Techt3o commited on
Commit
2d4409a
·
verified ·
1 Parent(s): 43605c2

49cbfae41f9cea5afc5b75c9ec391b97de2480740809b5290efef61f9dd7a64d

Browse files
Files changed (50) hide show
  1. third-party/DPVO/DPViewer/pybind11/docs/Doxyfile +21 -0
  2. third-party/DPVO/DPViewer/pybind11/docs/advanced/cast/index.rst +43 -0
  3. third-party/DPVO/DPViewer/pybind11/docs/advanced/cast/overview.rst +170 -0
  4. third-party/DPVO/DPViewer/pybind11/docs/advanced/cast/stl.rst +249 -0
  5. third-party/DPVO/DPViewer/pybind11/docs/advanced/cast/strings.rst +292 -0
  6. third-party/DPVO/DPViewer/pybind11/docs/advanced/classes.rst +1335 -0
  7. third-party/DPVO/DPViewer/pybind11/docs/advanced/embedding.rst +262 -0
  8. third-party/DPVO/DPViewer/pybind11/docs/advanced/exceptions.rst +398 -0
  9. third-party/DPVO/DPViewer/pybind11/docs/advanced/functions.rst +614 -0
  10. third-party/DPVO/DPViewer/pybind11/docs/advanced/misc.rst +337 -0
  11. third-party/DPVO/DPViewer/pybind11/docs/advanced/pycpp/index.rst +13 -0
  12. third-party/DPVO/DPViewer/pybind11/docs/advanced/pycpp/numpy.rst +455 -0
  13. third-party/DPVO/DPViewer/pybind11/docs/advanced/pycpp/object.rst +286 -0
  14. third-party/DPVO/DPViewer/pybind11/docs/advanced/pycpp/utilities.rst +155 -0
  15. third-party/DPVO/DPViewer/pybind11/docs/advanced/smart_ptrs.rst +174 -0
  16. third-party/DPVO/DPViewer/pybind11/docs/basics.rst +307 -0
  17. third-party/DPVO/DPViewer/pybind11/docs/benchmark.py +87 -0
  18. third-party/DPVO/DPViewer/pybind11/docs/benchmark.rst +95 -0
  19. third-party/DPVO/DPViewer/pybind11/docs/changelog.rst +0 -0
  20. third-party/DPVO/DPViewer/pybind11/docs/classes.rst +541 -0
  21. third-party/DPVO/DPViewer/pybind11/docs/cmake/index.rst +8 -0
  22. third-party/DPVO/DPViewer/pybind11/docs/compiling.rst +638 -0
  23. third-party/DPVO/DPViewer/pybind11/docs/conf.py +380 -0
  24. third-party/DPVO/DPViewer/pybind11/docs/faq.rst +307 -0
  25. third-party/DPVO/DPViewer/pybind11/docs/index.rst +48 -0
  26. third-party/DPVO/DPViewer/pybind11/docs/installing.rst +105 -0
  27. third-party/DPVO/DPViewer/pybind11/docs/limitations.rst +72 -0
  28. third-party/DPVO/DPViewer/pybind11/docs/pybind11-logo.png +0 -0
  29. third-party/DPVO/DPViewer/pybind11/docs/pybind11_vs_boost_python1.png +0 -0
  30. third-party/DPVO/DPViewer/pybind11/docs/pybind11_vs_boost_python1.svg +427 -0
  31. third-party/DPVO/DPViewer/pybind11/docs/pybind11_vs_boost_python2.png +0 -0
  32. third-party/DPVO/DPViewer/pybind11/docs/pybind11_vs_boost_python2.svg +427 -0
  33. third-party/DPVO/DPViewer/pybind11/docs/reference.rst +130 -0
  34. third-party/DPVO/DPViewer/pybind11/docs/release.rst +97 -0
  35. third-party/DPVO/DPViewer/pybind11/docs/requirements.txt +5 -0
  36. third-party/DPVO/DPViewer/pybind11/docs/upgrade.rst +552 -0
  37. third-party/DPVO/DPViewer/pybind11/include/pybind11/attr.h +676 -0
  38. third-party/DPVO/DPViewer/pybind11/include/pybind11/buffer_info.h +193 -0
  39. third-party/DPVO/DPViewer/pybind11/include/pybind11/cast.h +1665 -0
  40. third-party/DPVO/DPViewer/pybind11/include/pybind11/chrono.h +225 -0
  41. third-party/DPVO/DPViewer/pybind11/include/pybind11/common.h +2 -0
  42. third-party/DPVO/DPViewer/pybind11/include/pybind11/complex.h +74 -0
  43. third-party/DPVO/DPViewer/pybind11/include/pybind11/detail/class.h +734 -0
  44. third-party/DPVO/DPViewer/pybind11/include/pybind11/detail/common.h +1168 -0
  45. third-party/DPVO/DPViewer/pybind11/include/pybind11/detail/descr.h +158 -0
  46. third-party/DPVO/DPViewer/pybind11/include/pybind11/detail/init.h +428 -0
  47. third-party/DPVO/DPViewer/pybind11/include/pybind11/detail/internals.h +562 -0
  48. third-party/DPVO/DPViewer/pybind11/include/pybind11/detail/type_caster_base.h +1010 -0
  49. third-party/DPVO/DPViewer/pybind11/include/pybind11/detail/typeid.h +59 -0
  50. third-party/DPVO/DPViewer/pybind11/include/pybind11/eigen.h +702 -0
third-party/DPVO/DPViewer/pybind11/docs/Doxyfile ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ PROJECT_NAME = pybind11
2
+ INPUT = ../include/pybind11/
3
+ RECURSIVE = YES
4
+
5
+ GENERATE_HTML = NO
6
+ GENERATE_LATEX = NO
7
+ GENERATE_XML = YES
8
+ XML_OUTPUT = .build/doxygenxml
9
+ XML_PROGRAMLISTING = YES
10
+
11
+ MACRO_EXPANSION = YES
12
+ EXPAND_ONLY_PREDEF = YES
13
+ EXPAND_AS_DEFINED = PYBIND11_RUNTIME_EXCEPTION
14
+
15
+ ALIASES = "rst=\verbatim embed:rst"
16
+ ALIASES += "endrst=\endverbatim"
17
+
18
+ QUIET = YES
19
+ WARNINGS = YES
20
+ WARN_IF_UNDOCUMENTED = NO
21
+ PREDEFINED = PYBIND11_NOINLINE
third-party/DPVO/DPViewer/pybind11/docs/advanced/cast/index.rst ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. _type-conversions:
2
+
3
+ Type conversions
4
+ ################
5
+
6
+ Apart from enabling cross-language function calls, a fundamental problem
7
+ that a binding tool like pybind11 must address is to provide access to
8
+ native Python types in C++ and vice versa. There are three fundamentally
9
+ different ways to do this—which approach is preferable for a particular type
10
+ depends on the situation at hand.
11
+
12
+ 1. Use a native C++ type everywhere. In this case, the type must be wrapped
13
+ using pybind11-generated bindings so that Python can interact with it.
14
+
15
+ 2. Use a native Python type everywhere. It will need to be wrapped so that
16
+ C++ functions can interact with it.
17
+
18
+ 3. Use a native C++ type on the C++ side and a native Python type on the
19
+ Python side. pybind11 refers to this as a *type conversion*.
20
+
21
+ Type conversions are the most "natural" option in the sense that native
22
+ (non-wrapped) types are used everywhere. The main downside is that a copy
23
+ of the data must be made on every Python ↔ C++ transition: this is
24
+ needed since the C++ and Python versions of the same type generally won't
25
+ have the same memory layout.
26
+
27
+ pybind11 can perform many kinds of conversions automatically. An overview
28
+ is provided in the table ":ref:`conversion_table`".
29
+
30
+ The following subsections discuss the differences between these options in more
31
+ detail. The main focus in this section is on type conversions, which represent
32
+ the last case of the above list.
33
+
34
+ .. toctree::
35
+ :maxdepth: 1
36
+
37
+ overview
38
+ strings
39
+ stl
40
+ functional
41
+ chrono
42
+ eigen
43
+ custom
third-party/DPVO/DPViewer/pybind11/docs/advanced/cast/overview.rst ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Overview
2
+ ########
3
+
4
+ .. rubric:: 1. Native type in C++, wrapper in Python
5
+
6
+ Exposing a custom C++ type using :class:`py::class_` was covered in detail
7
+ in the :doc:`/classes` section. There, the underlying data structure is
8
+ always the original C++ class while the :class:`py::class_` wrapper provides
9
+ a Python interface. Internally, when an object like this is sent from C++ to
10
+ Python, pybind11 will just add the outer wrapper layer over the native C++
11
+ object. Getting it back from Python is just a matter of peeling off the
12
+ wrapper.
13
+
14
+ .. rubric:: 2. Wrapper in C++, native type in Python
15
+
16
+ This is the exact opposite situation. Now, we have a type which is native to
17
+ Python, like a ``tuple`` or a ``list``. One way to get this data into C++ is
18
+ with the :class:`py::object` family of wrappers. These are explained in more
19
+ detail in the :doc:`/advanced/pycpp/object` section. We'll just give a quick
20
+ example here:
21
+
22
+ .. code-block:: cpp
23
+
24
+ void print_list(py::list my_list) {
25
+ for (auto item : my_list)
26
+ std::cout << item << " ";
27
+ }
28
+
29
+ .. code-block:: pycon
30
+
31
+ >>> print_list([1, 2, 3])
32
+ 1 2 3
33
+
34
+ The Python ``list`` is not converted in any way -- it's just wrapped in a C++
35
+ :class:`py::list` class. At its core it's still a Python object. Copying a
36
+ :class:`py::list` will do the usual reference-counting like in Python.
37
+ Returning the object to Python will just remove the thin wrapper.
38
+
39
+ .. rubric:: 3. Converting between native C++ and Python types
40
+
41
+ In the previous two cases we had a native type in one language and a wrapper in
42
+ the other. Now, we have native types on both sides and we convert between them.
43
+
44
+ .. code-block:: cpp
45
+
46
+ void print_vector(const std::vector<int> &v) {
47
+ for (auto item : v)
48
+ std::cout << item << "\n";
49
+ }
50
+
51
+ .. code-block:: pycon
52
+
53
+ >>> print_vector([1, 2, 3])
54
+ 1 2 3
55
+
56
+ In this case, pybind11 will construct a new ``std::vector<int>`` and copy each
57
+ element from the Python ``list``. The newly constructed object will be passed
58
+ to ``print_vector``. The same thing happens in the other direction: a new
59
+ ``list`` is made to match the value returned from C++.
60
+
61
+ Lots of these conversions are supported out of the box, as shown in the table
62
+ below. They are very convenient, but keep in mind that these conversions are
63
+ fundamentally based on copying data. This is perfectly fine for small immutable
64
+ types but it may become quite expensive for large data structures. This can be
65
+ avoided by overriding the automatic conversion with a custom wrapper (i.e. the
66
+ above-mentioned approach 1). This requires some manual effort and more details
67
+ are available in the :ref:`opaque` section.
68
+
69
+ .. _conversion_table:
70
+
71
+ List of all builtin conversions
72
+ -------------------------------
73
+
74
+ The following basic data types are supported out of the box (some may require
75
+ an additional extension header to be included). To pass other data structures
76
+ as arguments and return values, refer to the section on binding :ref:`classes`.
77
+
78
+ +------------------------------------+---------------------------+-----------------------------------+
79
+ | Data type | Description | Header file |
80
+ +====================================+===========================+===================================+
81
+ | ``int8_t``, ``uint8_t`` | 8-bit integers | :file:`pybind11/pybind11.h` |
82
+ +------------------------------------+---------------------------+-----------------------------------+
83
+ | ``int16_t``, ``uint16_t`` | 16-bit integers | :file:`pybind11/pybind11.h` |
84
+ +------------------------------------+---------------------------+-----------------------------------+
85
+ | ``int32_t``, ``uint32_t`` | 32-bit integers | :file:`pybind11/pybind11.h` |
86
+ +------------------------------------+---------------------------+-----------------------------------+
87
+ | ``int64_t``, ``uint64_t`` | 64-bit integers | :file:`pybind11/pybind11.h` |
88
+ +------------------------------------+---------------------------+-----------------------------------+
89
+ | ``ssize_t``, ``size_t`` | Platform-dependent size | :file:`pybind11/pybind11.h` |
90
+ +------------------------------------+---------------------------+-----------------------------------+
91
+ | ``float``, ``double`` | Floating point types | :file:`pybind11/pybind11.h` |
92
+ +------------------------------------+---------------------------+-----------------------------------+
93
+ | ``bool`` | Two-state Boolean type | :file:`pybind11/pybind11.h` |
94
+ +------------------------------------+---------------------------+-----------------------------------+
95
+ | ``char`` | Character literal | :file:`pybind11/pybind11.h` |
96
+ +------------------------------------+---------------------------+-----------------------------------+
97
+ | ``char16_t`` | UTF-16 character literal | :file:`pybind11/pybind11.h` |
98
+ +------------------------------------+---------------------------+-----------------------------------+
99
+ | ``char32_t`` | UTF-32 character literal | :file:`pybind11/pybind11.h` |
100
+ +------------------------------------+---------------------------+-----------------------------------+
101
+ | ``wchar_t`` | Wide character literal | :file:`pybind11/pybind11.h` |
102
+ +------------------------------------+---------------------------+-----------------------------------+
103
+ | ``const char *`` | UTF-8 string literal | :file:`pybind11/pybind11.h` |
104
+ +------------------------------------+---------------------------+-----------------------------------+
105
+ | ``const char16_t *`` | UTF-16 string literal | :file:`pybind11/pybind11.h` |
106
+ +------------------------------------+---------------------------+-----------------------------------+
107
+ | ``const char32_t *`` | UTF-32 string literal | :file:`pybind11/pybind11.h` |
108
+ +------------------------------------+---------------------------+-----------------------------------+
109
+ | ``const wchar_t *`` | Wide string literal | :file:`pybind11/pybind11.h` |
110
+ +------------------------------------+---------------------------+-----------------------------------+
111
+ | ``std::string`` | STL dynamic UTF-8 string | :file:`pybind11/pybind11.h` |
112
+ +------------------------------------+---------------------------+-----------------------------------+
113
+ | ``std::u16string`` | STL dynamic UTF-16 string | :file:`pybind11/pybind11.h` |
114
+ +------------------------------------+---------------------------+-----------------------------------+
115
+ | ``std::u32string`` | STL dynamic UTF-32 string | :file:`pybind11/pybind11.h` |
116
+ +------------------------------------+---------------------------+-----------------------------------+
117
+ | ``std::wstring`` | STL dynamic wide string | :file:`pybind11/pybind11.h` |
118
+ +------------------------------------+---------------------------+-----------------------------------+
119
+ | ``std::string_view``, | STL C++17 string views | :file:`pybind11/pybind11.h` |
120
+ | ``std::u16string_view``, etc. | | |
121
+ +------------------------------------+---------------------------+-----------------------------------+
122
+ | ``std::pair<T1, T2>`` | Pair of two custom types | :file:`pybind11/pybind11.h` |
123
+ +------------------------------------+---------------------------+-----------------------------------+
124
+ | ``std::tuple<...>`` | Arbitrary tuple of types | :file:`pybind11/pybind11.h` |
125
+ +------------------------------------+---------------------------+-----------------------------------+
126
+ | ``std::reference_wrapper<...>`` | Reference type wrapper | :file:`pybind11/pybind11.h` |
127
+ +------------------------------------+---------------------------+-----------------------------------+
128
+ | ``std::complex<T>`` | Complex numbers | :file:`pybind11/complex.h` |
129
+ +------------------------------------+---------------------------+-----------------------------------+
130
+ | ``std::array<T, Size>`` | STL static array | :file:`pybind11/stl.h` |
131
+ +------------------------------------+---------------------------+-----------------------------------+
132
+ | ``std::vector<T>`` | STL dynamic array | :file:`pybind11/stl.h` |
133
+ +------------------------------------+---------------------------+-----------------------------------+
134
+ | ``std::deque<T>`` | STL double-ended queue | :file:`pybind11/stl.h` |
135
+ +------------------------------------+---------------------------+-----------------------------------+
136
+ | ``std::valarray<T>`` | STL value array | :file:`pybind11/stl.h` |
137
+ +------------------------------------+---------------------------+-----------------------------------+
138
+ | ``std::list<T>`` | STL linked list | :file:`pybind11/stl.h` |
139
+ +------------------------------------+---------------------------+-----------------------------------+
140
+ | ``std::map<T1, T2>`` | STL ordered map | :file:`pybind11/stl.h` |
141
+ +------------------------------------+---------------------------+-----------------------------------+
142
+ | ``std::unordered_map<T1, T2>`` | STL unordered map | :file:`pybind11/stl.h` |
143
+ +------------------------------------+---------------------------+-----------------------------------+
144
+ | ``std::set<T>`` | STL ordered set | :file:`pybind11/stl.h` |
145
+ +------------------------------------+---------------------------+-----------------------------------+
146
+ | ``std::unordered_set<T>`` | STL unordered set | :file:`pybind11/stl.h` |
147
+ +------------------------------------+---------------------------+-----------------------------------+
148
+ | ``std::optional<T>`` | STL optional type (C++17) | :file:`pybind11/stl.h` |
149
+ +------------------------------------+---------------------------+-----------------------------------+
150
+ | ``std::experimental::optional<T>`` | STL optional type (exp.) | :file:`pybind11/stl.h` |
151
+ +------------------------------------+---------------------------+-----------------------------------+
152
+ | ``std::variant<...>`` | Type-safe union (C++17) | :file:`pybind11/stl.h` |
153
+ +------------------------------------+---------------------------+-----------------------------------+
154
+ | ``std::filesystem::path<T>`` | STL path (C++17) [#]_ | :file:`pybind11/stl/filesystem.h` |
155
+ +------------------------------------+---------------------------+-----------------------------------+
156
+ | ``std::function<...>`` | STL polymorphic function | :file:`pybind11/functional.h` |
157
+ +------------------------------------+---------------------------+-----------------------------------+
158
+ | ``std::chrono::duration<...>`` | STL time duration | :file:`pybind11/chrono.h` |
159
+ +------------------------------------+---------------------------+-----------------------------------+
160
+ | ``std::chrono::time_point<...>`` | STL date/time | :file:`pybind11/chrono.h` |
161
+ +------------------------------------+---------------------------+-----------------------------------+
162
+ | ``Eigen::Matrix<...>`` | Eigen: dense matrix | :file:`pybind11/eigen.h` |
163
+ +------------------------------------+---------------------------+-----------------------------------+
164
+ | ``Eigen::Map<...>`` | Eigen: mapped memory | :file:`pybind11/eigen.h` |
165
+ +------------------------------------+---------------------------+-----------------------------------+
166
+ | ``Eigen::SparseMatrix<...>`` | Eigen: sparse matrix | :file:`pybind11/eigen.h` |
167
+ +------------------------------------+---------------------------+-----------------------------------+
168
+
169
+ .. [#] ``std::filesystem::path`` is converted to ``pathlib.Path`` and
170
+ ``os.PathLike`` is converted to ``std::filesystem::path``.
third-party/DPVO/DPViewer/pybind11/docs/advanced/cast/stl.rst ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ STL containers
2
+ ##############
3
+
4
+ Automatic conversion
5
+ ====================
6
+
7
+ When including the additional header file :file:`pybind11/stl.h`, conversions
8
+ between ``std::vector<>``/``std::deque<>``/``std::list<>``/``std::array<>``/``std::valarray<>``,
9
+ ``std::set<>``/``std::unordered_set<>``, and
10
+ ``std::map<>``/``std::unordered_map<>`` and the Python ``list``, ``set`` and
11
+ ``dict`` data structures are automatically enabled. The types ``std::pair<>``
12
+ and ``std::tuple<>`` are already supported out of the box with just the core
13
+ :file:`pybind11/pybind11.h` header.
14
+
15
+ The major downside of these implicit conversions is that containers must be
16
+ converted (i.e. copied) on every Python->C++ and C++->Python transition, which
17
+ can have implications on the program semantics and performance. Please read the
18
+ next sections for more details and alternative approaches that avoid this.
19
+
20
+ .. note::
21
+
22
+ Arbitrary nesting of any of these types is possible.
23
+
24
+ .. seealso::
25
+
26
+ The file :file:`tests/test_stl.cpp` contains a complete
27
+ example that demonstrates how to pass STL data types in more detail.
28
+
29
+ .. _cpp17_container_casters:
30
+
31
+ C++17 library containers
32
+ ========================
33
+
34
+ The :file:`pybind11/stl.h` header also includes support for ``std::optional<>``
35
+ and ``std::variant<>``. These require a C++17 compiler and standard library.
36
+ In C++14 mode, ``std::experimental::optional<>`` is supported if available.
37
+
38
+ Various versions of these containers also exist for C++11 (e.g. in Boost).
39
+ pybind11 provides an easy way to specialize the ``type_caster`` for such
40
+ types:
41
+
42
+ .. code-block:: cpp
43
+
44
+ // `boost::optional` as an example -- can be any `std::optional`-like container
45
+ namespace pybind11 { namespace detail {
46
+ template <typename T>
47
+ struct type_caster<boost::optional<T>> : optional_caster<boost::optional<T>> {};
48
+ }}
49
+
50
+ The above should be placed in a header file and included in all translation units
51
+ where automatic conversion is needed. Similarly, a specialization can be provided
52
+ for custom variant types:
53
+
54
+ .. code-block:: cpp
55
+
56
+ // `boost::variant` as an example -- can be any `std::variant`-like container
57
+ namespace pybind11 { namespace detail {
58
+ template <typename... Ts>
59
+ struct type_caster<boost::variant<Ts...>> : variant_caster<boost::variant<Ts...>> {};
60
+
61
+ // Specifies the function used to visit the variant -- `apply_visitor` instead of `visit`
62
+ template <>
63
+ struct visit_helper<boost::variant> {
64
+ template <typename... Args>
65
+ static auto call(Args &&...args) -> decltype(boost::apply_visitor(args...)) {
66
+ return boost::apply_visitor(args...);
67
+ }
68
+ };
69
+ }} // namespace pybind11::detail
70
+
71
+ The ``visit_helper`` specialization is not required if your ``name::variant`` provides
72
+ a ``name::visit()`` function. For any other function name, the specialization must be
73
+ included to tell pybind11 how to visit the variant.
74
+
75
+ .. warning::
76
+
77
+ When converting a ``variant`` type, pybind11 follows the same rules as when
78
+ determining which function overload to call (:ref:`overload_resolution`), and
79
+ so the same caveats hold. In particular, the order in which the ``variant``'s
80
+ alternatives are listed is important, since pybind11 will try conversions in
81
+ this order. This means that, for example, when converting ``variant<int, bool>``,
82
+ the ``bool`` variant will never be selected, as any Python ``bool`` is already
83
+ an ``int`` and is convertible to a C++ ``int``. Changing the order of alternatives
84
+ (and using ``variant<bool, int>``, in this example) provides a solution.
