Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,8 @@
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
import torch
|
|
|
|
|
|
|
3 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
4 |
|
5 |
# Load Meta Sapiens Pose model
|
@@ -10,25 +13,46 @@ sapiens_model.eval()
|
|
10 |
motionbert_model = AutoModelForSequenceClassification.from_pretrained('/models/motionbert')
|
11 |
motionbert_tokenizer = AutoTokenizer.from_pretrained('/models/motionbert')
|
12 |
|
|
|
13 |
app = Flask(__name__)
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
@app.route('/pose_estimation', methods=['POST'])
|
16 |
def pose_estimation():
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
@app.route('/sequence_analysis', methods=['POST'])
|
25 |
def sequence_analysis():
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
if __name__ == '__main__':
|
34 |
app.run(host='0.0.0.0', port=7860)
|
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from io import BytesIO
|
5 |
+
import torchvision.transforms as transforms
|
6 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
7 |
|
8 |
# Load Meta Sapiens Pose model
|
|
|
13 |
motionbert_model = AutoModelForSequenceClassification.from_pretrained('/models/motionbert')
|
14 |
motionbert_tokenizer = AutoTokenizer.from_pretrained('/models/motionbert')
|
15 |
|
16 |
+
# Flask app
|
17 |
app = Flask(__name__)
|
18 |
|
19 |
+
# Define a transformation for input images
|
20 |
+
transform = transforms.Compose([
|
21 |
+
transforms.Resize((256, 256)), # Resize image to the required size
|
22 |
+
transforms.ToTensor(), # Convert image to PyTorch tensor
|
23 |
+
])
|
24 |
+
|
25 |
@app.route('/pose_estimation', methods=['POST'])
|
26 |
def pose_estimation():
|
27 |
+
try:
|
28 |
+
# Accept an image file as input for pose estimation
|
29 |
+
image = request.files['image']
|
30 |
+
img = Image.open(BytesIO(image.read()))
|
31 |
+
|
32 |
+
# Preprocess the image
|
33 |
+
img_tensor = transform(img).unsqueeze(0) # Add batch dimension
|
34 |
+
|
35 |
+
# Perform pose estimation
|
36 |
+
with torch.no_grad():
|
37 |
+
pose_result = sapiens_model(img_tensor)
|
38 |
+
|
39 |
+
return jsonify({"pose_result": pose_result.tolist()})
|
40 |
+
except Exception as e:
|
41 |
+
return jsonify({"error": str(e)}), 500
|
42 |
|
43 |
@app.route('/sequence_analysis', methods=['POST'])
|
44 |
def sequence_analysis():
|
45 |
+
try:
|
46 |
+
# Accept keypoint data as input for sequence analysis
|
47 |
+
keypoints = request.json['keypoints']
|
48 |
+
inputs = motionbert_tokenizer(keypoints, return_tensors="pt")
|
49 |
+
|
50 |
+
with torch.no_grad():
|
51 |
+
sequence_output = motionbert_model(**inputs)
|
52 |
+
|
53 |
+
return jsonify({"sequence_analysis": sequence_output.logits.tolist()})
|
54 |
+
except Exception as e:
|
55 |
+
return jsonify({"error": str(e)}), 500
|
56 |
|
57 |
if __name__ == '__main__':
|
58 |
app.run(host='0.0.0.0', port=7860)
|