string(x: Union[List[bool],bool]) -> Union[List[str],str]: """ boolean to string conversion :param x: list or bool to be converted :return: string converted thing """ if isinstance(x, bool): return [str(x)] for i, j in enumerate(x): x[i]=str(j) return x def checkpoint2model(checkpoint, key='gen_state_dict'): state_dict = checkpoint[key] print(f'Performance of loaded model on 3DPW is {checkpoint["performance"]:.2f}mm') # del state_dict['regressor.mean_theta'] return state_dict def get_optimizer(cfg, model, optim_type, momentum, stage): if stage == 'stage2': param_list = [{'params': model.integrator.parameters()}] for name, param in model.named_parameters(): # if 'integrator' not in name and 'motion_encoder' not in name and 'trajectory_decoder' not in name: if 'integrator' not in name: param_list.append({'params': param, 'lr': cfg.TRAIN.LR_FINETUNE}) else: param_list = [{'params': model.parameters()}] if optim_type in ['sgd', 'SGD']: opt = torch.optim.SGD(lr=cfg.TRAIN.LR, params=param_list, momentum=momentum) elif optim_type in ['Adam', 'adam', 'ADAM']: opt = torch.optim.Adam(lr=cfg.TRAIN.LR, params=param_list, weight_decay=cfg.TRAIN.WD, betas=(0.9, 0.999)) else: raise ModuleNotFoundError return opt def create_logger(logdir, phase='train'): os.makedirs(logdir, exist_ok=True) log_file = osp.join(logdir, f'{phase}_log.txt') head = '%(asctime)-15s %(message)s' logging.basicConfig(filename=log_file, format=head) logger = logging.getLogger() logger.setLevel(logging.INFO) console = logging.StreamHandler() logging.getLogger('').addHandler(console) return logger class AverageMeter(object): def __init__(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def prepare_output_dir(cfg, cfg_file): # ==== create logdir logdir = osp.join(cfg.OUTPUT_DIR, cfg.EXP_NAME) os.makedirs(logdir, exist_ok=True) shutil.copy(src=cfg_file, dst=osp.join(cfg.OUTPUT_DIR, 'config.yaml')) cfg.LOGDIR = logdir # save config save_dict_to_yaml(cfg, osp.join(cfg.LOGDIR, 'config.yaml')) return cfg def prepare_groundtruth(batch, device): groundtruths = dict() gt_keys = ['pose', 'cam', 'betas', 'kp3d', 'bbox'] # Evaluation gt_keys += ['pose_root', 'vel_root', 'weak_kp2d', 'verts', # Training 'full_kp2d', 'contact', 'R', 'cam_angvel', 'has_smpl', 'has_traj', 'has_full_screen', 'has_verts'] for gt_key in gt_keys: if gt_key in batch.keys(): dtype = torch.float32 if batch[gt_key].dtype == torch.float64 else batch[gt_key].dtype groundtruths[gt_key] = batch[gt_key].to(dtype=dtype, device=device) return groundtruths def prepare_auxiliary(batch, device): aux = dict() aux_keys = ['mask', 'bbox', 'res', 'cam_intrinsics', 'init_root', 'cam_angvel'] for key in aux_keys: if key in batch.keys(): dtype = torch.float32 if batch[key].dtype == torch.float64 else batch[key].dtype aux[key] = batch[key].to(dtype=dtype, device=device) return aux def prepare_input(batch, device, use_features): # Input keypoints data kp2d = batch['kp2d'].to(device).float() # Input features if use_features and 'features' in batch.keys(): features = batch['features'].to(device).float() else: features = None # Initial SMPL parameters init_smpl = batch['init_pose'].to(device).float() # Initial keypoints init_kp = torch.cat(( batch['init_kp3d'], batch['init_kp2d'] ), dim=-1).to(device).float() return kp2d, (init_kp, init_smpl), features def prepare_batch(batch, device, use_features=True): x, inits, features = prepare_input(batch, device, use_features) aux = prepare_auxiliary(batch, device) groundtruths = prepare_groundtruth(batch, device) return x, inits, features, aux, groundtruths