85
+
86
+ .. note::
87
+
88
+ pybind11 only supports the modern implementation of ``boost::variant``
89
+ which makes use of variadic templates. This requires Boost 1.56 or newer.
90
+
91
+ .. _opaque:
92
+
93
+ Making opaque types
94
+ ===================
95
+
96
+ pybind11 heavily relies on a template matching mechanism to convert parameters
97
+ and return values that are constructed from STL data types such as vectors,
98
+ linked lists, hash tables, etc. This even works in a recursive manner, for
99
+ instance to deal with lists of hash maps of pairs of elementary and custom
100
+ types, etc.
101
+
102
+ However, a fundamental limitation of this approach is that internal conversions
103
+ between Python and C++ types involve a copy operation that prevents
104
+ pass-by-reference semantics. What does this mean?
105
+
106
+ Suppose we bind the following function
107
+
108
+ .. code-block:: cpp
109
+
110
+ void append_1(std::vector<int> &v) {
111
+ v.push_back(1);
112
+ }
113
+
114
+ and call it from Python, the following happens:
115
+
116
+ .. code-block:: pycon
117
+
118
+ >>> v = [5, 6]
119
+ >>> append_1(v)
120
+ >>> print(v)
121
+ [5, 6]
122
+
123
+ As you can see, when passing STL data structures by reference, modifications
124
+ are not propagated back the Python side. A similar situation arises when
125
+ exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
126
+ functions:
127
+
128
+ .. code-block:: cpp
129
+
130
+ /* ... definition ... */
131
+
132
+ class MyClass {
133
+ std::vector<int> contents;
134
+ };
135
+
136
+ /* ... binding code ... */
137
+
138
+ py::class_<MyClass>(m, "MyClass")
139
+ .def(py::init<>())
140
+ .def_readwrite("contents", &MyClass::contents);
141
+
142
+ In this case, properties can be read and written in their entirety. However, an
143
+ ``append`` operation involving such a list type has no effect:
144
+
145
+ .. code-block:: pycon
146
+
147
+ >>> m = MyClass()
148
+ >>> m.contents = [5, 6]
149
+ >>> print(m.contents)
150
+ [5, 6]
151
+ >>> m.contents.append(7)
152
+ >>> print(m.contents)
153
+ [5, 6]
154
+
155
+ Finally, the involved copy operations can be costly when dealing with very
156
+ large lists. To deal with all of the above situations, pybind11 provides a
157
+ macro named ``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based
158
+ conversion machinery of types, thus rendering them *opaque*. The contents of
159
+ opaque objects are never inspected or extracted, hence they *can* be passed by
160
+ reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
161
+ the declaration
162
+
163
+ .. code-block:: cpp
164
+
165
+ PYBIND11_MAKE_OPAQUE(std::vector<int>);
166
+
167
+ before any binding code (e.g. invocations to ``class_::def()``, etc.). This
168
+ macro must be specified at the top level (and outside of any namespaces), since
169
+ it adds a template instantiation of ``type_caster``. If your binding code consists of
170
+ multiple compilation units, it must be present in every file (typically via a
171
+ common header) preceding any usage of ``std::vector<int>``. Opaque types must
172
+ also have a corresponding ``class_`` declaration to associate them with a name
173
+ in Python, and to define a set of available operations, e.g.:
174
+
175
+ .. code-block:: cpp
176
+
177
+ py::class_<std::vector<int>>(m, "IntVector")
178
+ .def(py::init<>())
179
+ .def("clear", &std::vector<int>::clear)
180
+ .def("pop_back", &std::vector<int>::pop_back)
181
+ .def("__len__", [](const std::vector<int> &v) { return v.size(); })
182
+ .def("__iter__", [](std::vector<int> &v) {
183
+ return py::make_iterator(v.begin(), v.end());
184
+ }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
185
+ // ....
186
+
187
+ .. seealso::
188
+
189
+ The file :file:`tests/test_opaque_types.cpp` contains a complete
190
+ example that demonstrates how to create and expose opaque types using
191
+ pybind11 in more detail.
192
+
193
+ .. _stl_bind:
194
+
195
+ Binding STL containers
196
+ ======================
197
+
198
+ The ability to expose STL containers as native Python objects is a fairly
199
+ common request, hence pybind11 also provides an optional header file named
200
+ :file:`pybind11/stl_bind.h` that does exactly this. The mapped containers try
201
+ to match the behavior of their native Python counterparts as much as possible.
202
+
203
+ The following example showcases usage of :file:`pybind11/stl_bind.h`:
204
+
205
+ .. code-block:: cpp
206
+
207
+ // Don't forget this
208
+ #include <pybind11/stl_bind.h>
209
+
210
+ PYBIND11_MAKE_OPAQUE(std::vector<int>);
211
+ PYBIND11_MAKE_OPAQUE(std::map<std::string, double>);
212
+
213
+ // ...
214
+
215
+ // later in binding code:
216
+ py::bind_vector<std::vector<int>>(m, "VectorInt");
217
+ py::bind_map<std::map<std::string, double>>(m, "MapStringDouble");
218
+
219
+ When binding STL containers pybind11 considers the types of the container's
220
+ elements to decide whether the container should be confined to the local module
221
+ (via the :ref:`module_local` feature). If the container element types are
222
+ anything other than already-bound custom types bound without
223
+ ``py::module_local()`` the container binding will have ``py::module_local()``
224
+ applied. This includes converting types such as numeric types, strings, Eigen
225
+ types; and types that have not yet been bound at the time of the stl container
226
+ binding. This module-local binding is designed to avoid potential conflicts
227
+ between module bindings (for example, from two separate modules each attempting
228
+ to bind ``std::vector<int>`` as a python type).
229
+
230
+ It is possible to override this behavior to force a definition to be either
231
+ module-local or global. To do so, you can pass the attributes
232
+ ``py::module_local()`` (to make the binding module-local) or
233
+ ``py::module_local(false)`` (to make the binding global) into the
234
+ ``py::bind_vector`` or ``py::bind_map`` arguments:
235
+
236
+ .. code-block:: cpp
237
+
238
+ py::bind_vector<std::vector<int>>(m, "VectorInt", py::module_local(false));
239
+
240
+ Note, however, that such a global binding would make it impossible to load this
241
+ module at the same time as any other pybind module that also attempts to bind
242
+ the same container type (``std::vector<int>`` in the above example).
243
+
244
+ See :ref:`module_local` for more details on module-local bindings.
245
+
246
+ .. seealso::
247
+
248
+ The file :file:`tests/test_stl_binders.cpp` shows how to use the
249
+ convenience STL container wrappers.
third-party/DPVO/DPViewer/pybind11/docs/advanced/cast/strings.rst ADDED
@@ -0,0 +1,292 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Strings, bytes and Unicode conversions
2
+ ######################################
3
+
4
+ Passing Python strings to C++
5
+ =============================
6
+
7
+ When a Python ``str`` is passed from Python to a C++ function that accepts
8
+ ``std::string`` or ``char *`` as arguments, pybind11 will encode the Python
9
+ string to UTF-8. All Python ``str`` can be encoded in UTF-8, so this operation
10
+ does not fail.
11
+
12
+ The C++ language is encoding agnostic. It is the responsibility of the
13
+ programmer to track encodings. It's often easiest to simply `use UTF-8
14
+ everywhere <http://utf8everywhere.org/>`_.
15
+
16
+ .. code-block:: c++
17
+
18
+ m.def("utf8_test",
19
+ [](const std::string &s) {
20
+ cout << "utf-8 is icing on the cake.\n";
21
+ cout << s;
22
+ }
23
+ );
24
+ m.def("utf8_charptr",
25
+ [](const char *s) {
26
+ cout << "My favorite food is\n";
27
+ cout << s;
28
+ }
29
+ );
30
+
31
+ .. code-block:: pycon
32
+
33
+ >>> utf8_test("🎂")
34
+ utf-8 is icing on the cake.
35
+ 🎂
36
+
37
+ >>> utf8_charptr("🍕")
38
+ My favorite food is
39
+ 🍕
40
+
41
+ .. note::
42
+
43
+ Some terminal emulators do not support UTF-8 or emoji fonts and may not
44
+ display the example above correctly.
45
+
46
+ The results are the same whether the C++ function accepts arguments by value or
47
+ reference, and whether or not ``const`` is used.
48
+
49
+ Passing bytes to C++
50
+ --------------------
51
+
52
+ A Python ``bytes`` object will be passed to C++ functions that accept
53
+ ``std::string`` or ``char*`` *without* conversion. In order to make a function
54
+ *only* accept ``bytes`` (and not ``str``), declare it as taking a ``py::bytes``
55
+ argument.
56
+
57
+
58
+ Returning C++ strings to Python
59
+ ===============================
60
+
61
+ When a C++ function returns a ``std::string`` or ``char*`` to a Python caller,
62
+ **pybind11 will assume that the string is valid UTF-8** and will decode it to a
63
+ native Python ``str``, using the same API as Python uses to perform
64
+ ``bytes.decode('utf-8')``. If this implicit conversion fails, pybind11 will
65
+ raise a ``UnicodeDecodeError``.
66
+
67
+ .. code-block:: c++
68
+
69
+ m.def("std_string_return",
70
+ []() {
71
+ return std::string("This string needs to be UTF-8 encoded");
72
+ }
73
+ );
74
+
75
+ .. code-block:: pycon
76
+
77
+ >>> isinstance(example.std_string_return(), str)
78
+ True
79
+
80
+
81
+ Because UTF-8 is inclusive of pure ASCII, there is never any issue with
82
+ returning a pure ASCII string to Python. If there is any possibility that the
83
+ string is not pure ASCII, it is necessary to ensure the encoding is valid
84
+ UTF-8.
85
+
86
+ .. warning::
87
+
88
+ Implicit conversion assumes that a returned ``char *`` is null-terminated.
89
+ If there is no null terminator a buffer overrun will occur.
90
+
91
+ Explicit conversions
92
+ --------------------
93
+
94
+ If some C++ code constructs a ``std::string`` that is not a UTF-8 string, one
95
+ can perform a explicit conversion and return a ``py::str`` object. Explicit
96
+ conversion has the same overhead as implicit conversion.
97
+
98
+ .. code-block:: c++
99
+
100
+ // This uses the Python C API to convert Latin-1 to Unicode
101
+ m.def("str_output",
102
+ []() {
103
+ std::string s = "Send your r\xe9sum\xe9 to Alice in HR"; // Latin-1
104
+ py::str py_s = PyUnicode_DecodeLatin1(s.data(), s.length());
105
+ return py_s;
106
+ }
107
+ );
108
+
109
+ .. code-block:: pycon
110
+
111
+ >>> str_output()
112
+ 'Send your résumé to Alice in HR'
113
+
114
+ The `Python C API
115
+ <https://docs.python.org/3/c-api/unicode.html#built-in-codecs>`_ provides
116
+ several built-in codecs.
117
+
118
+
119
+ One could also use a third party encoding library such as libiconv to transcode
120
+ to UTF-8.
121
+
122
+ Return C++ strings without conversion
123
+ -------------------------------------
124
+
125
+ If the data in a C++ ``std::string`` does not represent text and should be
126
+ returned to Python as ``bytes``, then one can return the data as a
127
+ ``py::bytes`` object.
128
+
129
+ .. code-block:: c++
130
+
131
+ m.def("return_bytes",
132
+ []() {
133
+ std::string s("\xba\xd0\xba\xd0"); // Not valid UTF-8
134
+ return py::bytes(s); // Return the data without transcoding
135
+ }
136
+ );
137
+
138
+ .. code-block:: pycon
139
+
140
+ >>> example.return_bytes()
141
+ b'\xba\xd0\xba\xd0'
142
+
143
+
144
+ Note the asymmetry: pybind11 will convert ``bytes`` to ``std::string`` without
145
+ encoding, but cannot convert ``std::string`` back to ``bytes`` implicitly.
146
+
147
+ .. code-block:: c++
148
+
149
+ m.def("asymmetry",
150
+ [](std::string s) { // Accepts str or bytes from Python
151
+ return s; // Looks harmless, but implicitly converts to str
152
+ }
153
+ );
154
+
155
+ .. code-block:: pycon
156
+
157
+ >>> isinstance(example.asymmetry(b"have some bytes"), str)
158
+ True
159
+
160
+ >>> example.asymmetry(b"\xba\xd0\xba\xd0") # invalid utf-8 as bytes
161
+ UnicodeDecodeError: 'utf-8' codec can't decode byte 0xba in position 0: invalid start byte
162
+
163
+
164
+ Wide character strings
165
+ ======================
166
+
167
+ When a Python ``str`` is passed to a C++ function expecting ``std::wstring``,
168
+ ``wchar_t*``, ``std::u16string`` or ``std::u32string``, the ``str`` will be
169
+ encoded to UTF-16 or UTF-32 depending on how the C++ compiler implements each
170
+ type, in the platform's native endianness. When strings of these types are
171
+ returned, they are assumed to contain valid UTF-16 or UTF-32, and will be
172
+ decoded to Python ``str``.
173
+
174
+ .. code-block:: c++
175
+
176
+ #define UNICODE
177
+ #include <windows.h>
178
+
179
+ m.def("set_window_text",
180
+ [](HWND hwnd, std::wstring s) {
181
+ // Call SetWindowText with null-terminated UTF-16 string
182
+ ::SetWindowText(hwnd, s.c_str());
183
+ }
184
+ );
185
+ m.def("get_window_text",
186
+ [](HWND hwnd) {
187
+ const int buffer_size = ::GetWindowTextLength(hwnd) + 1;
188
+ auto buffer = std::make_unique< wchar_t[] >(buffer_size);
189
+
190
+ ::GetWindowText(hwnd, buffer.data(), buffer_size);
191
+
192
+ std::wstring text(buffer.get());
193
+
194
+ // wstring will be converted to Python str
195
+ return text;
196
+ }
197
+ );
198
+
199
+ Strings in multibyte encodings such as Shift-JIS must transcoded to a
200
+ UTF-8/16/32 before being returned to Python.
201
+
202
+
203
+ Character literals
204
+ ==================
205
+
206
+ C++ functions that accept character literals as input will receive the first
207
+ character of a Python ``str`` as their input. If the string is longer than one
208
+ Unicode character, trailing characters will be ignored.
209
+
210
+ When a character literal is returned from C++ (such as a ``char`` or a
211
+ ``wchar_t``), it will be converted to a ``str`` that represents the single
212
+ character.
213
+
214
+ .. code-block:: c++
215
+
216
+ m.def("pass_char", [](char c) { return c; });
217
+ m.def("pass_wchar", [](wchar_t w) { return w; });
218
+
219
+ .. code-block:: pycon
220
+
221
+ >>> example.pass_char("A")
222
+ 'A'
223
+
224
+ While C++ will cast integers to character types (``char c = 0x65;``), pybind11
225
+ does not convert Python integers to characters implicitly. The Python function
226
+ ``chr()`` can be used to convert integers to characters.
227
+
228
+ .. code-block:: pycon
229
+
230
+ >>> example.pass_char(0x65)
231
+ TypeError
232
+
233
+ >>> example.pass_char(chr(0x65))
234
+ 'A'
235
+
236
+ If the desire is to work with an 8-bit integer, use ``int8_t`` or ``uint8_t``
237
+ as the argument type.
238
+
239
+ Grapheme clusters
240
+ -----------------
241
+
242
+ A single grapheme may be represented by two or more Unicode characters. For
243
+ example 'é' is usually represented as U+00E9 but can also be expressed as the
244
+ combining character sequence U+0065 U+0301 (that is, the letter 'e' followed by
245
+ a combining acute accent). The combining character will be lost if the
246
+ two-character sequence is passed as an argument, even though it renders as a
247
+ single grapheme.
248
+
249
+ .. code-block:: pycon
250
+
251
+ >>> example.pass_wchar("é")
252
+ 'é'
253
+
254
+ >>> combining_e_acute = "e" + "\u0301"
255
+
256
+ >>> combining_e_acute
257
+ 'é'
258
+
259
+ >>> combining_e_acute == "é"
260
+ False
261
+
262
+ >>> example.pass_wchar(combining_e_acute)
263
+ 'e'
264
+
265
+ Normalizing combining characters before passing the character literal to C++
266
+ may resolve *some* of these issues:
267
+
268
+ .. code-block:: pycon
269
+
270
+ >>> example.pass_wchar(unicodedata.normalize("NFC", combining_e_acute))
271
+ 'é'
272
+
273
+ In some languages (Thai for example), there are `graphemes that cannot be
274
+ expressed as a single Unicode code point
275
+ <http://unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries>`_, so there is
276
+ no way to capture them in a C++ character type.
277
+
278
+
279
+ C++17 string views
280
+ ==================
281
+
282
+ C++17 string views are automatically supported when compiling in C++17 mode.
283
+ They follow the same rules for encoding and decoding as the corresponding STL
284
+ string type (for example, a ``std::u16string_view`` argument will be passed
285
+ UTF-16-encoded data, and a returned ``std::string_view`` will be decoded as
286
+ UTF-8).
287
+
288
+ References
289
+ ==========
290
+
291
+ * `The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets (No Excuses!) <https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/>`_
292
+ * `C++ - Using STL Strings at Win32 API Boundaries <https://msdn.microsoft.com/en-ca/magazine/mt238407.aspx>`_
third-party/DPVO/DPViewer/pybind11/docs/advanced/classes.rst ADDED
@@ -0,0 +1,1335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Classes
2
+ #######
3
+
4
+ This section presents advanced binding code for classes and it is assumed
5
+ that you are already familiar with the basics from :doc:`/classes`.
6
+
7
+ .. _overriding_virtuals:
8
+
9
+ Overriding virtual functions in Python
10
+ ======================================
11
+
12
+ Suppose that a C++ class or interface has a virtual function that we'd like
13
+ to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
14
+ given as a specific example of how one would do this with traditional C++
15
+ code).
16
+
17
+ .. code-block:: cpp
18
+
19
+ class Animal {
20
+ public:
21
+ virtual ~Animal() { }
22
+ virtual std::string go(int n_times) = 0;
23
+ };
24
+
25
+ class Dog : public Animal {
26
+ public:
27
+ std::string go(int n_times) override {
28
+ std::string result;
29
+ for (int i=0; i<n_times; ++i)
30
+ result += "woof! ";
31
+ return result;
32
+ }
33
+ };
34
+
35
+ Let's also suppose that we are given a plain function which calls the
36
+ function ``go()`` on an arbitrary ``Animal`` instance.
37
+
38
+ .. code-block:: cpp
39
+
40
+ std::string call_go(Animal *animal) {
41
+ return animal->go(3);
42
+ }
43
+
44
+ Normally, the binding code for these classes would look as follows:
45
+
46
+ .. code-block:: cpp
47
+
48
+ PYBIND11_MODULE(example, m) {
49
+ py::class_<Animal>(m, "Animal")
50
+ .def("go", &Animal::go);
51
+
52
+ py::class_<Dog, Animal>(m, "Dog")
53
+ .def(py::init<>());
54
+
55
+ m.def("call_go", &call_go);
56
+ }
57
+
58
+ However, these bindings are impossible to extend: ``Animal`` is not
59
+ constructible, and we clearly require some kind of "trampoline" that
60
+ redirects virtual calls back to Python.
61
+
62
+ Defining a new type of ``Animal`` from within Python is possible but requires a
63
+ helper class that is defined as follows:
64
+
65
+ .. code-block:: cpp
66
+
67
+ class PyAnimal : public Animal {
68
+ public:
69
+ /* Inherit the constructors */
70
+ using Animal::Animal;
71
+
72
+ /* Trampoline (need one for each virtual function) */
73
+ std::string go(int n_times) override {
74
+ PYBIND11_OVERRIDE_PURE(
75
+ std::string, /* Return type */
76
+ Animal, /* Parent class */
77
+ go, /* Name of function in C++ (must match Python name) */
78
+ n_times /* Argument(s) */
79
+ );
80
+ }
81
+ };
82
+
83
+ The macro :c:macro:`PYBIND11_OVERRIDE_PURE` should be used for pure virtual
84
+ functions, and :c:macro:`PYBIND11_OVERRIDE` should be used for functions which have
85
+ a default implementation. There are also two alternate macros
86
+ :c:macro:`PYBIND11_OVERRIDE_PURE_NAME` and :c:macro:`PYBIND11_OVERRIDE_NAME` which
87
+ take a string-valued name argument between the *Parent class* and *Name of the
88
+ function* slots, which defines the name of function in Python. This is required
89
+ when the C++ and Python versions of the
90
+ function have different names, e.g. ``operator()`` vs ``__call__``.
91
+
92
+ The binding code also needs a few minor adaptations (highlighted):
93
+
94
+ .. code-block:: cpp
95
+ :emphasize-lines: 2,3
96
+
97
+ PYBIND11_MODULE(example, m) {
98
+ py::class_<Animal, PyAnimal /* <--- trampoline*/>(m, "Animal")
99
+ .def(py::init<>())
100
+ .def("go", &Animal::go);
101
+
102
+ py::class_<Dog, Animal>(m, "Dog")
103
+ .def(py::init<>());
104
+
105
+ m.def("call_go", &call_go);
106
+ }
107
+
108
+ Importantly, pybind11 is made aware of the trampoline helper class by
109
+ specifying it as an extra template argument to :class:`class_`. (This can also
110
+ be combined with other template arguments such as a custom holder type; the
111
+ order of template types does not matter). Following this, we are able to
112
+ define a constructor as usual.
113
+
114
+ Bindings should be made against the actual class, not the trampoline helper class.
115
+
116
+ .. code-block:: cpp
117
+ :emphasize-lines: 3
118
+
119
+ py::class_<Animal, PyAnimal /* <--- trampoline*/>(m, "Animal");
120
+ .def(py::init<>())
121
+ .def("go", &PyAnimal::go); /* <--- THIS IS WRONG, use &Animal::go */
122
+
123
+ Note, however, that the above is sufficient for allowing python classes to
124
+ extend ``Animal``, but not ``Dog``: see :ref:`virtual_and_inheritance` for the
125
+ necessary steps required to providing proper overriding support for inherited
126
+ classes.
127
+
128
+ The Python session below shows how to override ``Animal::go`` and invoke it via
129
+ a virtual method call.
130
+
131
+ .. code-block:: pycon
132
+
133
+ >>> from example import *
134
+ >>> d = Dog()
135
+ >>> call_go(d)
136
+ 'woof! woof! woof! '
137
+ >>> class Cat(Animal):
138
+ ... def go(self, n_times):
139
+ ... return "meow! " * n_times
140
+ ...
141
+ >>> c = Cat()
142
+ >>> call_go(c)
143
+ 'meow! meow! meow! '
144
+
145
+ If you are defining a custom constructor in a derived Python class, you *must*
146
+ ensure that you explicitly call the bound C++ constructor using ``__init__``,
147
+ *regardless* of whether it is a default constructor or not. Otherwise, the
148
+ memory for the C++ portion of the instance will be left uninitialized, which
149
+ will generally leave the C++ instance in an invalid state and cause undefined
150
+ behavior if the C++ instance is subsequently used.
