import os from multiprocessing import Process, Queue from pathlib import Path import cv2 import numpy as np import torch from evo.core.trajectory import PoseTrajectory3D from evo.tools import file_interface from dpvo.config import cfg from dpvo.dpvo import DPVO from dpvo.plot_utils import plot_trajectory, save_output_for_COLMAP, save_ply from dpvo.stream import image_stream, video_stream from dpvo.utils import Timer SKIP = 0 def show_image(image, t=0): image = image.permute(1, 2, 0).cpu().numpy() cv2.imshow('image', image / 255.0) cv2.waitKey(t) @torch.no_grad() def run(cfg, network, imagedir, calib, stride=1, skip=0, viz=False, timeit=False): slam = None queue = Queue(maxsize=8) if os.path.isdir(imagedir): reader = Process(target=image_stream, args=(queue, imagedir, calib, stride, skip)) else: reader = Process(target=video_stream, args=(queue, imagedir, calib, stride, skip)) reader.start() while 1: (t, image, intrinsics) = queue.get() if t < 0: break image = torch.from_numpy(image).permute(2,0,1).cuda() intrinsics = torch.from_numpy(intrinsics).cuda() if slam is None: _, H, W = image.shape slam = DPVO(cfg, network, ht=H, wd=W, viz=viz) with Timer("SLAM", enabled=timeit): slam(t, image, intrinsics) reader.join() points = slam.pg.points_.cpu().numpy()[:slam.m] colors = slam.pg.colors_.view(-1, 3).cpu().numpy()[:slam.m] return slam.terminate(), (points, colors, (*intrinsics, H, W)) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--network', type=str, default='dpvo.pth') parser.add_argument('--imagedir', type=str) parser.add_argument('--calib', type=str) parser.add_argument('--name', type=str, help='name your run', default='result') parser.add_argument('--stride', type=int, default=2) parser.add_argument('--skip', type=int, default=0) parser.add_argument('--config', default="config/default.yaml") parser.add_argument('--timeit', action='store_true') parser.add_argument('--viz', action="store_true") parser.add_argument('--plot', action="store_true") parser.add_argument('--opts', nargs='+', default=[]) parser.add_argument('--save_ply', action="store_true") parser.add_argument('--save_colmap', action="store_true") parser.add_argument('--save_trajectory', action="store_true") args = parser.parse_args() cfg.merge_from_file(args.config) cfg.merge_from_list(args.opts) print("Running with config...") print(cfg) (poses, tstamps), (points, colors, calib) = run(cfg, args.network, args.imagedir, args.calib, args.stride, args.skip, args.viz, args.timeit) trajectory = PoseTrajectory3D(positions_xyz=poses[:,:3], orientations_quat_wxyz=poses[:, [6, 3, 4, 5]], timestamps=tstamps) if args.save_ply: save_ply(args.name, points, colors) if args.save_colmap: save_output_for_COLMAP(args.name, trajectory, points, colors, *calib) if args.save_trajectory: Path("saved_trajectories").mkdir(exist_ok=True) file_interface.write_tum_trajectory_file(f"saved_trajectories/{args.name}.txt", trajectory) if args.plot: Path("trajectory_plots").mkdir(exist_ok=True) plot_trajectory(trajectory, title=f"DPVO Trajectory Prediction for {args.name}", filename=f"trajectory_plots/{args.name}.pdf")