151
+
152
+ .. versionchanged:: 2.6
153
+ The default pybind11 metaclass will throw a ``TypeError`` when it detects
154
+ that ``__init__`` was not called by a derived class.
155
+
156
+ Here is an example:
157
+
158
+ .. code-block:: python
159
+
160
+ class Dachshund(Dog):
161
+ def __init__(self, name):
162
+ Dog.__init__(self) # Without this, a TypeError is raised.
163
+ self.name = name
164
+
165
+ def bark(self):
166
+ return "yap!"
167
+
168
+ Note that a direct ``__init__`` constructor *should be called*, and ``super()``
169
+ should not be used. For simple cases of linear inheritance, ``super()``
170
+ may work, but once you begin mixing Python and C++ multiple inheritance,
171
+ things will fall apart due to differences between Python's MRO and C++'s
172
+ mechanisms.
173
+
174
+ Please take a look at the :ref:`macro_notes` before using this feature.
175
+
176
+ .. note::
177
+
178
+ When the overridden type returns a reference or pointer to a type that
179
+ pybind11 converts from Python (for example, numeric values, std::string,
180
+ and other built-in value-converting types), there are some limitations to
181
+ be aware of:
182
+
183
+ - because in these cases there is no C++ variable to reference (the value
184
+ is stored in the referenced Python variable), pybind11 provides one in
185
+ the PYBIND11_OVERRIDE macros (when needed) with static storage duration.
186
+ Note that this means that invoking the overridden method on *any*
187
+ instance will change the referenced value stored in *all* instances of
188
+ that type.
189
+
190
+ - Attempts to modify a non-const reference will not have the desired
191
+ effect: it will change only the static cache variable, but this change
192
+ will not propagate to underlying Python instance, and the change will be
193
+ replaced the next time the override is invoked.
194
+
195
+ .. warning::
196
+
197
+ The :c:macro:`PYBIND11_OVERRIDE` and accompanying macros used to be called
198
+ ``PYBIND11_OVERLOAD`` up until pybind11 v2.5.0, and :func:`get_override`
199
+ used to be called ``get_overload``. This naming was corrected and the older
200
+ macro and function names may soon be deprecated, in order to reduce
201
+ confusion with overloaded functions and methods and ``py::overload_cast``
202
+ (see :ref:`classes`).
203
+
204
+ .. seealso::
205
+
206
+ The file :file:`tests/test_virtual_functions.cpp` contains a complete
207
+ example that demonstrates how to override virtual functions using pybind11
208
+ in more detail.
209
+
210
+ .. _virtual_and_inheritance:
211
+
212
+ Combining virtual functions and inheritance
213
+ ===========================================
214
+
215
+ When combining virtual methods with inheritance, you need to be sure to provide
216
+ an override for each method for which you want to allow overrides from derived
217
+ python classes. For example, suppose we extend the above ``Animal``/``Dog``
218
+ example as follows:
219
+
220
+ .. code-block:: cpp
221
+
222
+ class Animal {
223
+ public:
224
+ virtual std::string go(int n_times) = 0;
225
+ virtual std::string name() { return "unknown"; }
226
+ };
227
+ class Dog : public Animal {
228
+ public:
229
+ std::string go(int n_times) override {
230
+ std::string result;
231
+ for (int i=0; i<n_times; ++i)
232
+ result += bark() + " ";
233
+ return result;
234
+ }
235
+ virtual std::string bark() { return "woof!"; }
236
+ };
237
+
238
+ then the trampoline class for ``Animal`` must, as described in the previous
239
+ section, override ``go()`` and ``name()``, but in order to allow python code to
240
+ inherit properly from ``Dog``, we also need a trampoline class for ``Dog`` that
241
+ overrides both the added ``bark()`` method *and* the ``go()`` and ``name()``
242
+ methods inherited from ``Animal`` (even though ``Dog`` doesn't directly
243
+ override the ``name()`` method):
244
+
245
+ .. code-block:: cpp
246
+
247
+ class PyAnimal : public Animal {
248
+ public:
249
+ using Animal::Animal; // Inherit constructors
250
+ std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, Animal, go, n_times); }
251
+ std::string name() override { PYBIND11_OVERRIDE(std::string, Animal, name, ); }
252
+ };
253
+ class PyDog : public Dog {
254
+ public:
255
+ using Dog::Dog; // Inherit constructors
256
+ std::string go(int n_times) override { PYBIND11_OVERRIDE(std::string, Dog, go, n_times); }
257
+ std::string name() override { PYBIND11_OVERRIDE(std::string, Dog, name, ); }
258
+ std::string bark() override { PYBIND11_OVERRIDE(std::string, Dog, bark, ); }
259
+ };
260
+
261
+ .. note::
262
+
263
+ Note the trailing commas in the ``PYBIND11_OVERRIDE`` calls to ``name()``
264
+ and ``bark()``. These are needed to portably implement a trampoline for a
265
+ function that does not take any arguments. For functions that take
266
+ a nonzero number of arguments, the trailing comma must be omitted.
267
+
268
+ A registered class derived from a pybind11-registered class with virtual
269
+ methods requires a similar trampoline class, *even if* it doesn't explicitly
270
+ declare or override any virtual methods itself:
271
+
272
+ .. code-block:: cpp
273
+
274
+ class Husky : public Dog {};
275
+ class PyHusky : public Husky {
276
+ public:
277
+ using Husky::Husky; // Inherit constructors
278
+ std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, Husky, go, n_times); }
279
+ std::string name() override { PYBIND11_OVERRIDE(std::string, Husky, name, ); }
280
+ std::string bark() override { PYBIND11_OVERRIDE(std::string, Husky, bark, ); }
281
+ };
282
+
283
+ There is, however, a technique that can be used to avoid this duplication
284
+ (which can be especially helpful for a base class with several virtual
285
+ methods). The technique involves using template trampoline classes, as
286
+ follows:
287
+
288
+ .. code-block:: cpp
289
+
290
+ template <class AnimalBase = Animal> class PyAnimal : public AnimalBase {
291
+ public:
292
+ using AnimalBase::AnimalBase; // Inherit constructors
293
+ std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, AnimalBase, go, n_times); }
294
+ std::string name() override { PYBIND11_OVERRIDE(std::string, AnimalBase, name, ); }
295
+ };
296
+ template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> {
297
+ public:
298
+ using PyAnimal<DogBase>::PyAnimal; // Inherit constructors
299
+ // Override PyAnimal's pure virtual go() with a non-pure one:
300
+ std::string go(int n_times) override { PYBIND11_OVERRIDE(std::string, DogBase, go, n_times); }
301
+ std::string bark() override { PYBIND11_OVERRIDE(std::string, DogBase, bark, ); }
302
+ };
303
+
304
+ This technique has the advantage of requiring just one trampoline method to be
305
+ declared per virtual method and pure virtual method override. It does,
306
+ however, require the compiler to generate at least as many methods (and
307
+ possibly more, if both pure virtual and overridden pure virtual methods are
308
+ exposed, as above).
309
+
310
+ The classes are then registered with pybind11 using:
311
+
312
+ .. code-block:: cpp
313
+
314
+ py::class_<Animal, PyAnimal<>> animal(m, "Animal");
315
+ py::class_<Dog, Animal, PyDog<>> dog(m, "Dog");
316
+ py::class_<Husky, Dog, PyDog<Husky>> husky(m, "Husky");
317
+ // ... add animal, dog, husky definitions
318
+
319
+ Note that ``Husky`` did not require a dedicated trampoline template class at
320
+ all, since it neither declares any new virtual methods nor provides any pure
321
+ virtual method implementations.
322
+
323
+ With either the repeated-virtuals or templated trampoline methods in place, you
324
+ can now create a python class that inherits from ``Dog``:
325
+
326
+ .. code-block:: python
327
+
328
+ class ShihTzu(Dog):
329
+ def bark(self):
330
+ return "yip!"
331
+
332
+ .. seealso::
333
+
334
+ See the file :file:`tests/test_virtual_functions.cpp` for complete examples
335
+ using both the duplication and templated trampoline approaches.
336
+
337
+ .. _extended_aliases:
338
+
339
+ Extended trampoline class functionality
340
+ =======================================
341
+
342
+ .. _extended_class_functionality_forced_trampoline:
343
+
344
+ Forced trampoline class initialisation
345
+ --------------------------------------
346
+ The trampoline classes described in the previous sections are, by default, only
347
+ initialized when needed. More specifically, they are initialized when a python
348
+ class actually inherits from a registered type (instead of merely creating an
349
+ instance of the registered type), or when a registered constructor is only
350
+ valid for the trampoline class but not the registered class. This is primarily
351
+ for performance reasons: when the trampoline class is not needed for anything
352
+ except virtual method dispatching, not initializing the trampoline class
353
+ improves performance by avoiding needing to do a run-time check to see if the
354
+ inheriting python instance has an overridden method.
355
+
356
+ Sometimes, however, it is useful to always initialize a trampoline class as an
357
+ intermediate class that does more than just handle virtual method dispatching.
358
+ For example, such a class might perform extra class initialization, extra
359
+ destruction operations, and might define new members and methods to enable a
360
+ more python-like interface to a class.
361
+
362
+ In order to tell pybind11 that it should *always* initialize the trampoline
363
+ class when creating new instances of a type, the class constructors should be
364
+ declared using ``py::init_alias<Args, ...>()`` instead of the usual
365
+ ``py::init<Args, ...>()``. This forces construction via the trampoline class,
366
+ ensuring member initialization and (eventual) destruction.
367
+
368
+ .. seealso::
369
+
370
+ See the file :file:`tests/test_virtual_functions.cpp` for complete examples
371
+ showing both normal and forced trampoline instantiation.
372
+
373
+ Different method signatures
374
+ ---------------------------
375
+ The macro's introduced in :ref:`overriding_virtuals` cover most of the standard
376
+ use cases when exposing C++ classes to Python. Sometimes it is hard or unwieldy
377
+ to create a direct one-on-one mapping between the arguments and method return
378
+ type.
379
+
380
+ An example would be when the C++ signature contains output arguments using
381
+ references (See also :ref:`faq_reference_arguments`). Another way of solving
382
+ this is to use the method body of the trampoline class to do conversions to the
383
+ input and return of the Python method.
384
+
385
+ The main building block to do so is the :func:`get_override`, this function
386
+ allows retrieving a method implemented in Python from within the trampoline's
387
+ methods. Consider for example a C++ method which has the signature
388
+ ``bool myMethod(int32_t& value)``, where the return indicates whether
389
+ something should be done with the ``value``. This can be made convenient on the
390
+ Python side by allowing the Python function to return ``None`` or an ``int``:
391
+
392
+ .. code-block:: cpp
393
+
394
+ bool MyClass::myMethod(int32_t& value)
395
+ {
396
+ pybind11::gil_scoped_acquire gil; // Acquire the GIL while in this scope.
397
+ // Try to look up the overridden method on the Python side.
398
+ pybind11::function override = pybind11::get_override(this, "myMethod");
399
+ if (override) { // method is found
400
+ auto obj = override(value); // Call the Python function.
401
+ if (py::isinstance<py::int_>(obj)) { // check if it returned a Python integer type
402
+ value = obj.cast<int32_t>(); // Cast it and assign it to the value.
403
+ return true; // Return true; value should be used.
404
+ } else {
405
+ return false; // Python returned none, return false.
406
+ }
407
+ }
408
+ return false; // Alternatively return MyClass::myMethod(value);
409
+ }
410
+
411
+
412
+ .. _custom_constructors:
413
+
414
+ Custom constructors
415
+ ===================
416
+
417
+ The syntax for binding constructors was previously introduced, but it only
418
+ works when a constructor of the appropriate arguments actually exists on the
419
+ C++ side. To extend this to more general cases, pybind11 makes it possible
420
+ to bind factory functions as constructors. For example, suppose you have a
421
+ class like this:
422
+
423
+ .. code-block:: cpp
424
+
425
+ class Example {
426
+ private:
427
+ Example(int); // private constructor
428
+ public:
429
+ // Factory function:
430
+ static Example create(int a) { return Example(a); }
431
+ };
432
+
433
+ py::class_<Example>(m, "Example")
434
+ .def(py::init(&Example::create));
435
+
436
+ While it is possible to create a straightforward binding of the static
437
+ ``create`` method, it may sometimes be preferable to expose it as a constructor
438
+ on the Python side. This can be accomplished by calling ``.def(py::init(...))``
439
+ with the function reference returning the new instance passed as an argument.
440
+ It is also possible to use this approach to bind a function returning a new
441
+ instance by raw pointer or by the holder (e.g. ``std::unique_ptr``).
442
+
443
+ The following example shows the different approaches:
444
+
445
+ .. code-block:: cpp
446
+
447
+ class Example {
448
+ private:
449
+ Example(int); // private constructor
450
+ public:
451
+ // Factory function - returned by value:
452
+ static Example create(int a) { return Example(a); }
453
+
454
+ // These constructors are publicly callable:
455
+ Example(double);
456
+ Example(int, int);
457
+ Example(std::string);
458
+ };
459
+
460
+ py::class_<Example>(m, "Example")
461
+ // Bind the factory function as a constructor:
462
+ .def(py::init(&Example::create))
463
+ // Bind a lambda function returning a pointer wrapped in a holder:
464
+ .def(py::init([](std::string arg) {
465
+ return std::unique_ptr<Example>(new Example(arg));
466
+ }))
467
+ // Return a raw pointer:
468
+ .def(py::init([](int a, int b) { return new Example(a, b); }))
469
+ // You can mix the above with regular C++ constructor bindings as well:
470
+ .def(py::init<double>())
471
+ ;
472
+
473
+ When the constructor is invoked from Python, pybind11 will call the factory
474
+ function and store the resulting C++ instance in the Python instance.
475
+
476
+ When combining factory functions constructors with :ref:`virtual function
477
+ trampolines <overriding_virtuals>` there are two approaches. The first is to
478
+ add a constructor to the alias class that takes a base value by
479
+ rvalue-reference. If such a constructor is available, it will be used to
480
+ construct an alias instance from the value returned by the factory function.
481
+ The second option is to provide two factory functions to ``py::init()``: the
482
+ first will be invoked when no alias class is required (i.e. when the class is
483
+ being used but not inherited from in Python), and the second will be invoked
484
+ when an alias is required.
485
+
486
+ You can also specify a single factory function that always returns an alias
487
+ instance: this will result in behaviour similar to ``py::init_alias<...>()``,
488
+ as described in the :ref:`extended trampoline class documentation
489
+ <extended_aliases>`.
490
+
491
+ The following example shows the different factory approaches for a class with
492
+ an alias:
493
+
494
+ .. code-block:: cpp
495
+
496
+ #include <pybind11/factory.h>
497
+ class Example {
498
+ public:
499
+ // ...
500
+ virtual ~Example() = default;
501
+ };
502
+ class PyExample : public Example {
503
+ public:
504
+ using Example::Example;
505
+ PyExample(Example &&base) : Example(std::move(base)) {}
506
+ };
507
+ py::class_<Example, PyExample>(m, "Example")
508
+ // Returns an Example pointer. If a PyExample is needed, the Example
509
+ // instance will be moved via the extra constructor in PyExample, above.
510
+ .def(py::init([]() { return new Example(); }))
511
+ // Two callbacks:
512
+ .def(py::init([]() { return new Example(); } /* no alias needed */,
513
+ []() { return new PyExample(); } /* alias needed */))
514
+ // *Always* returns an alias instance (like py::init_alias<>())
515
+ .def(py::init([]() { return new PyExample(); }))
516
+ ;
517
+
518
+ Brace initialization
519
+ --------------------
520
+
521
+ ``pybind11::init<>`` internally uses C++11 brace initialization to call the
522
+ constructor of the target class. This means that it can be used to bind
523
+ *implicit* constructors as well:
524
+
525
+ .. code-block:: cpp
526
+
527
+ struct Aggregate {
528
+ int a;
529
+ std::string b;
530
+ };
531
+
532
+ py::class_<Aggregate>(m, "Aggregate")
533
+ .def(py::init<int, const std::string &>());
534
+
535
+ .. note::
536
+
537
+ Note that brace initialization preferentially invokes constructor overloads
538
+ taking a ``std::initializer_list``. In the rare event that this causes an
539
+ issue, you can work around it by using ``py::init(...)`` with a lambda
540
+ function that constructs the new object as desired.
541
+
542
+ .. _classes_with_non_public_destructors:
543
+
544
+ Non-public destructors
545
+ ======================
546
+
547
+ If a class has a private or protected destructor (as might e.g. be the case in
548
+ a singleton pattern), a compile error will occur when creating bindings via
549
+ pybind11. The underlying issue is that the ``std::unique_ptr`` holder type that
550
+ is responsible for managing the lifetime of instances will reference the
551
+ destructor even if no deallocations ever take place. In order to expose classes
552
+ with private or protected destructors, it is possible to override the holder
553
+ type via a holder type argument to ``class_``. Pybind11 provides a helper class
554
+ ``py::nodelete`` that disables any destructor invocations. In this case, it is
555
+ crucial that instances are deallocated on the C++ side to avoid memory leaks.
556
+
557
+ .. code-block:: cpp
558
+
559
+ /* ... definition ... */
560
+
561
+ class MyClass {
562
+ private:
563
+ ~MyClass() { }
564
+ };
565
+
566
+ /* ... binding code ... */
567
+
568
+ py::class_<MyClass, std::unique_ptr<MyClass, py::nodelete>>(m, "MyClass")
569
+ .def(py::init<>())
570
+
571
+ .. _destructors_that_call_python:
572
+
573
+ Destructors that call Python
574
+ ============================
575
+
576
+ If a Python function is invoked from a C++ destructor, an exception may be thrown
577
+ of type :class:`error_already_set`. If this error is thrown out of a class destructor,
578
+ ``std::terminate()`` will be called, terminating the process. Class destructors
579
+ must catch all exceptions of type :class:`error_already_set` to discard the Python
580
+ exception using :func:`error_already_set::discard_as_unraisable`.
581
+
582
+ Every Python function should be treated as *possibly throwing*. When a Python generator
583
+ stops yielding items, Python will throw a ``StopIteration`` exception, which can pass
584
+ though C++ destructors if the generator's stack frame holds the last reference to C++
585
+ objects.
586
+
587
+ For more information, see :ref:`the documentation on exceptions <unraisable_exceptions>`.
588
+
589
+ .. code-block:: cpp
590
+
591
+ class MyClass {
592
+ public:
593
+ ~MyClass() {
594
+ try {
595
+ py::print("Even printing is dangerous in a destructor");
596
+ py::exec("raise ValueError('This is an unraisable exception')");
597
+ } catch (py::error_already_set &e) {
598
+ // error_context should be information about where/why the occurred,
599
+ // e.g. use __func__ to get the name of the current function
600
+ e.discard_as_unraisable(__func__);
601
+ }
602
+ }
603
+ };
604
+
605
+ .. note::
606
+
607
+ pybind11 does not support C++ destructors marked ``noexcept(false)``.
608
+
609
+ .. versionadded:: 2.6
610
+
611
+ .. _implicit_conversions:
612
+
613
+ Implicit conversions
614
+ ====================
615
+
616
+ Suppose that instances of two types ``A`` and ``B`` are used in a project, and
617
+ that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
618
+ could be a fixed and an arbitrary precision number type).
619
+
620
+ .. code-block:: cpp
621
+
622
+ py::class_<A>(m, "A")
623
+ /// ... members ...
624
+
625
+ py::class_<B>(m, "B")
626
+ .def(py::init<A>())
627
+ /// ... members ...
628
+
629
+ m.def("func",
630
+ [](const B &) { /* .... */ }
631
+ );
632
+
633
+ To invoke the function ``func`` using a variable ``a`` containing an ``A``
634
+ instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
635
+ will automatically apply an implicit type conversion, which makes it possible
636
+ to directly write ``func(a)``.
637
+
638
+ In this situation (i.e. where ``B`` has a constructor that converts from
639
+ ``A``), the following statement enables similar implicit conversions on the
640
+ Python side:
641
+
642
+ .. code-block:: cpp
643
+
644
+ py::implicitly_convertible<A, B>();
645
+
646
+ .. note::
647
+
648
+ Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom
649
+ data type that is exposed to Python via pybind11.
650
+
651
+ To prevent runaway recursion, implicit conversions are non-reentrant: an
652
+ implicit conversion invoked as part of another implicit conversion of the
653
+ same type (i.e. from ``A`` to ``B``) will fail.
654
+
655
+ .. _static_properties:
656
+
657
+ Static properties
658
+ =================
659
+
660
+ The section on :ref:`properties` discussed the creation of instance properties
661
+ that are implemented in terms of C++ getters and setters.
662
+
663
+ Static properties can also be created in a similar way to expose getters and
664
+ setters of static class attributes. Note that the implicit ``self`` argument
665
+ also exists in this case and is used to pass the Python ``type`` subclass
666
+ instance. This parameter will often not be needed by the C++ side, and the
667
+ following example illustrates how to instantiate a lambda getter function
668
+ that ignores it:
669
+
670
+ .. code-block:: cpp
671
+
672
+ py::class_<Foo>(m, "Foo")
673
+ .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
674
+
675
+ Operator overloading
676
+ ====================
677
+
678
+ Suppose that we're given the following ``Vector2`` class with a vector addition
679
+ and scalar multiplication operation, all implemented using overloaded operators
680
+ in C++.
681
+
682
+ .. code-block:: cpp
683
+
684
+ class Vector2 {
685
+ public:
686
+ Vector2(float x, float y) : x(x), y(y) { }
687
+
688
+ Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
689
+ Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
690
+ Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
691
+ Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
692
+
693
+ friend Vector2 operator*(float f, const Vector2 &v) {
694
+ return Vector2(f * v.x, f * v.y);
695
+ }
696
+
697
+ std::string toString() const {
698
+ return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
699
+ }
700
+ private:
701
+ float x, y;
702
+ };
703
+
704
+ The following snippet shows how the above operators can be conveniently exposed
705
+ to Python.
706
+
707
+ .. code-block:: cpp
708
+
709
+ #include <pybind11/operators.h>
710
+
711
+ PYBIND11_MODULE(example, m) {
712
+ py::class_<Vector2>(m, "Vector2")
713
+ .def(py::init<float, float>())
714
+ .def(py::self + py::self)
715
+ .def(py::self += py::self)
716
+ .def(py::self *= float())
717
+ .def(float() * py::self)
718
+ .def(py::self * float())
719
+ .def(-py::self)
720
+ .def("__repr__", &Vector2::toString);
721
+ }
722
+
723
+ Note that a line like
724
+
725
+ .. code-block:: cpp
726
+
727
+ .def(py::self * float())
728
+
729
+ is really just short hand notation for
730
+
731
+ .. code-block:: cpp
732
+
733
+ .def("__mul__", [](const Vector2 &a, float b) {
734
+ return a * b;
735
+ }, py::is_operator())
736
+
737
+ This can be useful for exposing additional operators that don't exist on the
738
+ C++ side, or to perform other types of customization. The ``py::is_operator``
739
+ flag marker is needed to inform pybind11 that this is an operator, which
740
+ returns ``NotImplemented`` when invoked with incompatible arguments rather than
741
+ throwing a type error.
742
+
743
+ .. note::
744
+
745
+ To use the more convenient ``py::self`` notation, the additional
746
+ header file :file:`pybind11/operators.h` must be included.
747
+
748
+ .. seealso::
749
+
750
+ The file :file:`tests/test_operator_overloading.cpp` contains a
751
+ complete example that demonstrates how to work with overloaded operators in
752
+ more detail.
753
+
754
+ .. _pickling:
755
+
756
+ Pickling support
757
+ ================
758
+
759
+ Python's ``pickle`` module provides a powerful facility to serialize and
760
+ de-serialize a Python object graph into a binary data stream. To pickle and
761
+ unpickle C++ classes using pybind11, a ``py::pickle()`` definition must be
762
+ provided. Suppose the class in question has the following signature:
763
+
764
+ .. code-block:: cpp
765
+
766
+ class Pickleable {
767
+ public:
768
+ Pickleable(const std::string &value) : m_value(value) { }
769
+ const std::string &value() const { return m_value; }
770
+
771
+ void setExtra(int extra) { m_extra = extra; }
772
+ int extra() const { return m_extra; }
773
+ private:
774
+ std::string m_value;
775
+ int m_extra = 0;
776
+ };
777
+
778
+ Pickling support in Python is enabled by defining the ``__setstate__`` and
779
+ ``__getstate__`` methods [#f3]_. For pybind11 classes, use ``py::pickle()``
780
+ to bind these two functions:
781
+
782
+ .. code-block:: cpp
783
+
784
+ py::class_<Pickleable>(m, "Pickleable")
785
+ .def(py::init<std::string>())
786
+ .def("value", &Pickleable::value)
787
+ .def("extra", &Pickleable::extra)
788
+ .def("setExtra", &Pickleable::setExtra)
789
+ .def(py::pickle(
790
+ [](const Pickleable &p) { // __getstate__
791
+ /* Return a tuple that fully encodes the state of the object */
792
+ return py::make_tuple(p.value(), p.extra());
793
+ },
794
+ [](py::tuple t) { // __setstate__
795
+ if (t.size() != 2)
796
+ throw std::runtime_error("Invalid state!");
797
+
798
+ /* Create a new C++ instance */
799
+ Pickleable p(t[0].cast<std::string>());
800
+
801
+ /* Assign any additional state */
802
+ p.setExtra(t[1].cast<int>());
803
+
804
+ return p;
805
+ }
806
+ ));
807
+
808
+ The ``__setstate__`` part of the ``py::pickle()`` definition follows the same
809
+ rules as the single-argument version of ``py::init()``. The return type can be
810
+ a value, pointer or holder type. See :ref:`custom_constructors` for details.
811
+
812
+ An instance can now be pickled as follows:
813
+
814
+ .. code-block:: python
815
+
816
+ import pickle
817
+
818
+ p = Pickleable("test_value")
819
+ p.setExtra(15)
820
+ data = pickle.dumps(p)
821
+
822
+
823
+ .. note::
824
+ If given, the second argument to ``dumps`` must be 2 or larger - 0 and 1 are
825
+ not supported. Newer versions are also fine; for instance, specify ``-1`` to
826
+ always use the latest available version. Beware: failure to follow these
827
+ instructions will cause important pybind11 memory allocation routines to be
828
+ skipped during unpickling, which will likely lead to memory corruption
829
+ and/or segmentation faults. Python defaults to version 3 (Python 3-3.7) and
830
+ version 4 for Python 3.8+.
831
+
832
+ .. seealso::
833
+
834
+ The file :file:`tests/test_pickling.cpp` contains a complete example
835
+ that demonstrates how to pickle and unpickle types using pybind11 in more
836
+ detail.
837
+
838
+ .. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
839
+
840
+ Deepcopy support
841
+ ================
842
+
843
+ Python normally uses references in assignments. Sometimes a real copy is needed
844
+ to prevent changing all copies. The ``copy`` module [#f5]_ provides these
845
+ capabilities.
846
+
847
+ A class with pickle support is automatically also (deep)copy
848
+ compatible. However, performance can be improved by adding custom
849
+ ``__copy__`` and ``__deepcopy__`` methods.
850
+
851
+ For simple classes (deep)copy can be enabled by using the copy constructor,
852
+ which should look as follows:
853
+
854
+ .. code-block:: cpp
855
+
856
+ py::class_<Copyable>(m, "Copyable")
857
+ .def("__copy__", [](const Copyable &self) {
858
+ return Copyable(self);
859
+ })
860
+ .def("__deepcopy__", [](const Copyable &self, py::dict) {
861
+ return Copyable(self);
862
+ }, "memo"_a);
863
+
864
+ .. note::
865
+
866
+ Dynamic attributes will not be copied in this example.
867
+
868
+ .. [#f5] https://docs.python.org/3/library/copy.html
869
+
870
+ Multiple Inheritance
871
+ ====================
872
+
873
+ pybind11 can create bindings for types that derive from multiple base types
874
+ (aka. *multiple inheritance*). To do so, specify all bases in the template
875
+ arguments of the ``class_`` declaration:
876
+
877
+ .. code-block:: cpp
878
+
879
+ py::class_<MyType, BaseType1, BaseType2, BaseType3>(m, "MyType")
880
+ ...
881
+
882
+ The base types can be specified in arbitrary order, and they can even be
883
+ interspersed with alias types and holder types (discussed earlier in this
884
+ document)---pybind11 will automatically find out which is which. The only
885
+ requirement is that the first template argument is the type to be declared.
886
+
887
+ It is also permitted to inherit multiply from exported C++ classes in Python,
888
+ as well as inheriting from multiple Python and/or pybind11-exported classes.
889
+
890
+ There is one caveat regarding the implementation of this feature:
891
+
892
+ When only one base type is specified for a C++ type that actually has multiple
893
+ bases, pybind11 will assume that it does not participate in multiple
894
+ inheritance, which can lead to undefined behavior. In such cases, add the tag
895
+ ``multiple_inheritance`` to the class constructor:
896
+
897
+ .. code-block:: cpp
898
+
899
+ py::class_<MyType, BaseType2>(m, "MyType", py::multiple_inheritance());
900
+
901
+ The tag is redundant and does not need to be specified when multiple base types
902
+ are listed.
903
+
904
+ .. _module_local:
905
+
906
+ Module-local class bindings
907
+ ===========================
908
+
909
+ When creating a binding for a class, pybind11 by default makes that binding
910
+ "global" across modules. What this means is that a type defined in one module
911
+ can be returned from any module resulting in the same Python type. For
912
+ example, this allows the following:
913
+
914
+ .. code-block:: cpp
915
+
916
+ // In the module1.cpp binding code for module1:
917
+ py::class_<Pet>(m, "Pet")
918
+ .def(py::init<std::string>())
919
+ .def_readonly("name", &Pet::name);
920
+
921
+ .. code-block:: cpp
922
+
923
+ // In the module2.cpp binding code for module2:
924
+ m.def("create_pet", [](std::string name) { return new Pet(name); });
925
+
926
+ .. code-block:: pycon
927
+
928
+ >>> from module1 import Pet
929
+ >>> from module2 import create_pet
930
+ >>> pet1 = Pet("Kitty")
931
+ >>> pet2 = create_pet("Doggy")
932
+ >>> pet2.name()
933
+ 'Doggy'
934
+
935
+ When writing binding code for a library, this is usually desirable: this
936
+ allows, for example, splitting up a complex library into multiple Python
937
+ modules.
938
+
939
+ In some cases, however, this can cause conflicts. For example, suppose two
940
+ unrelated modules make use of an external C++ library and each provide custom
941
+ bindings for one of that library's classes. This will result in an error when
942
+ a Python program attempts to import both modules (directly or indirectly)
943
+ because of conflicting definitions on the external type:
944
+
945
+ .. code-block:: cpp
946
+
947
+ // dogs.cpp
948
+
949
+ // Binding for external library class:
950
+ py::class<pets::Pet>(m, "Pet")
951
+ .def("name", &pets::Pet::name);
952
+
953
+ // Binding for local extension class:
954
+ py::class<Dog, pets::Pet>(m, "Dog")
955
+ .def(py::init<std::string>());
956
+
957
+ .. code-block:: cpp
958
+
959
+ // cats.cpp, in a completely separate project from the above dogs.cpp.
960
+
961
+ // Binding for external library class:
962
+ py::class<pets::Pet>(m, "Pet")
963
+ .def("get_name", &pets::Pet::name);
964
+
965
+ // Binding for local extending class:
966
+ py::class<Cat, pets::Pet>(m, "Cat")
967
+ .def(py::init<std::string>());
968
+
969
+ .. code-block:: pycon
970
+
971
+ >>> import cats
972
+ >>> import dogs
973
+ Traceback (most recent call last):
974
+ File "<stdin>", line 1, in <module>
975
+ ImportError: generic_type: type "Pet" is already registered!
976
+
977
+ To get around this, you can tell pybind11 to keep the external class binding
978
+ localized to the module by passing the ``py::module_local()`` attribute into
979
+ the ``py::class_`` constructor:
980
+
981
+ .. code-block:: cpp
982
+
983
+ // Pet binding in dogs.cpp:
984
+ py::class<pets::Pet>(m, "Pet", py::module_local())
985
+ .def("name", &pets::Pet::name);
986
+
987
+ .. code-block:: cpp
988
+
989
+ // Pet binding in cats.cpp:
990
+ py::class<pets::Pet>(m, "Pet", py::module_local())
991
+ .def("get_name", &pets::Pet::name);
992
+
993
+ This makes the Python-side ``dogs.Pet`` and ``cats.Pet`` into distinct classes,
994
+ avoiding the conflict and allowing both modules to be loaded. C++ code in the
995
+ ``dogs`` module that casts or returns a ``Pet`` instance will result in a
996
+ ``dogs.Pet`` Python instance, while C++ code in the ``cats`` module will result
997
+ in a ``cats.Pet`` Python instance.
998
+
999
+ This does come with two caveats, however: First, external modules cannot return
1000
+ or cast a ``Pet`` instance to Python (unless they also provide their own local
1001
+ bindings). Second, from the Python point of view they are two distinct classes.
1002
+
1003
+ Note that the locality only applies in the C++ -> Python direction. When
1004
+ passing such a ``py::module_local`` type into a C++ function, the module-local
1005
+ classes are still considered. This means that if the following function is
1006
+ added to any module (including but not limited to the ``cats`` and ``dogs``
1007
+ modules above) it will be callable with either a ``dogs.Pet`` or ``cats.Pet``
1008
+ argument:
1009
+
1010
+ .. code-block:: cpp
1011
+
1012
+ m.def("pet_name", [](const pets::Pet &pet) { return pet.name(); });
1013
+
1014
+ For example, suppose the above function is added to each of ``cats.cpp``,
1015
+ ``dogs.cpp`` and ``frogs.cpp`` (where ``frogs.cpp`` is some other module that
1016
+ does *not* bind ``Pets`` at all).
1017
+
1018
+ .. code-block:: pycon
1019
+
1020
+ >>> import cats, dogs, frogs # No error because of the added py::module_local()
1021
+ >>> mycat, mydog = cats.Cat("Fluffy"), dogs.Dog("Rover")
1022
+ >>> (cats.pet_name(mycat), dogs.pet_name(mydog))
1023
+ ('Fluffy', 'Rover')
1024
+ >>> (cats.pet_name(mydog), dogs.pet_name(mycat), frogs.pet_name(mycat))
1025
+ ('Rover', 'Fluffy', 'Fluffy')
1026
+
1027
+ It is possible to use ``py::module_local()`` registrations in one module even
1028
+ if another module registers the same type globally: within the module with the
1029
+ module-local definition, all C++ instances will be cast to the associated bound
1030
+ Python type. In other modules any such values are converted to the global
1031
+ Python type created elsewhere.
1032
+
1033
+ .. note::
1034
+
1035
+ STL bindings (as provided via the optional :file:`pybind11/stl_bind.h`
1036
+ header) apply ``py::module_local`` by default when the bound type might
1037
+ conflict with other modules; see :ref:`stl_bind` for details.
1038
+
1039
+ .. note::
1040
+
1041
+ The localization of the bound types is actually tied to the shared object
1042
+ or binary generated by the compiler/linker. For typical modules created
1043
+ with ``PYBIND11_MODULE()``, this distinction is not significant. It is
1044
+ possible, however, when :ref:`embedding` to embed multiple modules in the
1045
+ same binary (see :ref:`embedding_modules`). In such a case, the
1046
+ localization will apply across all embedded modules within the same binary.
1047
+
1048
+ .. seealso::
1049
+
1050
+ The file :file:`tests/test_local_bindings.cpp` contains additional examples
1051
+ that demonstrate how ``py::module_local()`` works.
1052
+
1053
+ Binding protected member functions
1054
+ ==================================
1055
+
1056
+ It's normally not possible to expose ``protected`` member functions to Python:
1057
+
1058
+ .. code-block:: cpp
1059
+
1060
+ class A {
1061
+ protected:
1062
+ int foo() const { return 42; }
1063
+ };
1064
+
1065
+ py::class_<A>(m, "A")
1066
+ .def("foo", &A::foo); // error: 'foo' is a protected member of 'A'
1067
+
1068
+ On one hand, this is good because non-``public`` members aren't meant to be
1069
+ accessed from the outside. But we may want to make use of ``protected``
1070
+ functions in derived Python classes.
1071
+
1072
+ The following pattern makes this possible:
1073
+
1074
+ .. code-block:: cpp
1075
+
1076
+ class A {
1077
+ protected:
1078
+ int foo() const { return 42; }
1079
+ };
1080
+
1081
+ class Publicist : public A { // helper type for exposing protected functions
1082
+ public:
1083
+ using A::foo; // inherited with different access modifier
1084
+ };
1085
+
1086
+ py::class_<A>(m, "A") // bind the primary class
1087
+ .def("foo", &Publicist::foo); // expose protected methods via the publicist
1088
+
1089
+ This works because ``&Publicist::foo`` is exactly the same function as
1090
+ ``&A::foo`` (same signature and address), just with a different access
1091
+ modifier. The only purpose of the ``Publicist`` helper class is to make
1092
+ the function name ``public``.
1093
+
1094
+ If the intent is to expose ``protected`` ``virtual`` functions which can be
1095
+ overridden in Python, the publicist pattern can be combined with the previously
1096
+ described trampoline:
1097
+
1098
+ .. code-block:: cpp
1099
+
1100
+ class A {
1101
+ public:
1102
+ virtual ~A() = default;
1103
+
1104
+ protected:
1105
+ virtual int foo() const { return 42; }
1106
+ };
1107
+
1108
+ class Trampoline : public A {
1109
+ public:
1110
+ int foo() const override { PYBIND11_OVERRIDE(int, A, foo, ); }
1111
+ };
1112
+
1113
+ class Publicist : public A {
1114
+ public:
1115
+ using A::foo;
1116
+ };
1117
+
1118
+ py::class_<A, Trampoline>(m, "A") // <-- `Trampoline` here
1119
+ .def("foo", &Publicist::foo); // <-- `Publicist` here, not `Trampoline`!
1120
+
1121
+ Binding final classes
1122
+ =====================
1123
+
1124
+ Some classes may not be appropriate to inherit from. In C++11, classes can
1125
+ use the ``final`` specifier to ensure that a class cannot be inherited from.
1126
+ The ``py::is_final`` attribute can be used to ensure that Python classes
1127
+ cannot inherit from a specified type. The underlying C++ type does not need
1128
+ to be declared final.
1129
+
1130
+ .. code-block:: cpp
1131
+
1132
+ class IsFinal final {};
1133
+
1134
+ py::class_<IsFinal>(m, "IsFinal", py::is_final());
1135
+
1136
+ When you try to inherit from such a class in Python, you will now get this
1137
+ error:
1138
+
1139
+ .. code-block:: pycon
1140
+
1141
+ >>> class PyFinalChild(IsFinal):
1142
+ ... pass
1143
+ ...
1144
+ TypeError: type 'IsFinal' is not an acceptable base type
1145
+
1146
+ .. note:: This attribute is currently ignored on PyPy
1147
+
1148
+ .. versionadded:: 2.6
1149
+
1150
+ Binding classes with template parameters
1151
+ ========================================
1152
+
1153
+ pybind11 can also wrap classes that have template parameters. Consider these classes:
1154
+
1155
+ .. code-block:: cpp
1156
+
1157
+ struct Cat {};
1158
+ struct Dog {};
1159
+
1160
+ template <typename PetType>
1161
+ struct Cage {
1162
+ Cage(PetType& pet);
1163
+ PetType& get();
1164
+ };
1165
+
1166
+ C++ templates may only be instantiated at compile time, so pybind11 can only
1167
+ wrap instantiated templated classes. You cannot wrap a non-instantiated template:
1168
+
1169
+ .. code-block:: cpp
1170
+
1171
+ // BROKEN (this will not compile)
1172
+ py::class_<Cage>(m, "Cage");
1173
+ .def("get", &Cage::get);
1174
+
1175
+ You must explicitly specify each template/type combination that you want to
1176
+ wrap separately.
1177
+
1178
+ .. code-block:: cpp
1179
+
1180
+ // ok
1181
+ py::class_<Cage<Cat>>(m, "CatCage")
1182
+ .def("get", &Cage<Cat>::get);
1183
+
1184
+ // ok
1185
+ py::class_<Cage<Dog>>(m, "DogCage")
1186
+ .def("get", &Cage<Dog>::get);
1187
+
1188
+ If your class methods have template parameters you can wrap those as well,
1189
+ but once again each instantiation must be explicitly specified:
1190
+
1191
+ .. code-block:: cpp
1192
+
1193
+ typename <typename T>
1194
+ struct MyClass {
1195
+ template <typename V>
1196
+ T fn(V v);
1197
+ };
1198
+
1199
+ py::class<MyClass<int>>(m, "MyClassT")
1200
+ .def("fn", &MyClass<int>::fn<std::string>);
1201
+
1202
+ Custom automatic downcasters
1203
+ ============================
1204
+
1205
+ As explained in :ref:`inheritance`, pybind11 comes with built-in
1206
+ understanding of the dynamic type of polymorphic objects in C++; that
1207
+ is, returning a Pet to Python produces a Python object that knows it's
1208
+ wrapping a Dog, if Pet has virtual methods and pybind11 knows about
1209
+ Dog and this Pet is in fact a Dog. Sometimes, you might want to
1210
+ provide this automatic downcasting behavior when creating bindings for
1211
+ a class hierarchy that does not use standard C++ polymorphism, such as
1212
+ LLVM [#f4]_. As long as there's some way to determine at runtime
1213
+ whether a downcast is safe, you can proceed by specializing the
1214
+ ``pybind11::polymorphic_type_hook`` template:
1215
+
1216
+ .. code-block:: cpp
1217
+
1218
+ enum class PetKind { Cat, Dog, Zebra };
1219
+ struct Pet { // Not polymorphic: has no virtual methods
1220
+ const PetKind kind;
1221
+ int age = 0;
1222
+ protected:
1223
+ Pet(PetKind _kind) : kind(_kind) {}
1224
+ };
1225
+ struct Dog : Pet {
1226
+ Dog() : Pet(PetKind::Dog) {}
1227
+ std::string sound = "woof!";
1228
+ std::string bark() const { return sound; }
1229
+ };
1230
+
1231
+ namespace pybind11 {
1232
+ template<> struct polymorphic_type_hook<Pet> {
1233
+ static const void *get(const Pet *src, const std::type_info*& type) {
1234
+ // note that src may be nullptr
1235
+ if (src && src->kind == PetKind::Dog) {
1236
+ type = &typeid(Dog);
1237
+ return static_cast<const Dog*>(src);
1238
+ }
1239
+ return src;
1240
+ }
1241
+ };
1242
+ } // namespace pybind11
1243
+
1244
+ When pybind11 wants to convert a C++ pointer of type ``Base*`` to a
1245
+ Python object, it calls ``polymorphic_type_hook<Base>::get()`` to
1246
+ determine if a downcast is possible. The ``get()`` function should use
1247
+ whatever runtime information is available to determine if its ``src``
1248
+ parameter is in fact an instance of some class ``Derived`` that
1249
+ inherits from ``Base``. If it finds such a ``Derived``, it sets ``type
1250
+ = &typeid(Derived)`` and returns a pointer to the ``Derived`` object
1251
+ that contains ``src``. Otherwise, it just returns ``src``, leaving
1252
+ ``type`` at its default value of nullptr. If you set ``type`` to a
1253
+ type that pybind11 doesn't know about, no downcasting will occur, and
1254
+ the original ``src`` pointer will be used with its static type
1255
+ ``Base*``.
1256
+
1257
+ It is critical that the returned pointer and ``type`` argument of
1258
+ ``get()`` agree with each other: if ``type`` is set to something
1259
+ non-null, the returned pointer must point to the start of an object
1260
+ whose type is ``type``. If the hierarchy being exposed uses only
1261
+ single inheritance, a simple ``return src;`` will achieve this just
1262
+ fine, but in the general case, you must cast ``src`` to the
1263
+ appropriate derived-class pointer (e.g. using
1264
+ ``static_cast<Derived>(src)``) before allowing it to be returned as a
1265
+ ``void*``.
1266
+
1267
+ .. [#f4] https://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html
1268
+
1269
+ .. note::
1270
+
1271
+ pybind11's standard support for downcasting objects whose types
1272
+ have virtual methods is implemented using
1273
+ ``polymorphic_type_hook`` too, using the standard C++ ability to
1274
+ determine the most-derived type of a polymorphic object using
1275
+ ``typeid()`` and to cast a base pointer to that most-derived type
1276
+ (even if you don't know what it is) using ``dynamic_cast<void*>``.
1277
+
1278
+ .. seealso::
1279
+
1280
+ The file :file:`tests/test_tagbased_polymorphic.cpp` contains a
1281
+ more complete example, including a demonstration of how to provide
1282
+ automatic downcasting for an entire class hierarchy without
1283
+ writing one get() function for each class.
1284
+
1285
+ Accessing the type object
1286
+ =========================
1287
+
1288
+ You can get the type object from a C++ class that has already been registered using:
1289
+
1290
+ .. code-block:: cpp
1291
+
1292
+ py::type T_py = py::type::of<T>();
1293
+
1294
+ You can directly use ``py::type::of(ob)`` to get the type object from any python
1295
+ object, just like ``type(ob)`` in Python.
1296
+
1297
+ .. note::
1298
+
1299
+ Other types, like ``py::type::of<int>()``, do not work, see :ref:`type-conversions`.
1300
+
1301
+ .. versionadded:: 2.6
1302
+
1303
+ Custom type setup
1304
+ =================
1305
+
1306
+ For advanced use cases, such as enabling garbage collection support, you may
1307
+ wish to directly manipulate the ``PyHeapTypeObject`` corresponding to a
1308
+ ``py::class_`` definition.
1309
+
1310
+ You can do that using ``py::custom_type_setup``:
1311
+
1312
+ .. code-block:: cpp
1313
+
1314
+ struct OwnsPythonObjects {
1315
+ py::object value = py::none();
1316
+ };
1317
+ py::class_<OwnsPythonObjects> cls(
1318
+ m, "OwnsPythonObjects", py::custom_type_setup([](PyHeapTypeObject *heap_type) {
1319
+ auto *type = &heap_type->ht_type;
1320
+ type->tp_flags |= Py_TPFLAGS_HAVE_GC;
1321
+ type->tp_traverse = [](PyObject *self_base, visitproc visit, void *arg) {
1322
+ auto &self = py::cast<OwnsPythonObjects&>(py::handle(self_base));
1323
+ Py_VISIT(self.value.ptr());
1324
+ return 0;
1325
+ };
1326
+ type->tp_clear = [](PyObject *self_base) {
1327
+ auto &self = py::cast<OwnsPythonObjects&>(py::handle(self_base));
1328
+ self.value = py::none();
1329
+ return 0;
1330
+ };
1331
+ }));
1332
+ cls.def(py::init<>());
1333
+ cls.def_readwrite("value", &OwnsPythonObjects::value);
1334
+
1335
+ .. versionadded:: 2.8
third-party/DPVO/DPViewer/pybind11/docs/advanced/embedding.rst ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. _embedding:
2
+
3
+ Embedding the interpreter
4
+ #########################
5
+
6
+ While pybind11 is mainly focused on extending Python using C++, it's also
7
+ possible to do the reverse: embed the Python interpreter into a C++ program.
8
+ All of the other documentation pages still apply here, so refer to them for
9
+ general pybind11 usage. This section will cover a few extra things required
10
+ for embedding.
11
+
12
+ Getting started
13
+ ===============
14
+
15
+ A basic executable with an embedded interpreter can be created with just a few
16
+ lines of CMake and the ``pybind11::embed`` target, as shown below. For more
17
+ information, see :doc:`/compiling`.
18
+
19
+ .. code-block:: cmake
20
+
21
+ cmake_minimum_required(VERSION 3.4)
22
+ project(example)
23
+
24
+ find_package(pybind11 REQUIRED) # or `add_subdirectory(pybind11)`
25
+
26
+ add_executable(example main.cpp)
27
+ target_link_libraries(example PRIVATE pybind11::embed)
28
+
29
+ The essential structure of the ``main.cpp`` file looks like this:
30
+
31
+ .. code-block:: cpp
32
+
33
+ #include <pybind11/embed.h> // everything needed for embedding
34
+ namespace py = pybind11;
35
+
36
+ int main() {
37
+ py::scoped_interpreter guard{}; // start the interpreter and keep it alive
38
+
39
+ py::print("Hello, World!"); // use the Python API
40
+ }
41
+
42
+ The interpreter must be initialized before using any Python API, which includes
43
+ all the functions and classes in pybind11. The RAII guard class ``scoped_interpreter``
44
+ takes care of the interpreter lifetime. After the guard is destroyed, the interpreter
45
+ shuts down and clears its memory. No Python functions can be called after this.
46
+
47
+ Executing Python code
48
+ =====================
49
+
50
+ There are a few different ways to run Python code. One option is to use ``eval``,
51
+ ``exec`` or ``eval_file``, as explained in :ref:`eval`. Here is a quick example in
52
+ the context of an executable with an embedded interpreter:
53
+
54
+ .. code-block:: cpp
55
+
56
+ #include <pybind11/embed.h>
57
+ namespace py = pybind11;
58
+
59
+ int main() {
60
+ py::scoped_interpreter guard{};
61
+
62
+ py::exec(R"(
63
+ kwargs = dict(name="World", number=42)
64
+ message = "Hello, {name}! The answer is {number}".format(**kwargs)
65
+ print(message)
66
+ )");
67
+ }
68
+
69
+ Alternatively, similar results can be achieved using pybind11's API (see
70
+ :doc:`/advanced/pycpp/index` for more details).
71
+
72
+ .. code-block:: cpp
73
+
74
+ #include <pybind11/embed.h>
75
+ namespace py = pybind11;
76
+ using namespace py::literals;
77
+
78
+ int main() {
79
+ py::scoped_interpreter guard{};
80
+
81
+ auto kwargs = py::dict("name"_a="World", "number"_a=42);
82
+ auto message = "Hello, {name}! The answer is {number}"_s.format(**kwargs);
83
+ py::print(message);
84
+ }
85
+
86
+ The two approaches can also be combined:
87
+
88
+ .. code-block:: cpp
89
+
90
+ #include <pybind11/embed.h>
91
+ #include <iostream>
92
+
93
+ namespace py = pybind11;
94
+ using namespace py::literals;
95
+
96
+ int main() {
97
+ py::scoped_interpreter guard{};
98
+
99
+ auto locals = py::dict("name"_a="World", "number"_a=42);
100
+ py::exec(R"(
101
+ message = "Hello, {name}! The answer is {number}".format(**locals())
102
+ )", py::globals(), locals);
103
+
104
+ auto message = locals["message"].cast<std::string>();
105
+ std::cout << message;
106
+ }
107
+
108
+ Importing modules
109
+ =================
110
+
111
+ Python modules can be imported using ``module_::import()``:
112
+
113
+ .. code-block:: cpp
114
+
115
+ py::module_ sys = py::module_::import("sys");
116
+ py::print(sys.attr("path"));
117
+
118
+ For convenience, the current working directory is included in ``sys.path`` when
119
+ embedding the interpreter. This makes it easy to import local Python files:
120
+
121
+ .. code-block:: python
122
+
123
+ """calc.py located in the working directory"""
124
+
125
+
126
+ def add(i, j):
127
+ return i + j
128
+
129
+
130
+ .. code-block:: cpp
131
+
132
+ py::module_ calc = py::module_::import("calc");
133
+ py::object result = calc.attr("add")(1, 2);
134
+ int n = result.cast<int>();
135
+ assert(n == 3);
136
+
137
+ Modules can be reloaded using ``module_::reload()`` if the source is modified e.g.
138
+ by an external process. This can be useful in scenarios where the application
139
+ imports a user defined data processing script which needs to be updated after
140
+ changes by the user. Note that this function does not reload modules recursively.
141
+
142
+ .. _embedding_modules:
143
+
144
+ Adding embedded modules
145
+ =======================
146
+
147
+ Embedded binary modules can be added using the ``PYBIND11_EMBEDDED_MODULE`` macro.
148
+ Note that the definition must be placed at global scope. They can be imported
149
+ like any other module.
150
+
151
+ .. code-block:: cpp
152
+
153
+ #include <pybind11/embed.h>
154
+ namespace py = pybind11;
155
+
156
+ PYBIND11_EMBEDDED_MODULE(fast_calc, m) {
157
+ // `m` is a `py::module_` which is used to bind functions and classes
158
+ m.def("add", [](int i, int j) {
159
+ return i + j;
160
+ });
161
+ }
162
+
163
+ int main() {
164
+ py::scoped_interpreter guard{};
165
+
166
+ auto fast_calc = py::module_::import("fast_calc");
167
+ auto result = fast_calc.attr("add")(1, 2).cast<int>();
168
+ assert(result == 3);
169
+ }
170
+
171
+ Unlike extension modules where only a single binary module can be created, on
172
+ the embedded side an unlimited number of modules can be added using multiple
173
+ ``PYBIND11_EMBEDDED_MODULE`` definitions (as long as they have unique names).
174
+
175
+ These modules are added to Python's list of builtins, so they can also be
176
+ imported in pure Python files loaded by the interpreter. Everything interacts
177
+ naturally:
178
+
179
+ .. code-block:: python
180
+
181
+ """py_module.py located in the working directory"""
182
+ import cpp_module
183
+
184
+ a = cpp_module.a
185
+ b = a + 1
186
+
187
+
188
+ .. code-block:: cpp
189
+
190
+ #include <pybind11/embed.h>
191
+ namespace py = pybind11;
192
+
193
+ PYBIND11_EMBEDDED_MODULE(cpp_module, m) {
194
+ m.attr("a") = 1;
195
+ }
196
+
197
+ int main() {
198
+ py::scoped_interpreter guard{};
199
+
200
+ auto py_module = py::module_::import("py_module");
201
+
202
+ auto locals = py::dict("fmt"_a="{} + {} = {}", **py_module.attr("__dict__"));
203
+ assert(locals["a"].cast<int>() == 1);
204
+ assert(locals["b"].cast<int>() == 2);
205
+
206
+ py::exec(R"(
207
+ c = a + b
208
+ message = fmt.format(a, b, c)
209
+ )", py::globals(), locals);
210
+
211
+ assert(locals["c"].cast<int>() == 3);
212
+ assert(locals["message"].cast<std::string>() == "1 + 2 = 3");
213
+ }
214
+
215
+
216
+ Interpreter lifetime
217
+ ====================
218
+
219
+ The Python interpreter shuts down when ``scoped_interpreter`` is destroyed. After
220
+ this, creating a new instance will restart the interpreter. Alternatively, the
221
+ ``initialize_interpreter`` / ``finalize_interpreter`` pair of functions can be used
222
+ to directly set the state at any time.
223
+
224
+ Modules created with pybind11 can be safely re-initialized after the interpreter
225
+ has been restarted. However, this may not apply to third-party extension modules.
226
+ The issue is that Python itself cannot completely unload extension modules and
227
+ there are several caveats with regard to interpreter restarting. In short, not
228
+ all memory may be freed, either due to Python reference cycles or user-created
229
+ global data. All the details can be found in the CPython documentation.
230
+
231
+ .. warning::
232
+
233
+ Creating two concurrent ``scoped_interpreter`` guards is a fatal error. So is
234
+ calling ``initialize_interpreter`` for a second time after the interpreter
235
+ has already been initialized.
236
+
237
+ Do not use the raw CPython API functions ``Py_Initialize`` and
238
+ ``Py_Finalize`` as these do not properly handle the lifetime of
239
+ pybind11's internal data.
240
+
241
+
242
+ Sub-interpreter support
243
+ =======================
244
+
245
+ Creating multiple copies of ``scoped_interpreter`` is not possible because it
246
+ represents the main Python interpreter. Sub-interpreters are something different
247
+ and they do permit the existence of multiple interpreters. This is an advanced
248
+ feature of the CPython API and should be handled with care. pybind11 does not
249
+ currently offer a C++ interface for sub-interpreters, so refer to the CPython
250
+ documentation for all the details regarding this feature.
251
+
252
+ We'll just mention a couple of caveats the sub-interpreters support in pybind11:
253
+
254
+ 1. Sub-interpreters will not receive independent copies of embedded modules.
255
+ Instead, these are shared and modifications in one interpreter may be
256
+ reflected in another.
257
+
258
+ 2. Managing multiple threads, multiple interpreters and the GIL can be
259
+ challenging and there are several caveats here, even within the pure
260
+ CPython API (please refer to the Python docs for details). As for
261
+ pybind11, keep in mind that ``gil_scoped_release`` and ``gil_scoped_acquire``
262
+ do not take sub-interpreters into account.
third-party/DPVO/DPViewer/pybind11/docs/advanced/exceptions.rst ADDED
@@ -0,0 +1,398 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Exceptions
2
+ ##########
3
+
4
+ Built-in C++ to Python exception translation
5
+ ============================================
6
+
7
+ When Python calls C++ code through pybind11, pybind11 provides a C++ exception handler
8
+ that will trap C++ exceptions, translate them to the corresponding Python exception,
9
+ and raise them so that Python code can handle them.
10
+
11
+ pybind11 defines translations for ``std::exception`` and its standard
12
+ subclasses, and several special exception classes that translate to specific
13
+ Python exceptions. Note that these are not actually Python exceptions, so they
14
+ cannot be examined using the Python C API. Instead, they are pure C++ objects
15
+ that pybind11 will translate the corresponding Python exception when they arrive
16
+ at its exception handler.
17
+
18
+ .. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
19
+
20
+ +--------------------------------------+--------------------------------------+
21
+ | Exception thrown by C++ | Translated to Python exception type |
22
+ +======================================+======================================+
23
+ | :class:`std::exception` | ``RuntimeError`` |
24
+ +--------------------------------------+--------------------------------------+
25
+ | :class:`std::bad_alloc` | ``MemoryError`` |
26
+ +--------------------------------------+--------------------------------------+
27
+ | :class:`std::domain_error` | ``ValueError`` |
28
+ +--------------------------------------+--------------------------------------+
29
+ | :class:`std::invalid_argument` | ``ValueError`` |
30
+ +--------------------------------------+--------------------------------------+
31
+ | :class:`std::length_error` | ``ValueError`` |
32
+ +--------------------------------------+--------------------------------------+
33
+ | :class:`std::out_of_range` | ``IndexError`` |
34
+ +--------------------------------------+--------------------------------------+
35
+ | :class:`std::range_error` | ``ValueError`` |
36
+ +--------------------------------------+--------------------------------------+
37
+ | :class:`std::overflow_error` | ``OverflowError`` |
38
+ +--------------------------------------+--------------------------------------+
39
+ | :class:`pybind11::stop_iteration` | ``StopIteration`` (used to implement |
40
+ | | custom iterators) |
41
+ +--------------------------------------+--------------------------------------+
42
+ | :class:`pybind11::index_error` | ``IndexError`` (used to indicate out |
43
+ | | of bounds access in ``__getitem__``, |
44
+ | | ``__setitem__``, etc.) |
45
+ +--------------------------------------+--------------------------------------+
46
+ | :class:`pybind11::key_error` | ``KeyError`` (used to indicate out |
47
+ | | of bounds access in ``__getitem__``, |
48
+ | | ``__setitem__`` in dict-like |
49
+ | | objects, etc.) |
50
+ +--------------------------------------+--------------------------------------+
51
+ | :class:`pybind11::value_error` | ``ValueError`` (used to indicate |
52
+ | | wrong value passed in |
53
+ | | ``container.remove(...)``) |
54
+ +--------------------------------------+--------------------------------------+
55
+ | :class:`pybind11::type_error` | ``TypeError`` |
56
+ +--------------------------------------+--------------------------------------+
57
+ | :class:`pybind11::buffer_error` | ``BufferError`` |
58
+ +--------------------------------------+--------------------------------------+
59
+ | :class:`pybind11::import_error` | ``ImportError`` |
60
+ +--------------------------------------+--------------------------------------+
61
+ | :class:`pybind11::attribute_error` | ``AttributeError`` |
62
+ +--------------------------------------+--------------------------------------+
63
+ | Any other exception | ``RuntimeError`` |
64
+ +--------------------------------------+--------------------------------------+
65
+
66
+ Exception translation is not bidirectional. That is, *catching* the C++
67
+ exceptions defined above will not trap exceptions that originate from
68
+ Python. For that, catch :class:`pybind11::error_already_set`. See :ref:`below
69
+ <handling_python_exceptions_cpp>` for further details.
70
+
71
+ There is also a special exception :class:`cast_error` that is thrown by
72
+ :func:`handle::call` when the input arguments cannot be converted to Python
73
+ objects.
74
+
75
+ Registering custom translators
76
+ ==============================
77
+
78
+ If the default exception conversion policy described above is insufficient,
79
+ pybind11 also provides support for registering custom exception translators.
80
+ Similar to pybind11 classes, exception translators can be local to the module
81
+ they are defined in or global to the entire python session. To register a simple
82
+ exception conversion that translates a C++ exception into a new Python exception
83
+ using the C++ exception's ``what()`` method, a helper function is available:
84
+
85
+ .. code-block:: cpp
86
+
87
+ py::register_exception<CppExp>(module, "PyExp");
88
+
89
+ This call creates a Python exception class with the name ``PyExp`` in the given
90
+ module and automatically converts any encountered exceptions of type ``CppExp``
91
+ into Python exceptions of type ``PyExp``.
92
+
93
+ A matching function is available for registering a local exception translator:
94
+
95
+ .. code-block:: cpp
96
+
97
+ py::register_local_exception<CppExp>(module, "PyExp");
98
+
99
+
100
+ It is possible to specify base class for the exception using the third
101
+ parameter, a ``handle``:
102
+
103
+ .. code-block:: cpp
104
+
105
+ py::register_exception<CppExp>(module, "PyExp", PyExc_RuntimeError);
106
+ py::register_local_exception<CppExp>(module, "PyExp", PyExc_RuntimeError);
107
+
108
+ Then ``PyExp`` can be caught both as ``PyExp`` and ``RuntimeError``.
109
+
110
+ The class objects of the built-in Python exceptions are listed in the Python
111
+ documentation on `Standard Exceptions <https://docs.python.org/3/c-api/exceptions.html#standard-exceptions>`_.
112
+ The default base class is ``PyExc_Exception``.
113
+
114
+ When more advanced exception translation is needed, the functions
115
+ ``py::register_exception_translator(translator)`` and
116
+ ``py::register_local_exception_translator(translator)`` can be used to register
117
+ functions that can translate arbitrary exception types (and which may include
118
+ additional logic to do so). The functions takes a stateless callable (e.g. a
119
+ function pointer or a lambda function without captured variables) with the call
120
+ signature ``void(std::exception_ptr)``.
121
+
122
+ When a C++ exception is thrown, the registered exception translators are tried
123
+ in reverse order of registration (i.e. the last registered translator gets the
124
+ first shot at handling the exception). All local translators will be tried
125
+ before a global translator is tried.
126
+
127
+ Inside the translator, ``std::rethrow_exception`` should be used within
128
+ a try block to re-throw the exception. One or more catch clauses to catch
129
+ the appropriate exceptions should then be used with each clause using
130
+ ``PyErr_SetString`` to set a Python exception or ``ex(string)`` to set
131
+ the python exception to a custom exception type (see below).
132
+
133
+ To declare a custom Python exception type, declare a ``py::exception`` variable
134
+ and use this in the associated exception translator (note: it is often useful
135
+ to make this a static declaration when using it inside a lambda expression
136
+ without requiring capturing).
137
+
138
+ The following example demonstrates this for a hypothetical exception classes
139
+ ``MyCustomException`` and ``OtherException``: the first is translated to a
140
+ custom python exception ``MyCustomError``, while the second is translated to a
141
+ standard python RuntimeError:
142
+
143
+ .. code-block:: cpp
144
+
145
+ static py::exception<MyCustomException> exc(m, "MyCustomError");
146
+ py::register_exception_translator([](std::exception_ptr p) {
147
+ try {
148
+ if (p) std::rethrow_exception(p);
149
+ } catch (const MyCustomException &e) {
150
+ exc(e.what());
151
+ } catch (const OtherException &e) {
152
+ PyErr_SetString(PyExc_RuntimeError, e.what());
153
+ }
154
+ });
155
+
156
+ Multiple exceptions can be handled by a single translator, as shown in the
157
+ example above. If the exception is not caught by the current translator, the
158
+ previously registered one gets a chance.
159
+
160
+ If none of the registered exception translators is able to handle the
161
+ exception, it is handled by the default converter as described in the previous
162
+ section.
163
+
164
+ .. seealso::
165
+
166
+ The file :file:`tests/test_exceptions.cpp` contains examples
167
+ of various custom exception translators and custom exception types.
168
+
169
+ .. note::
170
+
171
+ Call either ``PyErr_SetString`` or a custom exception's call
172
+ operator (``exc(string)``) for every exception caught in a custom exception
173
+ translator. Failure to do so will cause Python to crash with ``SystemError:
174
+ error return without exception set``.
175
+
176
+ Exceptions that you do not plan to handle should simply not be caught, or
177
+ may be explicitly (re-)thrown to delegate it to the other,
178
+ previously-declared existing exception translators.
179
+
180
+ Note that ``libc++`` and ``libstdc++`` `behave differently <https://stackoverflow.com/questions/19496643/using-clang-fvisibility-hidden-and-typeinfo-and-type-erasure/28827430>`_
181
+ with ``-fvisibility=hidden``. Therefore exceptions that are used across ABI boundaries need to be explicitly exported, as exercised in ``tests/test_exceptions.h``.
182
+ See also: "Problems with C++ exceptions" under `GCC Wiki <https://gcc.gnu.org/wiki/Visibility>`_.
183
+
184
+
185
+ Local vs Global Exception Translators
186
+ =====================================
187
+
188
+ When a global exception translator is registered, it will be applied across all
189
+ modules in the reverse order of registration. This can create behavior where the
190
+ order of module import influences how exceptions are translated.
191
+
192
+ If module1 has the following translator:
193
+
194
+ .. code-block:: cpp
195
+
196
+ py::register_exception_translator([](std::exception_ptr p) {
197
+ try {
198
+ if (p) std::rethrow_exception(p);
199
+ } catch (const std::invalid_argument &e) {
200
+ PyErr_SetString("module1 handled this")
201
+ }
202
+ }
203
+
204
+ and module2 has the following similar translator:
205
+
206
+ .. code-block:: cpp
207
+
208
+ py::register_exception_translator([](std::exception_ptr p) {
209
+ try {
210
+ if (p) std::rethrow_exception(p);
211
+ } catch (const std::invalid_argument &e) {
212
+ PyErr_SetString("module2 handled this")
213
+ }
214
+ }
215
+
216
+ then which translator handles the invalid_argument will be determined by the
217
+ order that module1 and module2 are imported. Since exception translators are
218
+ applied in the reverse order of registration, which ever module was imported
219
+ last will "win" and that translator will be applied.
220
+
221
+ If there are multiple pybind11 modules that share exception types (either
222
+ standard built-in or custom) loaded into a single python instance and
223
+ consistent error handling behavior is needed, then local translators should be
224
+ used.
225
+
226
+ Changing the previous example to use ``register_local_exception_translator``
227
+ would mean that when invalid_argument is thrown in the module2 code, the
228
+ module2 translator will always handle it, while in module1, the module1
229
+ translator will do the same.
230
+
231
+ .. _handling_python_exceptions_cpp:
232
+
233
+ Handling exceptions from Python in C++
234
+ ======================================
235
+
236
+ When C++ calls Python functions, such as in a callback function or when
237
+ manipulating Python objects, and Python raises an ``Exception``, pybind11
238
+ converts the Python exception into a C++ exception of type
239
+ :class:`pybind11::error_already_set` whose payload contains a C++ string textual
240
+ summary and the actual Python exception. ``error_already_set`` is used to
241
+ propagate Python exception back to Python (or possibly, handle them in C++).
242
+
243
+ .. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
244
+
245
+ +--------------------------------------+--------------------------------------+
246
+ | Exception raised in Python | Thrown as C++ exception type |
247
+ +======================================+======================================+
248
+ | Any Python ``Exception`` | :class:`pybind11::error_already_set` |
249
+ +--------------------------------------+--------------------------------------+
250
+
251
+ For example:
252
+
253
+ .. code-block:: cpp
254
+
255
+ try {
256
+ // open("missing.txt", "r")
257
+ auto file = py::module_::import("io").attr("open")("missing.txt", "r");
258
+ auto text = file.attr("read")();
259
+ file.attr("close")();
260
+ } catch (py::error_already_set &e) {
261
+ if (e.matches(PyExc_FileNotFoundError)) {
262
+ py::print("missing.txt not found");
263
+ } else if (e.matches(PyExc_PermissionError)) {
264
+ py::print("missing.txt found but not accessible");
265
+ } else {
266
+ throw;
267
+ }
268
+ }
269
+
270
+ Note that C++ to Python exception translation does not apply here, since that is
271
+ a method for translating C++ exceptions to Python, not vice versa. The error raised
272
+ from Python is always ``error_already_set``.
273
+
274
+ This example illustrates this behavior:
275
+
276
+ .. code-block:: cpp
277
+
278
+ try {
279
+ py::eval("raise ValueError('The Ring')");
280
+ } catch (py::value_error &boromir) {
281
+ // Boromir never gets the ring
282
+ assert(false);
283
+ } catch (py::error_already_set &frodo) {
284
+ // Frodo gets the ring
285
+ py::print("I will take the ring");
286
+ }
287
+
288
+ try {
289
+ // py::value_error is a request for pybind11 to raise a Python exception
290
+ throw py::value_error("The ball");
291
+ } catch (py::error_already_set &cat) {
292
+ // cat won't catch the ball since
293
+ // py::value_error is not a Python exception
294
+ assert(false);
295
+ } catch (py::value_error &dog) {
296
+ // dog will catch the ball
297
+ py::print("Run Spot run");
298
+ throw; // Throw it again (pybind11 will raise ValueError)
299
+ }
300
+
301
+ Handling errors from the Python C API
302
+ =====================================
303
+
304
+ Where possible, use :ref:`pybind11 wrappers <wrappers>` instead of calling
305
+ the Python C API directly. When calling the Python C API directly, in
306
+ addition to manually managing reference counts, one must follow the pybind11
307
+ error protocol, which is outlined here.
308
+
309
+ After calling the Python C API, if Python returns an error,
310
+ ``throw py::error_already_set();``, which allows pybind11 to deal with the
311
+ exception and pass it back to the Python interpreter. This includes calls to
312
+ the error setting functions such as ``PyErr_SetString``.
313
+
314
+ .. code-block:: cpp
315
+
316
+ PyErr_SetString(PyExc_TypeError, "C API type error demo");
317
+ throw py::error_already_set();
318
+
319
+ // But it would be easier to simply...
320
+ throw py::type_error("pybind11 wrapper type error");
321
+
322
+ Alternately, to ignore the error, call `PyErr_Clear
323
+ <https://docs.python.org/3/c-api/exceptions.html#c.PyErr_Clear>`_.
324
+
325
+ Any Python error must be thrown or cleared, or Python/pybind11 will be left in
326
+ an invalid state.
327
+
328
+ Chaining exceptions ('raise from')
329
+ ==================================
330
+
331
+ Python has a mechanism for indicating that exceptions were caused by other
332
+ exceptions:
333
+
334
+ .. code-block:: py
335
+
336
+ try:
337
+ print(1 / 0)
338
+ except Exception as exc:
339
+ raise RuntimeError("could not divide by zero") from exc
340
+
341
+ To do a similar thing in pybind11, you can use the ``py::raise_from`` function. It
342
+ sets the current python error indicator, so to continue propagating the exception
343
+ you should ``throw py::error_already_set()``.
344
+
345
+ .. code-block:: cpp
346
+
347
+ try {
348
+ py::eval("print(1 / 0"));
349
+ } catch (py::error_already_set &e) {
350
+ py::raise_from(e, PyExc_RuntimeError, "could not divide by zero");
351
+ throw py::error_already_set();
352
+ }
353
+
354
+ .. versionadded:: 2.8
355
+
356
+ .. _unraisable_exceptions:
357
+
358
+ Handling unraisable exceptions
359
+ ==============================
360
+
361
+ If a Python function invoked from a C++ destructor or any function marked
362
+ ``noexcept(true)`` (collectively, "noexcept functions") throws an exception, there
363
+ is no way to propagate the exception, as such functions may not throw.
364
+ Should they throw or fail to catch any exceptions in their call graph,
365
+ the C++ runtime calls ``std::terminate()`` to abort immediately.
366
+
367
+ Similarly, Python exceptions raised in a class's ``__del__`` method do not
368
+ propagate, but are logged by Python as an unraisable error. In Python 3.8+, a
369
+ `system hook is triggered
370
+ <https://docs.python.org/3/library/sys.html#sys.unraisablehook>`_
371
+ and an auditing event is logged.
372
+
373
+ Any noexcept function should have a try-catch block that traps
374
+ class:`error_already_set` (or any other exception that can occur). Note that
375
+ pybind11 wrappers around Python exceptions such as
376
+ :class:`pybind11::value_error` are *not* Python exceptions; they are C++
377
+ exceptions that pybind11 catches and converts to Python exceptions. Noexcept
378
+ functions cannot propagate these exceptions either. A useful approach is to
379
+ convert them to Python exceptions and then ``discard_as_unraisable`` as shown
380
+ below.
381
+
382
+ .. code-block:: cpp
383
+
384
+ void nonthrowing_func() noexcept(true) {
385
+ try {
386
+ // ...
387
+ } catch (py::error_already_set &eas) {
388
+ // Discard the Python error using Python APIs, using the C++ magic
389
+ // variable __func__. Python already knows the type and value and of the
390
+ // exception object.
391
+ eas.discard_as_unraisable(__func__);
392
+ } catch (const std::exception &e) {
393
+ // Log and discard C++ exceptions.
394
+ third_party::log(e);
395
+ }
396
+ }
397
+
398
+ .. versionadded:: 2.6
third-party/DPVO/DPViewer/pybind11/docs/advanced/functions.rst ADDED
@@ -0,0 +1,614 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Functions
2
+ #########
3
+
4
+ Before proceeding with this section, make sure that you are already familiar
5
+ with the basics of binding functions and classes, as explained in :doc:`/basics`
6
+ and :doc:`/classes`. The following guide is applicable to both free and member
7
+ functions, i.e. *methods* in Python.
8
+
9
+ .. _return_value_policies:
10
+
11
+ Return value policies
12
+ =====================
13
+
14
+ Python and C++ use fundamentally different ways of managing the memory and
15
+ lifetime of objects managed by them. This can lead to issues when creating
16
+ bindings for functions that return a non-trivial type. Just by looking at the
17
+ type information, it is not clear whether Python should take charge of the
18
+ returned value and eventually free its resources, or if this is handled on the
19
+ C++ side. For this reason, pybind11 provides a several *return value policy*
20
+ annotations that can be passed to the :func:`module_::def` and
21
+ :func:`class_::def` functions. The default policy is
22
+ :enum:`return_value_policy::automatic`.
23
+
24
+ Return value policies are tricky, and it's very important to get them right.
25
+ Just to illustrate what can go wrong, consider the following simple example:
26
+
27
+ .. code-block:: cpp
28
+
29
+ /* Function declaration */
30
+ Data *get_data() { return _data; /* (pointer to a static data structure) */ }
31
+ ...
32
+
33
+ /* Binding code */
34
+ m.def("get_data", &get_data); // <-- KABOOM, will cause crash when called from Python
35
+
36
+ What's going on here? When ``get_data()`` is called from Python, the return
37
+ value (a native C++ type) must be wrapped to turn it into a usable Python type.
38
+ In this case, the default return value policy (:enum:`return_value_policy::automatic`)
39
+ causes pybind11 to assume ownership of the static ``_data`` instance.
40
+
41
+ When Python's garbage collector eventually deletes the Python
42
+ wrapper, pybind11 will also attempt to delete the C++ instance (via ``operator
43
+ delete()``) due to the implied ownership. At this point, the entire application
44
+ will come crashing down, though errors could also be more subtle and involve
45
+ silent data corruption.
46
+
47
+ In the above example, the policy :enum:`return_value_policy::reference` should have
48
+ been specified so that the global data instance is only *referenced* without any
49
+ implied transfer of ownership, i.e.:
50
+
51
+ .. code-block:: cpp
52
+
53
+ m.def("get_data", &get_data, py::return_value_policy::reference);
54
+
55
+ On the other hand, this is not the right policy for many other situations,
56
+ where ignoring ownership could lead to resource leaks.
57
+ As a developer using pybind11, it's important to be familiar with the different
58
+ return value policies, including which situation calls for which one of them.
59
+ The following table provides an overview of available policies:
60
+
61
+ .. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
62
+
63
+ +--------------------------------------------------+----------------------------------------------------------------------------+
64
+ | Return value policy | Description |
65
+ +==================================================+============================================================================+
66
+ | :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
67
+ | | ownership. Python will call the destructor and delete operator when the |
68
+ | | object's reference count reaches zero. Undefined behavior ensues when the |
69
+ | | C++ side does the same, or when the data was not dynamically allocated. |
70
+ +--------------------------------------------------+----------------------------------------------------------------------------+
71
+ | :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
72
+ | | This policy is comparably safe because the lifetimes of the two instances |
73
+ | | are decoupled. |
74
+ +--------------------------------------------------+----------------------------------------------------------------------------+
75
+ | :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
76
+ | | that will be owned by Python. This policy is comparably safe because the |
77
+ | | lifetimes of the two instances (move source and destination) are decoupled.|
78
+ +--------------------------------------------------+----------------------------------------------------------------------------+
79
+ | :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
80
+ | | responsible for managing the object's lifetime and deallocating it when |
81
+ | | it is no longer used. Warning: undefined behavior will ensue when the C++ |
82
+ | | side deletes an object that is still referenced and used by Python. |
83
+ +--------------------------------------------------+----------------------------------------------------------------------------+
84
+ | :enum:`return_value_policy::reference_internal` | Indicates that the lifetime of the return value is tied to the lifetime |
85
+ | | of a parent object, namely the implicit ``this``, or ``self`` argument of |
86
+ | | the called method or property. Internally, this policy works just like |
87
+ | | :enum:`return_value_policy::reference` but additionally applies a |
88
+ | | ``keep_alive<0, 1>`` *call policy* (described in the next section) that |
89
+ | | prevents the parent object from being garbage collected as long as the |
90
+ | | return value is referenced by Python. This is the default policy for |
91
+ | | property getters created via ``def_property``, ``def_readwrite``, etc. |
92
+ +--------------------------------------------------+----------------------------------------------------------------------------+
93
+ | :enum:`return_value_policy::automatic` | This policy falls back to the policy |
94
+ | | :enum:`return_value_policy::take_ownership` when the return value is a |
95
+ | | pointer. Otherwise, it uses :enum:`return_value_policy::move` or |
96
+ | | :enum:`return_value_policy::copy` for rvalue and lvalue references, |
97
+ | | respectively. See above for a description of what all of these different |
98
+ | | policies do. This is the default policy for ``py::class_``-wrapped types. |
99
+ +--------------------------------------------------+----------------------------------------------------------------------------+
100
+ | :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
101
+ | | return value is a pointer. This is the default conversion policy for |
102
+ | | function arguments when calling Python functions manually from C++ code |
103
+ | | (i.e. via ``handle::operator()``) and the casters in ``pybind11/stl.h``. |
104
+ | | You probably won't need to use this explicitly. |
105
+ +--------------------------------------------------+----------------------------------------------------------------------------+
106
+
107
+ Return value policies can also be applied to properties:
108
+
109
+ .. code-block:: cpp
110
+
111
+ class_<MyClass>(m, "MyClass")
112
+ .def_property("data", &MyClass::getData, &MyClass::setData,
113
+ py::return_value_policy::copy);
114
+
115
+ Technically, the code above applies the policy to both the getter and the
116
+ setter function, however, the setter doesn't really care about *return*
117
+ value policies which makes this a convenient terse syntax. Alternatively,
118
+ targeted arguments can be passed through the :class:`cpp_function` constructor:
119
+
120
+ .. code-block:: cpp
121
+
122
+ class_<MyClass>(m, "MyClass")
123
+ .def_property("data",
124
+ py::cpp_function(&MyClass::getData, py::return_value_policy::copy),
125
+ py::cpp_function(&MyClass::setData)
126
+ );
127
+
128
+ .. warning::
129
+
130
+ Code with invalid return value policies might access uninitialized memory or
131
+ free data structures multiple times, which can lead to hard-to-debug
132
+ non-determinism and segmentation faults, hence it is worth spending the
133
+ time to understand all the different options in the table above.
134
+
135
+ .. note::
136
+
137
+ One important aspect of the above policies is that they only apply to
138
+ instances which pybind11 has *not* seen before, in which case the policy
139
+ clarifies essential questions about the return value's lifetime and
140
+ ownership. When pybind11 knows the instance already (as identified by its
141
+ type and address in memory), it will return the existing Python object
142
+ wrapper rather than creating a new copy.
143
+
144
+ .. note::
145
+
146
+ The next section on :ref:`call_policies` discusses *call policies* that can be
147
+ specified *in addition* to a return value policy from the list above. Call
148
+ policies indicate reference relationships that can involve both return values
149
+ and parameters of functions.
150
+
151
+ .. note::
152
+
153
+ As an alternative to elaborate call policies and lifetime management logic,
154
+ consider using smart pointers (see the section on :ref:`smart_pointers` for
155
+ details). Smart pointers can tell whether an object is still referenced from
156
+ C++ or Python, which generally eliminates the kinds of inconsistencies that
157
+ can lead to crashes or undefined behavior. For functions returning smart
158
+ pointers, it is not necessary to specify a return value policy.
159
+
160
+ .. _call_policies:
161
+
162
+ Additional call policies
163
+ ========================
164
+
165
+ In addition to the above return value policies, further *call policies* can be
166
+ specified to indicate dependencies between parameters or ensure a certain state
167
+ for the function call.
168
+
169
+ Keep alive
170
+ ----------
171
+
172
+ In general, this policy is required when the C++ object is any kind of container
173
+ and another object is being added to the container. ``keep_alive<Nurse, Patient>``
174
+ indicates that the argument with index ``Patient`` should be kept alive at least
175
+ until the argument with index ``Nurse`` is freed by the garbage collector. Argument
176
+ indices start at one, while zero refers to the return value. For methods, index
177
+ ``1`` refers to the implicit ``this`` pointer, while regular arguments begin at
178
+ index ``2``. Arbitrarily many call policies can be specified. When a ``Nurse``
179
+ with value ``None`` is detected at runtime, the call policy does nothing.
180
+
181
+ When the nurse is not a pybind11-registered type, the implementation internally
182
+ relies on the ability to create a *weak reference* to the nurse object. When
183
+ the nurse object is not a pybind11-registered type and does not support weak
184
+ references, an exception will be thrown.
185
+
186
+ If you use an incorrect argument index, you will get a ``RuntimeError`` saying
187
+ ``Could not activate keep_alive!``. You should review the indices you're using.
188
+
189
+ Consider the following example: here, the binding code for a list append
190
+ operation ties the lifetime of the newly added element to the underlying
191
+ container:
192
+
193
+ .. code-block:: cpp
194
+
195
+ py::class_<List>(m, "List")
196
+ .def("append", &List::append, py::keep_alive<1, 2>());
197
+
198
+ For consistency, the argument indexing is identical for constructors. Index
199
+ ``1`` still refers to the implicit ``this`` pointer, i.e. the object which is
200
+ being constructed. Index ``0`` refers to the return type which is presumed to
201
+ be ``void`` when a constructor is viewed like a function. The following example
202
+ ties the lifetime of the constructor element to the constructed object:
203
+
204
+ .. code-block:: cpp
205
+
206
+ py::class_<Nurse>(m, "Nurse")
207
+ .def(py::init<Patient &>(), py::keep_alive<1, 2>());
208
+
209
+ .. note::
210
+
211
+ ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
212
+ Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
213
+ 0) policies from Boost.Python.
214
+
215
+ Call guard
216
+ ----------
217
+
218
+ The ``call_guard<T>`` policy allows any scope guard type ``T`` to be placed
219
+ around the function call. For example, this definition:
220
+
221
+ .. code-block:: cpp
222
+
223
+ m.def("foo", foo, py::call_guard<T>());
224
+
225
+ is equivalent to the following pseudocode:
226
+
227
+ .. code-block:: cpp
228
+
229
+ m.def("foo", [](args...) {
230
+ T scope_guard;
231
+ return foo(args...); // forwarded arguments
232
+ });
233
+
234
+ The only requirement is that ``T`` is default-constructible, but otherwise any
235
+ scope guard will work. This is very useful in combination with ``gil_scoped_release``.
236
+ See :ref:`gil`.
237
+
238
+ Multiple guards can also be specified as ``py::call_guard<T1, T2, T3...>``. The
239
+ constructor order is left to right and destruction happens in reverse.
240
+
241
+ .. seealso::
242
+
243
+ The file :file:`tests/test_call_policies.cpp` contains a complete example
244
+ that demonstrates using `keep_alive` and `call_guard` in more detail.
245
+
246
+ .. _python_objects_as_args:
247
+
248
+ Python objects as arguments
249
+ ===========================
250
+
251
+ pybind11 exposes all major Python types using thin C++ wrapper classes. These
252
+ wrapper classes can also be used as parameters of functions in bindings, which
253
+ makes it possible to directly work with native Python types on the C++ side.
254
+ For instance, the following statement iterates over a Python ``dict``:
255
+
256
+ .. code-block:: cpp
257
+
258
+ void print_dict(const py::dict& dict) {
259
+ /* Easily interact with Python types */
260
+ for (auto item : dict)
261
+ std::cout << "key=" << std::string(py::str(item.first)) << ", "
262
+ << "value=" << std::string(py::str(item.second)) << std::endl;
263
+ }
264
+
265
+ It can be exported:
266
+
267
+ .. code-block:: cpp
268
+
269
+ m.def("print_dict", &print_dict);
270
+
271
+ And used in Python as usual:
272
+
273
+ .. code-block:: pycon
274
+
275
+ >>> print_dict({"foo": 123, "bar": "hello"})
276
+ key=foo, value=123
277
+ key=bar, value=hello
278
+
279
+ For more information on using Python objects in C++, see :doc:`/advanced/pycpp/index`.
280
+
281
+ Accepting \*args and \*\*kwargs
282
+ ===============================
283
+
284
+ Python provides a useful mechanism to define functions that accept arbitrary
285
+ numbers of arguments and keyword arguments:
286
+
287
+ .. code-block:: python
288
+
289
+ def generic(*args, **kwargs):
290
+ ... # do something with args and kwargs
291
+
292
+ Such functions can also be created using pybind11:
293
+
294
+ .. code-block:: cpp
295
+
296
+ void generic(py::args args, const py::kwargs& kwargs) {
297
+ /// .. do something with args
298
+ if (kwargs)
299
+ /// .. do something with kwargs
300
+ }
301
+
302
+ /// Binding code
303
+ m.def("generic", &generic);
304
+
305
+ The class ``py::args`` derives from ``py::tuple`` and ``py::kwargs`` derives
306
+ from ``py::dict``.
307
+
308
+ You may also use just one or the other, and may combine these with other
309
+ arguments. Note, however, that ``py::kwargs`` must always be the last argument
310
+ of the function, and ``py::args`` implies that any further arguments are
311
+ keyword-only (see :ref:`keyword_only_arguments`).
312
+
313
+ Please refer to the other examples for details on how to iterate over these,
314
+ and on how to cast their entries into C++ objects. A demonstration is also
315
+ available in ``tests/test_kwargs_and_defaults.cpp``.
316
+
317
+ .. note::
318
+
319
+ When combining \*args or \*\*kwargs with :ref:`keyword_args` you should
320
+ *not* include ``py::arg`` tags for the ``py::args`` and ``py::kwargs``
321
+ arguments.
322
+
323
+ Default arguments revisited
324
+ ===========================
325
+
326
+ The section on :ref:`default_args` previously discussed basic usage of default
327
+ arguments using pybind11. One noteworthy aspect of their implementation is that
328
+ default arguments are converted to Python objects right at declaration time.
329
+ Consider the following example:
330
+
331
+ .. code-block:: cpp
332
+
333
+ py::class_<MyClass>("MyClass")
334
+ .def("myFunction", py::arg("arg") = SomeType(123));
335
+
336
+ In this case, pybind11 must already be set up to deal with values of the type
337
+ ``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
338
+ exception will be thrown.
339
+
340
+ Another aspect worth highlighting is that the "preview" of the default argument
341
+ in the function signature is generated using the object's ``__repr__`` method.
342
+ If not available, the signature may not be very helpful, e.g.:
343
+
344
+ .. code-block:: pycon
345
+
346
+ FUNCTIONS
347
+ ...
348
+ | myFunction(...)
349
+ | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
350
+ ...
351
+
352
+ The first way of addressing this is by defining ``SomeType.__repr__``.
353
+ Alternatively, it is possible to specify the human-readable preview of the
354
+ default argument manually using the ``arg_v`` notation:
355
+
356
+ .. code-block:: cpp
357
+
358
+ py::class_<MyClass>("MyClass")
359
+ .def("myFunction", py::arg_v("arg", SomeType(123), "SomeType(123)"));
360
+
361
+ Sometimes it may be necessary to pass a null pointer value as a default
362
+ argument. In this case, remember to cast it to the underlying type in question,
363
+ like so:
364
+
365
+ .. code-block:: cpp
366
+
367
+ py::class_<MyClass>("MyClass")
368
+ .def("myFunction", py::arg("arg") = static_cast<SomeType *>(nullptr));
369
+
370
+ .. _keyword_only_arguments:
371
+
372
+ Keyword-only arguments
373
+ ======================
374
+
375
+ Python implements keyword-only arguments by specifying an unnamed ``*``
376
+ argument in a function definition:
377
+
378
+ .. code-block:: python
379
+
380
+ def f(a, *, b): # a can be positional or via keyword; b must be via keyword
381
+ pass
382
+
383
+
384
+ f(a=1, b=2) # good
385
+ f(b=2, a=1) # good
386
+ f(1, b=2) # good
387
+ f(1, 2) # TypeError: f() takes 1 positional argument but 2 were given
388
+
389
+ Pybind11 provides a ``py::kw_only`` object that allows you to implement
390
+ the same behaviour by specifying the object between positional and keyword-only
391
+ argument annotations when registering the function:
392
+
393
+ .. code-block:: cpp
394
+
395
+ m.def("f", [](int a, int b) { /* ... */ },
396
+ py::arg("a"), py::kw_only(), py::arg("b"));
397
+
398
+ .. versionadded:: 2.6
399
+
400
+ A ``py::args`` argument implies that any following arguments are keyword-only,
401
+ as if ``py::kw_only()`` had been specified in the same relative location of the
402
+ argument list as the ``py::args`` argument. The ``py::kw_only()`` may be
403
+ included to be explicit about this, but is not required.
404
+
405
+ .. versionchanged:: 2.9
406
+ This can now be combined with ``py::args``. Before, ``py::args`` could only
407
+ occur at the end of the argument list, or immediately before a ``py::kwargs``
408
+ argument at the end.
409
+
410
+
411
+ Positional-only arguments
412
+ =========================
413
+
414
+ Python 3.8 introduced a new positional-only argument syntax, using ``/`` in the
415
+ function definition (note that this has been a convention for CPython
416
+ positional arguments, such as in ``pow()``, since Python 2). You can
417
+ do the same thing in any version of Python using ``py::pos_only()``:
418
+
419
+ .. code-block:: cpp
420
+
421
+ m.def("f", [](int a, int b) { /* ... */ },
422
+ py::arg("a"), py::pos_only(), py::arg("b"));
423
+
424
+ You now cannot give argument ``a`` by keyword. This can be combined with
425
+ keyword-only arguments, as well.
426
+
427
+ .. versionadded:: 2.6
428
+
429
+ .. _nonconverting_arguments:
430
+
431
+ Non-converting arguments
432
+ ========================
433
+
434
+ Certain argument types may support conversion from one type to another. Some
435
+ examples of conversions are:
436
+
437
+ * :ref:`implicit_conversions` declared using ``py::implicitly_convertible<A,B>()``
438
+ * Calling a method accepting a double with an integer argument
439
+ * Calling a ``std::complex<float>`` argument with a non-complex python type
440
+ (for example, with a float). (Requires the optional ``pybind11/complex.h``
441
+ header).
442
+ * Calling a function taking an Eigen matrix reference with a numpy array of the
443
+ wrong type or of an incompatible data layout. (Requires the optional
444
+ ``pybind11/eigen.h`` header).
445
+
446
+ This behaviour is sometimes undesirable: the binding code may prefer to raise
447
+ an error rather than convert the argument. This behaviour can be obtained
448
+ through ``py::arg`` by calling the ``.noconvert()`` method of the ``py::arg``
449
+ object, such as:
450
+
451
+ .. code-block:: cpp
452
+
453
+ m.def("floats_only", [](double f) { return 0.5 * f; }, py::arg("f").noconvert());
454
+ m.def("floats_preferred", [](double f) { return 0.5 * f; }, py::arg("f"));
455
+
456
+ Attempting the call the second function (the one without ``.noconvert()``) with
457
+ an integer will succeed, but attempting to call the ``.noconvert()`` version
458
+ will fail with a ``TypeError``:
459
+
460
+ .. code-block:: pycon
461
+
462
+ >>> floats_preferred(4)
463
+ 2.0
464
+ >>> floats_only(4)
465
+ Traceback (most recent call last):
466
+ File "<stdin>", line 1, in <module>
467
+ TypeError: floats_only(): incompatible function arguments. The following argument types are supported:
468
+ 1. (f: float) -> float
469
+
470
+ Invoked with: 4
471
+
472
+ You may, of course, combine this with the :var:`_a` shorthand notation (see
473
+ :ref:`keyword_args`) and/or :ref:`default_args`. It is also permitted to omit
474
+ the argument name by using the ``py::arg()`` constructor without an argument
475
+ name, i.e. by specifying ``py::arg().noconvert()``.
476
+
477
+ .. note::
478
+
479
+ When specifying ``py::arg`` options it is necessary to provide the same
480
+ number of options as the bound function has arguments. Thus if you want to
481
+ enable no-convert behaviour for just one of several arguments, you will
482
+ need to specify a ``py::arg()`` annotation for each argument with the
483
+ no-convert argument modified to ``py::arg().noconvert()``.
484
+
485
+ .. _none_arguments:
486
+
487
+ Allow/Prohibiting None arguments
488
+ ================================
489
+
490
+ When a C++ type registered with :class:`py::class_` is passed as an argument to
491
+ a function taking the instance as pointer or shared holder (e.g. ``shared_ptr``
492
+ or a custom, copyable holder as described in :ref:`smart_pointers`), pybind
493
+ allows ``None`` to be passed from Python which results in calling the C++
494
+ function with ``nullptr`` (or an empty holder) for the argument.
495
+
496
+ To explicitly enable or disable this behaviour, using the
497
+ ``.none`` method of the :class:`py::arg` object:
498
+
499
+ .. code-block:: cpp
500
+
501
+ py::class_<Dog>(m, "Dog").def(py::init<>());
502
+ py::class_<Cat>(m, "Cat").def(py::init<>());
503
+ m.def("bark", [](Dog *dog) -> std::string {
504
+ if (dog) return "woof!"; /* Called with a Dog instance */
505
+ else return "(no dog)"; /* Called with None, dog == nullptr */
506
+ }, py::arg("dog").none(true));
507
+ m.def("meow", [](Cat *cat) -> std::string {
508
+ // Can't be called with None argument
509
+ return "meow";
510
+ }, py::arg("cat").none(false));
511
+
512
+ With the above, the Python call ``bark(None)`` will return the string ``"(no
513
+ dog)"``, while attempting to call ``meow(None)`` will raise a ``TypeError``:
514
+
515
+ .. code-block:: pycon
516
+
517
+ >>> from animals import Dog, Cat, bark, meow
518
+ >>> bark(Dog())
519
+ 'woof!'
520
+ >>> meow(Cat())
521
+ 'meow'
522
+ >>> bark(None)
523
+ '(no dog)'
524
+ >>> meow(None)
525
+ Traceback (most recent call last):
526
+ File "<stdin>", line 1, in <module>
527
+ TypeError: meow(): incompatible function arguments. The following argument types are supported:
528
+ 1. (cat: animals.Cat) -> str
529
+
530
+ Invoked with: None
531
+
532
+ The default behaviour when the tag is unspecified is to allow ``None``.
533
+
534
+ .. note::
535
+
536
+ Even when ``.none(true)`` is specified for an argument, ``None`` will be converted to a
537
+ ``nullptr`` *only* for custom and :ref:`opaque <opaque>` types. Pointers to built-in types
538
+ (``double *``, ``int *``, ...) and STL types (``std::vector<T> *``, ...; if ``pybind11/stl.h``
539
+ is included) are copied when converted to C++ (see :doc:`/advanced/cast/overview`) and will
540
+ not allow ``None`` as argument. To pass optional argument of these copied types consider
541
+ using ``std::optional<T>``
542
+
543
+ .. _overload_resolution:
544
+
545
+ Overload resolution order
546
+ =========================
547
+
548
+ When a function or method with multiple overloads is called from Python,
549
+ pybind11 determines which overload to call in two passes. The first pass
550
+ attempts to call each overload without allowing argument conversion (as if
551
+ every argument had been specified as ``py::arg().noconvert()`` as described
552
+ above).
553
+
554
+ If no overload succeeds in the no-conversion first pass, a second pass is
555
+ attempted in which argument conversion is allowed (except where prohibited via
556
+ an explicit ``py::arg().noconvert()`` attribute in the function definition).
557
+
558
+ If the second pass also fails a ``TypeError`` is raised.
559
+
560
+ Within each pass, overloads are tried in the order they were registered with
561
+ pybind11. If the ``py::prepend()`` tag is added to the definition, a function
562
+ can be placed at the beginning of the overload sequence instead, allowing user
563
+ overloads to proceed built in functions.
564
+
565
+ What this means in practice is that pybind11 will prefer any overload that does
566
+ not require conversion of arguments to an overload that does, but otherwise
567
+ prefers earlier-defined overloads to later-defined ones.
568
+
569
+ .. note::
570
+
571
+ pybind11 does *not* further prioritize based on the number/pattern of
572
+ overloaded arguments. That is, pybind11 does not prioritize a function
573
+ requiring one conversion over one requiring three, but only prioritizes
574
+ overloads requiring no conversion at all to overloads that require
575
+ conversion of at least one argument.
576
+
577
+ .. versionadded:: 2.6
578
+
579
+ The ``py::prepend()`` tag.
580
+
581
+ Binding functions with template parameters
582
+ ==========================================
583
+
584
+ You can bind functions that have template parameters. Here's a function:
585
+
586
+ .. code-block:: cpp
587
+
588
+ template <typename T>
589
+ void set(T t);
590
+
591
+ C++ templates cannot be instantiated at runtime, so you cannot bind the
592
+ non-instantiated function:
593
+
594
+ .. code-block:: cpp
595
+
596
+ // BROKEN (this will not compile)
597
+ m.def("set", &set);
598
+
599
+ You must bind each instantiated function template separately. You may bind
600
+ each instantiation with the same name, which will be treated the same as
601
+ an overloaded function:
602
+
603
+ .. code-block:: cpp
604
+
605
+ m.def("set", &set<int>);
606
+ m.def("set", &set<std::string>);
607
+
608
+ Sometimes it's more clear to bind them with separate names, which is also
609
+ an option:
610
+
611
+ .. code-block:: cpp
612
+
613
+ m.def("setInt", &set<int>);
614
+ m.def("setString", &set<std::string>);
third-party/DPVO/DPViewer/pybind11/docs/advanced/misc.rst ADDED
@@ -0,0 +1,337 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Miscellaneous
2
+ #############
3
+
4
+ .. _macro_notes:
5
+
6
+ General notes regarding convenience macros
7
+ ==========================================
8
+
9
+ pybind11 provides a few convenience macros such as
10
+ :func:`PYBIND11_DECLARE_HOLDER_TYPE` and ``PYBIND11_OVERRIDE_*``. Since these
11
+ are "just" macros that are evaluated in the preprocessor (which has no concept
12
+ of types), they *will* get confused by commas in a template argument; for
13
+ example, consider:
14
+
15
+ .. code-block:: cpp
16
+
17
+ PYBIND11_OVERRIDE(MyReturnType<T1, T2>, Class<T3, T4>, func)
18
+
19
+ The limitation of the C preprocessor interprets this as five arguments (with new
20
+ arguments beginning after each comma) rather than three. To get around this,
21
+ there are two alternatives: you can use a type alias, or you can wrap the type
22
+ using the ``PYBIND11_TYPE`` macro:
23
+
24
+ .. code-block:: cpp
25
+
26
+ // Version 1: using a type alias
27
+ using ReturnType = MyReturnType<T1, T2>;
28
+ using ClassType = Class<T3, T4>;
29
+ PYBIND11_OVERRIDE(ReturnType, ClassType, func);
30
+
31
+ // Version 2: using the PYBIND11_TYPE macro:
32
+ PYBIND11_OVERRIDE(PYBIND11_TYPE(MyReturnType<T1, T2>),
33
+ PYBIND11_TYPE(Class<T3, T4>), func)
34
+
35
+ The ``PYBIND11_MAKE_OPAQUE`` macro does *not* require the above workarounds.
36
+
37
+ .. _gil:
38
+
39
+ Global Interpreter Lock (GIL)
40
+ =============================
41
+
42
+ When calling a C++ function from Python, the GIL is always held.
43
+ The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
44
+ used to acquire and release the global interpreter lock in the body of a C++
45
+ function call. In this way, long-running C++ code can be parallelized using
46
+ multiple Python threads. Taking :ref:`overriding_virtuals` as an example, this
47
+ could be realized as follows (important changes highlighted):
48
+
49
+ .. code-block:: cpp
50
+ :emphasize-lines: 8,9,31,32
51
+
52
+ class PyAnimal : public Animal {
53
+ public:
54
+ /* Inherit the constructors */
55
+ using Animal::Animal;
56
+
57
+ /* Trampoline (need one for each virtual function) */
58
+ std::string go(int n_times) {
59
+ /* Acquire GIL before calling Python code */
60
+ py::gil_scoped_acquire acquire;
61
+
62
+ PYBIND11_OVERRIDE_PURE(
63
+ std::string, /* Return type */
64
+ Animal, /* Parent class */
65
+ go, /* Name of function */
66
+ n_times /* Argument(s) */
67
+ );
68
+ }
69
+ };
70
+
71
+ PYBIND11_MODULE(example, m) {
72
+ py::class_<Animal, PyAnimal> animal(m, "Animal");
73
+ animal
74
+ .def(py::init<>())
75
+ .def("go", &Animal::go);
76
+
77
+ py::class_<Dog>(m, "Dog", animal)
78
+ .def(py::init<>());
79
+
80
+ m.def("call_go", [](Animal *animal) -> std::string {
81
+ /* Release GIL before calling into (potentially long-running) C++ code */
82
+ py::gil_scoped_release release;
83
+ return call_go(animal);
84
+ });
85
+ }
86
+
87
+ The ``call_go`` wrapper can also be simplified using the ``call_guard`` policy
88
+ (see :ref:`call_policies`) which yields the same result:
89
+
90
+ .. code-block:: cpp
91
+
92
+ m.def("call_go", &call_go, py::call_guard<py::gil_scoped_release>());
93
+
94
+
95
+ Binding sequence data types, iterators, the slicing protocol, etc.
96
+ ==================================================================
97
+
98
+ Please refer to the supplemental example for details.
99
+
100
+ .. seealso::
101
+
102
+ The file :file:`tests/test_sequences_and_iterators.cpp` contains a
103
+ complete example that shows how to bind a sequence data type, including
104
+ length queries (``__len__``), iterators (``__iter__``), the slicing
105
+ protocol and other kinds of useful operations.
106
+
107
+
108
+ Partitioning code over multiple extension modules
109
+ =================================================
110
+
111
+ It's straightforward to split binding code over multiple extension modules,
112
+ while referencing types that are declared elsewhere. Everything "just" works
113
+ without any special precautions. One exception to this rule occurs when
114
+ extending a type declared in another extension module. Recall the basic example
115
+ from Section :ref:`inheritance`.
116
+
117
+ .. code-block:: cpp
118
+
119
+ py::class_<Pet> pet(m, "Pet");
120
+ pet.def(py::init<const std::string &>())
121
+ .def_readwrite("name", &Pet::name);
122
+
123
+ py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
124
+ .def(py::init<const std::string &>())
125
+ .def("bark", &Dog::bark);
126
+
127
+ Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
128
+ whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
129
+ course that the variable ``pet`` is not available anymore though it is needed
130
+ to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
131
+ However, it can be acquired as follows:
132
+
133
+ .. code-block:: cpp
134
+
135
+ py::object pet = (py::object) py::module_::import("basic").attr("Pet");
136
+
137
+ py::class_<Dog>(m, "Dog", pet)
138
+ .def(py::init<const std::string &>())
139
+ .def("bark", &Dog::bark);
140
+
141
+ Alternatively, you can specify the base class as a template parameter option to
142
+ ``class_``, which performs an automated lookup of the corresponding Python
143
+ type. Like the above code, however, this also requires invoking the ``import``
144
+ function once to ensure that the pybind11 binding code of the module ``basic``
145
+ has been executed:
146
+
147
+ .. code-block:: cpp
148
+
149
+ py::module_::import("basic");
150
+
151
+ py::class_<Dog, Pet>(m, "Dog")
152
+ .def(py::init<const std::string &>())
153
+ .def("bark", &Dog::bark);
154
+
155
+ Naturally, both methods will fail when there are cyclic dependencies.
156
+
157
+ Note that pybind11 code compiled with hidden-by-default symbol visibility (e.g.
158
+ via the command line flag ``-fvisibility=hidden`` on GCC/Clang), which is
159
+ required for proper pybind11 functionality, can interfere with the ability to
160
+ access types defined in another extension module. Working around this requires
161
+ manually exporting types that are accessed by multiple extension modules;
162
+ pybind11 provides a macro to do just this:
163
+
164
+ .. code-block:: cpp
165
+
166
+ class PYBIND11_EXPORT Dog : public Animal {
167
+ ...
168
+ };
169
+
170
+ Note also that it is possible (although would rarely be required) to share arbitrary
171
+ C++ objects between extension modules at runtime. Internal library data is shared
172
+ between modules using capsule machinery [#f6]_ which can be also utilized for
173
+ storing, modifying and accessing user-defined data. Note that an extension module
174
+ will "see" other extensions' data if and only if they were built with the same
175
+ pybind11 version. Consider the following example:
176
+
177
+ .. code-block:: cpp
178
+
179
+ auto data = reinterpret_cast<MyData *>(py::get_shared_data("mydata"));
180
+ if (!data)
181
+ data = static_cast<MyData *>(py::set_shared_data("mydata", new MyData(42)));
182
+
183
+ If the above snippet was used in several separately compiled extension modules,
184
+ the first one to be imported would create a ``MyData`` instance and associate
185
+ a ``"mydata"`` key with a pointer to it. Extensions that are imported later
186
+ would be then able to access the data behind the same pointer.
187
+
188
+ .. [#f6] https://docs.python.org/3/extending/extending.html#using-capsules
189
+
190
+ Module Destructors
191
+ ==================
192
+
193
+ pybind11 does not provide an explicit mechanism to invoke cleanup code at
194
+ module destruction time. In rare cases where such functionality is required, it
195
+ is possible to emulate it using Python capsules or weak references with a
196
+ destruction callback.
197
+
198
+ .. code-block:: cpp
199
+
200
+ auto cleanup_callback = []() {
201
+ // perform cleanup here -- this function is called with the GIL held
202
+ };
203
+
204
+ m.add_object("_cleanup", py::capsule(cleanup_callback));
205
+
206
+ This approach has the potential downside that instances of classes exposed
207
+ within the module may still be alive when the cleanup callback is invoked
208
+ (whether this is acceptable will generally depend on the application).
209
+
210
+ Alternatively, the capsule may also be stashed within a type object, which
211
+ ensures that it not called before all instances of that type have been
212
+ collected:
213
+
214
+ .. code-block:: cpp
215
+
216
+ auto cleanup_callback = []() { /* ... */ };
217
+ m.attr("BaseClass").attr("_cleanup") = py::capsule(cleanup_callback);
218
+
219
+ Both approaches also expose a potentially dangerous ``_cleanup`` attribute in
220
+ Python, which may be undesirable from an API standpoint (a premature explicit
221
+ call from Python might lead to undefined behavior). Yet another approach that
222
+ avoids this issue involves weak reference with a cleanup callback:
223
+
224
+ .. code-block:: cpp
225
+
226
+ // Register a callback function that is invoked when the BaseClass object is collected
227
+ py::cpp_function cleanup_callback(
228
+ [](py::handle weakref) {
229
+ // perform cleanup here -- this function is called with the GIL held
230
+
231
+ weakref.dec_ref(); // release weak reference
232
+ }
233
+ );
234
+
235
+ // Create a weak reference with a cleanup callback and initially leak it
236
+ (void) py::weakref(m.attr("BaseClass"), cleanup_callback).release();
237
+
238
+ .. note::
239
+
240
+ PyPy does not garbage collect objects when the interpreter exits. An alternative
241
+ approach (which also works on CPython) is to use the :py:mod:`atexit` module [#f7]_,
242
+ for example:
243
+
244
+ .. code-block:: cpp
245
+
246
+ auto atexit = py::module_::import("atexit");
247
+ atexit.attr("register")(py::cpp_function([]() {
248
+ // perform cleanup here -- this function is called with the GIL held
249
+ }));
250
+
251
+ .. [#f7] https://docs.python.org/3/library/atexit.html
252
+
253
+
254
+ Generating documentation using Sphinx
255
+ =====================================
256
+
257
+ Sphinx [#f4]_ has the ability to inspect the signatures and documentation
258
+ strings in pybind11-based extension modules to automatically generate beautiful
259
+ documentation in a variety formats. The python_example repository [#f5]_ contains a
260
+ simple example repository which uses this approach.
261
+
262
+ There are two potential gotchas when using this approach: first, make sure that
263
+ the resulting strings do not contain any :kbd:`TAB` characters, which break the
264
+ docstring parsing routines. You may want to use C++11 raw string literals,
265
+ which are convenient for multi-line comments. Conveniently, any excess
266
+ indentation will be automatically be removed by Sphinx. However, for this to
267
+ work, it is important that all lines are indented consistently, i.e.:
268
+
269
+ .. code-block:: cpp
270
+
271
+ // ok
272
+ m.def("foo", &foo, R"mydelimiter(
273
+ The foo function
274
+
275
+ Parameters
276
+ ----------
277
+ )mydelimiter");
278
+
279
+ // *not ok*
280
+ m.def("foo", &foo, R"mydelimiter(The foo function
281
+
282
+ Parameters
283
+ ----------
284
+ )mydelimiter");
285
+
286
+ By default, pybind11 automatically generates and prepends a signature to the docstring of a function
287
+ registered with ``module_::def()`` and ``class_::def()``. Sometimes this
288
+ behavior is not desirable, because you want to provide your own signature or remove
289
+ the docstring completely to exclude the function from the Sphinx documentation.
290
+ The class ``options`` allows you to selectively suppress auto-generated signatures:
291
+
292
+ .. code-block:: cpp
293
+
294
+ PYBIND11_MODULE(example, m) {
295
+ py::options options;
296
+ options.disable_function_signatures();
297
+
298
+ m.def("add", [](int a, int b) { return a + b; }, "A function which adds two numbers");
299
+ }
300
+
301
+ Note that changes to the settings affect only function bindings created during the
302
+ lifetime of the ``options`` instance. When it goes out of scope at the end of the module's init function,
303
+ the default settings are restored to prevent unwanted side effects.
304
+
305
+ .. [#f4] http://www.sphinx-doc.org
306
+ .. [#f5] http://github.com/pybind/python_example
307
+
308
+ .. _avoiding-cpp-types-in-docstrings:
309
+
310
+ Avoiding C++ types in docstrings
311
+ ================================
312
+
313
+ Docstrings are generated at the time of the declaration, e.g. when ``.def(...)`` is called.
314
+ At this point parameter and return types should be known to pybind11.
315
+ If a custom type is not exposed yet through a ``py::class_`` constructor or a custom type caster,
316
+ its C++ type name will be used instead to generate the signature in the docstring:
317
+
318
+ .. code-block:: text
319
+
320
+ | __init__(...)
321
+ | __init__(self: example.Foo, arg0: ns::Bar) -> None
322
+ ^^^^^^^
323
+
324
+
325
+ This limitation can be circumvented by ensuring that C++ classes are registered with pybind11
326
+ before they are used as a parameter or return type of a function:
327
+
328
+ .. code-block:: cpp
329
+
330
+ PYBIND11_MODULE(example, m) {
331
+
332
+ auto pyFoo = py::class_<ns::Foo>(m, "Foo");
333
+ auto pyBar = py::class_<ns::Bar>(m, "Bar");
334
+
335
+ pyFoo.def(py::init<const ns::Bar&>());
336
+ pyBar.def(py::init<const ns::Foo&>());
337
+ }
third-party/DPVO/DPViewer/pybind11/docs/advanced/pycpp/index.rst ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Python C++ interface
2
+ ####################
3
+
4
+ pybind11 exposes Python types and functions using thin C++ wrappers, which
5
+ makes it possible to conveniently call Python code from C++ without resorting
6
+ to Python's C API.
7
+
8
+ .. toctree::
9
+ :maxdepth: 2
10
+
11
+ object
12
+ numpy
13
+ utilities
third-party/DPVO/DPViewer/pybind11/docs/advanced/pycpp/numpy.rst ADDED
@@ -0,0 +1,455 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. _numpy:
2
+
3
+ NumPy
4
+ #####
5
+
6
+ Buffer protocol
7
+ ===============
8
+
9
+ Python supports an extremely general and convenient approach for exchanging
10
+ data between plugin libraries. Types can expose a buffer view [#f2]_, which
11
+ provides fast direct access to the raw internal data representation. Suppose we
12
+ want to bind the following simplistic Matrix class:
13
+
14
+ .. code-block:: cpp
15
+
16
+ class Matrix {
17
+ public:
18
+ Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
19
+ m_data = new float[rows*cols];
20
+ }
21
+ float *data() { return m_data; }
22
+ size_t rows() const { return m_rows; }
23
+ size_t cols() const { return m_cols; }
24
+ private:
25
+ size_t m_rows, m_cols;
26
+ float *m_data;
27
+ };
28
+
29
+ The following binding code exposes the ``Matrix`` contents as a buffer object,
30
+ making it possible to cast Matrices into NumPy arrays. It is even possible to
31
+ completely avoid copy operations with Python expressions like
32
+ ``np.array(matrix_instance, copy = False)``.
33
+
34
+ .. code-block:: cpp
35
+
36
+ py::class_<Matrix>(m, "Matrix", py::buffer_protocol())
37
+ .def_buffer([](Matrix &m) -> py::buffer_info {
38
+ return py::buffer_info(
39
+ m.data(), /* Pointer to buffer */
40
+ sizeof(float), /* Size of one scalar */
41
+ py::format_descriptor<float>::format(), /* Python struct-style format descriptor */
42
+ 2, /* Number of dimensions */
43
+ { m.rows(), m.cols() }, /* Buffer dimensions */
44
+ { sizeof(float) * m.cols(), /* Strides (in bytes) for each index */
45
+ sizeof(float) }
46
+ );
47
+ });
48
+
49
+ Supporting the buffer protocol in a new type involves specifying the special
50
+ ``py::buffer_protocol()`` tag in the ``py::class_`` constructor and calling the
51
+ ``def_buffer()`` method with a lambda function that creates a
52
+ ``py::buffer_info`` description record on demand describing a given matrix
53
+ instance. The contents of ``py::buffer_info`` mirror the Python buffer protocol
54
+ specification.
55
+
56
+ .. code-block:: cpp
57
+
58
+ struct buffer_info {
59
+ void *ptr;
60
+ py::ssize_t itemsize;
61
+ std::string format;
62
+ py::ssize_t ndim;
63
+ std::vector<py::ssize_t> shape;
64
+ std::vector<py::ssize_t> strides;
65
+ };
66
+
67
+ To create a C++ function that can take a Python buffer object as an argument,
68
+ simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
69
+ in a great variety of configurations, hence some safety checks are usually
70
+ necessary in the function body. Below, you can see a basic example on how to
71
+ define a custom constructor for the Eigen double precision matrix
72
+ (``Eigen::MatrixXd``) type, which supports initialization from compatible
73
+ buffer objects (e.g. a NumPy matrix).
74
+
75
+ .. code-block:: cpp
76
+
77
+ /* Bind MatrixXd (or some other Eigen type) to Python */
78
+ typedef Eigen::MatrixXd Matrix;
79
+
80
+ typedef Matrix::Scalar Scalar;
81
+ constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
82
+
83
+ py::class_<Matrix>(m, "Matrix", py::buffer_protocol())
84
+ .def(py::init([](py::buffer b) {
85
+ typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
86
+
87
+ /* Request a buffer descriptor from Python */
88
+ py::buffer_info info = b.request();
89
+
90
+ /* Some basic validation checks ... */
91
+ if (info.format != py::format_descriptor<Scalar>::format())
92
+ throw std::runtime_error("Incompatible format: expected a double array!");
93
+
94
+ if (info.ndim != 2)
95
+ throw std::runtime_error("Incompatible buffer dimension!");
96
+
97
+ auto strides = Strides(
98
+ info.strides[rowMajor ? 0 : 1] / (py::ssize_t)sizeof(Scalar),
99
+ info.strides[rowMajor ? 1 : 0] / (py::ssize_t)sizeof(Scalar));
100
+
101
+ auto map = Eigen::Map<Matrix, 0, Strides>(
102
+ static_cast<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
103
+
104
+ return Matrix(map);
105
+ }));
106
+
107
+ For reference, the ``def_buffer()`` call for this Eigen data type should look
108
+ as follows:
109
+
110
+ .. code-block:: cpp
111
+
112
+ .def_buffer([](Matrix &m) -> py::buffer_info {
113
+ return py::buffer_info(
114
+ m.data(), /* Pointer to buffer */
115
+ sizeof(Scalar), /* Size of one scalar */
116
+ py::format_descriptor<Scalar>::format(), /* Python struct-style format descriptor */
117
+ 2, /* Number of dimensions */
118
+ { m.rows(), m.cols() }, /* Buffer dimensions */
119
+ { sizeof(Scalar) * (rowMajor ? m.cols() : 1),
120
+ sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
121
+ /* Strides (in bytes) for each index */
122
+ );
123
+ })
124
+
125
+ For a much easier approach of binding Eigen types (although with some
126
+ limitations), refer to the section on :doc:`/advanced/cast/eigen`.
127
+
128
+ .. seealso::
129
+
130
+ The file :file:`tests/test_buffers.cpp` contains a complete example
131
+ that demonstrates using the buffer protocol with pybind11 in more detail.
132
+
133
+ .. [#f2] http://docs.python.org/3/c-api/buffer.html
134
+
135
+ Arrays
136
+ ======
137
+
138
+ By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
139
+ restrict the function so that it only accepts NumPy arrays (rather than any
140
+ type of Python object satisfying the buffer protocol).
141
+
142
+ In many situations, we want to define a function which only accepts a NumPy
143
+ array of a certain data type. This is possible via the ``py::array_t<T>``
144
+ template. For instance, the following function requires the argument to be a
145
+ NumPy array containing double precision values.
146
+
147
+ .. code-block:: cpp
148
+
149
+ void f(py::array_t<double> array);
150
+
151
+ When it is invoked with a different type (e.g. an integer or a list of
152
+ integers), the binding code will attempt to cast the input into a NumPy array
153
+ of the requested type. This feature requires the :file:`pybind11/numpy.h`
154
+ header to be included. Note that :file:`pybind11/numpy.h` does not depend on
155
+ the NumPy headers, and thus can be used without declaring a build-time
156
+ dependency on NumPy; NumPy>=1.7.0 is a runtime dependency.
157
+
158
+ Data in NumPy arrays is not guaranteed to packed in a dense manner;
159
+ furthermore, entries can be separated by arbitrary column and row strides.
160
+ Sometimes, it can be useful to require a function to only accept dense arrays
161
+ using either the C (row-major) or Fortran (column-major) ordering. This can be
162
+ accomplished via a second template argument with values ``py::array::c_style``
163
+ or ``py::array::f_style``.
164
+
165
+ .. code-block:: cpp
166
+
167
+ void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
168
+
169
+ The ``py::array::forcecast`` argument is the default value of the second
170
+ template parameter, and it ensures that non-conforming arguments are converted
171
+ into an array satisfying the specified requirements instead of trying the next
172
+ function overload.
173
+
174
+ There are several methods on arrays; the methods listed below under references
175
+ work, as well as the following functions based on the NumPy API:
176
+
177
+ - ``.dtype()`` returns the type of the contained values.
178
+
179
+ - ``.strides()`` returns a pointer to the strides of the array (optionally pass
180
+ an integer axis to get a number).
181
+
182
+ - ``.flags()`` returns the flag settings. ``.writable()`` and ``.owndata()``
183
+ are directly available.
184
+
185
+ - ``.offset_at()`` returns the offset (optionally pass indices).
186
+
187
+ - ``.squeeze()`` returns a view with length-1 axes removed.
188
+
189
+ - ``.view(dtype)`` returns a view of the array with a different dtype.
190
+
191
+ - ``.reshape({i, j, ...})`` returns a view of the array with a different shape.
192
+ ``.resize({...})`` is also available.
193
+
194
+ - ``.index_at(i, j, ...)`` gets the count from the beginning to a given index.
195
+
196
+
197
+ There are also several methods for getting references (described below).
198
+
199
+ Structured types
200
+ ================
201
+
202
+ In order for ``py::array_t`` to work with structured (record) types, we first
203
+ need to register the memory layout of the type. This can be done via
204
+ ``PYBIND11_NUMPY_DTYPE`` macro, called in the plugin definition code, which
205
+ expects the type followed by field names:
206
+
207
+ .. code-block:: cpp
208
+
209
+ struct A {
210
+ int x;
211
+ double y;
212
+ };
213
+
214
+ struct B {
215
+ int z;
216
+ A a;
217
+ };
218
+
219
+ // ...
220
+ PYBIND11_MODULE(test, m) {
221
+ // ...
222
+
223
+ PYBIND11_NUMPY_DTYPE(A, x, y);
224
+ PYBIND11_NUMPY_DTYPE(B, z, a);
225
+ /* now both A and B can be used as template arguments to py::array_t */
226
+ }
227
+
228
+ The structure should consist of fundamental arithmetic types, ``std::complex``,
229
+ previously registered substructures, and arrays of any of the above. Both C++
230
+ arrays and ``std::array`` are supported. While there is a static assertion to
231
+ prevent many types of unsupported structures, it is still the user's
232
+ responsibility to use only "plain" structures that can be safely manipulated as
233
+ raw memory without violating invariants.
234
+
235
+ Vectorizing functions
236
+ =====================
237
+
238
+ Suppose we want to bind a function with the following signature to Python so
239
+ that it can process arbitrary NumPy array arguments (vectors, matrices, general
240
+ N-D arrays) in addition to its normal arguments:
241
+
242
+ .. code-block:: cpp
243
+
244
+ double my_func(int x, float y, double z);
245
+
246
+ After including the ``pybind11/numpy.h`` header, this is extremely simple:
247
+
248
+ .. code-block:: cpp
249
+
250
+ m.def("vectorized_func", py::vectorize(my_func));
251
+
252
+ Invoking the function like below causes 4 calls to be made to ``my_func`` with
253
+ each of the array elements. The significant advantage of this compared to
254
+ solutions like ``numpy.vectorize()`` is that the loop over the elements runs
255
+ entirely on the C++ side and can be crunched down into a tight, optimized loop
256
+ by the compiler. The result is returned as a NumPy array of type
257
+ ``numpy.dtype.float64``.
258
+
259
+ .. code-block:: pycon
260
+
261
+ >>> x = np.array([[1, 3], [5, 7]])
262
+ >>> y = np.array([[2, 4], [6, 8]])
263
+ >>> z = 3
264
+ >>> result = vectorized_func(x, y, z)
265
+
266
+ The scalar argument ``z`` is transparently replicated 4 times. The input
267
+ arrays ``x`` and ``y`` are automatically converted into the right types (they
268
+ are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
269
+ ``numpy.dtype.float32``, respectively).
270
+
271
+ .. note::
272
+
273
+ Only arithmetic, complex, and POD types passed by value or by ``const &``
274
+ reference are vectorized; all other arguments are passed through as-is.
275
+ Functions taking rvalue reference arguments cannot be vectorized.
276
+
277
+ In cases where the computation is too complicated to be reduced to
278
+ ``vectorize``, it will be necessary to create and access the buffer contents
279
+ manually. The following snippet contains a complete example that shows how this
280
+ works (the code is somewhat contrived, since it could have been done more
281
+ simply using ``vectorize``).
282
+
283
+ .. code-block:: cpp
284
+
285
+ #include <pybind11/pybind11.h>
286
+ #include <pybind11/numpy.h>
287
+
288
+ namespace py = pybind11;
289
+
290
+ py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
291
+ py::buffer_info buf1 = input1.request(), buf2 = input2.request();
292
+
293
+ if (buf1.ndim != 1 || buf2.ndim != 1)
294
+ throw std::runtime_error("Number of dimensions must be one");
295
+
296
+ if (buf1.size != buf2.size)
297
+ throw std::runtime_error("Input shapes must match");
298
+
299
+ /* No pointer is passed, so NumPy will allocate the buffer */
300
+ auto result = py::array_t<double>(buf1.size);
301
+
302
+ py::buffer_info buf3 = result.request();
303
+
304
+ double *ptr1 = static_cast<double *>(buf1.ptr);
305
+ double *ptr2 = static_cast<double *>(buf2.ptr);
306
+ double *ptr3 = static_cast<double *>(buf3.ptr);
307
+
308
+ for (size_t idx = 0; idx < buf1.shape[0]; idx++)
309
+ ptr3[idx] = ptr1[idx] + ptr2[idx];
310
+
311
+ return result;
312
+ }
313
+
314
+ PYBIND11_MODULE(test, m) {
315
+ m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
316
+ }
317
+
318
+ .. seealso::
319
+
320
+ The file :file:`tests/test_numpy_vectorize.cpp` contains a complete
321
+ example that demonstrates using :func:`vectorize` in more detail.
322
+
323
+ Direct access
324
+ =============
325
+
326
+ For performance reasons, particularly when dealing with very large arrays, it
327
+ is often desirable to directly access array elements without internal checking
328
+ of dimensions and bounds on every access when indices are known to be already
329
+ valid. To avoid such checks, the ``array`` class and ``array_t<T>`` template
330
+ class offer an unchecked proxy object that can be used for this unchecked
331
+ access through the ``unchecked<N>`` and ``mutable_unchecked<N>`` methods,
332
+ where ``N`` gives the required dimensionality of the array:
333
+
334
+ .. code-block:: cpp
335
+
336
+ m.def("sum_3d", [](py::array_t<double> x) {
337
+ auto r = x.unchecked<3>(); // x must have ndim = 3; can be non-writeable
338
+ double sum = 0;
339
+ for (py::ssize_t i = 0; i < r.shape(0); i++)
340
+ for (py::ssize_t j = 0; j < r.shape(1); j++)
341
+ for (py::ssize_t k = 0; k < r.shape(2); k++)
342
+ sum += r(i, j, k);
343
+ return sum;
344
+ });
345
+ m.def("increment_3d", [](py::array_t<double> x) {
346
+ auto r = x.mutable_unchecked<3>(); // Will throw if ndim != 3 or flags.writeable is false
347
+ for (py::ssize_t i = 0; i < r.shape(0); i++)
348
+ for (py::ssize_t j = 0; j < r.shape(1); j++)
349
+ for (py::ssize_t k = 0; k < r.shape(2); k++)
350
+ r(i, j, k) += 1.0;
351
+ }, py::arg().noconvert());
352
+
353
+ To obtain the proxy from an ``array`` object, you must specify both the data
354
+ type and number of dimensions as template arguments, such as ``auto r =
355
+ myarray.mutable_unchecked<float, 2>()``.
356
+
357
+ If the number of dimensions is not known at compile time, you can omit the
358
+ dimensions template parameter (i.e. calling ``arr_t.unchecked()`` or
359
+ ``arr.unchecked<T>()``. This will give you a proxy object that works in the
360
+ same way, but results in less optimizable code and thus a small efficiency
361
+ loss in tight loops.
362
+
363
+ Note that the returned proxy object directly references the array's data, and
364
+ only reads its shape, strides, and writeable flag when constructed. You must
365
+ take care to ensure that the referenced array is not destroyed or reshaped for
366
+ the duration of the returned object, typically by limiting the scope of the
367
+ returned instance.
368
+
369
+ The returned proxy object supports some of the same methods as ``py::array`` so
370
+ that it can be used as a drop-in replacement for some existing, index-checked
371
+ uses of ``py::array``:
372
+
373
+ - ``.ndim()`` returns the number of dimensions
374
+
375
+ - ``.data(1, 2, ...)`` and ``r.mutable_data(1, 2, ...)``` returns a pointer to
376
+ the ``const T`` or ``T`` data, respectively, at the given indices. The
377
+ latter is only available to proxies obtained via ``a.mutable_unchecked()``.
378
+
379
+ - ``.itemsize()`` returns the size of an item in bytes, i.e. ``sizeof(T)``.
380
+
381
+ - ``.ndim()`` returns the number of dimensions.
382
+
383
+ - ``.shape(n)`` returns the size of dimension ``n``
384
+
385
+ - ``.size()`` returns the total number of elements (i.e. the product of the shapes).
386
+
387
+ - ``.nbytes()`` returns the number of bytes used by the referenced elements
388
+ (i.e. ``itemsize()`` times ``size()``).
389
+
390
+ .. seealso::
391
+
392
+ The file :file:`tests/test_numpy_array.cpp` contains additional examples
393
+ demonstrating the use of this feature.
394
+
395
+ Ellipsis
396
+ ========
397
+
398
+ Python provides a convenient ``...`` ellipsis notation that is often used to
399
+ slice multidimensional arrays. For instance, the following snippet extracts the
400
+ middle dimensions of a tensor with the first and last index set to zero.
401
+
402
+ .. code-block:: python
403
+
404
+ a = ... # a NumPy array
405
+ b = a[0, ..., 0]
406
+
407
+ The function ``py::ellipsis()`` function can be used to perform the same
408
+ operation on the C++ side:
409
+
410
+ .. code-block:: cpp
411
+
412
+ py::array a = /* A NumPy array */;
413
+ py::array b = a[py::make_tuple(0, py::ellipsis(), 0)];
414
+
415
+
416
+ Memory view
417
+ ===========
418
+
419
+ For a case when we simply want to provide a direct accessor to C/C++ buffer
420
+ without a concrete class object, we can return a ``memoryview`` object. Suppose
421
+ we wish to expose a ``memoryview`` for 2x4 uint8_t array, we can do the
422
+ following:
423
+
424
+ .. code-block:: cpp
425
+
426
+ const uint8_t buffer[] = {
427
+ 0, 1, 2, 3,
428
+ 4, 5, 6, 7
429
+ };
430
+ m.def("get_memoryview2d", []() {
431
+ return py::memoryview::from_buffer(
432
+ buffer, // buffer pointer
433
+ { 2, 4 }, // shape (rows, cols)
434
+ { sizeof(uint8_t) * 4, sizeof(uint8_t) } // strides in bytes
435
+ );
436
+ })
437
+
438
+ This approach is meant for providing a ``memoryview`` for a C/C++ buffer not
439
+ managed by Python. The user is responsible for managing the lifetime of the
440
+ buffer. Using a ``memoryview`` created in this way after deleting the buffer in
441
+ C++ side results in undefined behavior.
442
+
443
+ We can also use ``memoryview::from_memory`` for a simple 1D contiguous buffer:
444
+
445
+ .. code-block:: cpp
446
+
447
+ m.def("get_memoryview1d", []() {
448
+ return py::memoryview::from_memory(
449
+ buffer, // buffer pointer
450
+ sizeof(uint8_t) * 8 // buffer size
451
+ );
452
+ })
453
+
454
+ .. versionchanged:: 2.6
455
+ ``memoryview::from_memory`` added.
third-party/DPVO/DPViewer/pybind11/docs/advanced/pycpp/object.rst ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Python types
2
+ ############
3
+
4
+ .. _wrappers:
5
+
6
+ Available wrappers
7
+ ==================
8
+
9
+ All major Python types are available as thin C++ wrapper classes. These
10
+ can also be used as function parameters -- see :ref:`python_objects_as_args`.
11
+
12
+ Available types include :class:`handle`, :class:`object`, :class:`bool_`,
13
+ :class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
14
+ :class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
15
+ :class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
16
+ :class:`array`, and :class:`array_t`.
17
+
18
+ .. warning::
19
+
20
+ Be sure to review the :ref:`pytypes_gotchas` before using this heavily in
21
+ your C++ API.
22
+
23
+ .. _instantiating_compound_types:
24
+
25
+ Instantiating compound Python types from C++
26
+ ============================================
27
+
28
+ Dictionaries can be initialized in the :class:`dict` constructor:
29
+
30
+ .. code-block:: cpp
31
+
32
+ using namespace pybind11::literals; // to bring in the `_a` literal
33
+ py::dict d("spam"_a=py::none(), "eggs"_a=42);
34
+
35
+ A tuple of python objects can be instantiated using :func:`py::make_tuple`:
36
+
37
+ .. code-block:: cpp
38
+
39
+ py::tuple tup = py::make_tuple(42, py::none(), "spam");
40
+
41
+ Each element is converted to a supported Python type.
42
+
43
+ A `simple namespace`_ can be instantiated using
44
+
45
+ .. code-block:: cpp
46
+
47
+ using namespace pybind11::literals; // to bring in the `_a` literal
48
+ py::object SimpleNamespace = py::module_::import("types").attr("SimpleNamespace");
49
+ py::object ns = SimpleNamespace("spam"_a=py::none(), "eggs"_a=42);
50
+
51
+ Attributes on a namespace can be modified with the :func:`py::delattr`,
52
+ :func:`py::getattr`, and :func:`py::setattr` functions. Simple namespaces can
53
+ be useful as lightweight stand-ins for class instances.
54
+
55
+ .. _simple namespace: https://docs.python.org/3/library/types.html#types.SimpleNamespace
56
+
57
+ .. _casting_back_and_forth:
58
+
59
+ Casting back and forth
60
+ ======================
61
+
62
+ In this kind of mixed code, it is often necessary to convert arbitrary C++
63
+ types to Python, which can be done using :func:`py::cast`:
64
+
65
+ .. code-block:: cpp
66
+
67
+ MyClass *cls = ...;
68
+ py::object obj = py::cast(cls);
69
+
70
+ The reverse direction uses the following syntax:
71
+
72
+ .. code-block:: cpp
73
+
74
+ py::object obj = ...;
75
+ MyClass *cls = obj.cast<MyClass *>();
76
+
77
+ When conversion fails, both directions throw the exception :class:`cast_error`.
78
+
79
+ .. _python_libs:
80
+
81
+ Accessing Python libraries from C++
82
+ ===================================
83
+
84
+ It is also possible to import objects defined in the Python standard
85
+ library or available in the current Python environment (``sys.path``) and work
86
+ with these in C++.
87
+
88
+ This example obtains a reference to the Python ``Decimal`` class.
89
+
90
+ .. code-block:: cpp
91
+
92
+ // Equivalent to "from decimal import Decimal"
93
+ py::object Decimal = py::module_::import("decimal").attr("Decimal");
94
+
95
+ .. code-block:: cpp
96
+
97
+ // Try to import scipy
98
+ py::object scipy = py::module_::import("scipy");
99
+ return scipy.attr("__version__");
100
+
101
+
102
+ .. _calling_python_functions:
103
+
104
+ Calling Python functions
105
+ ========================
106
+
107
+ It is also possible to call Python classes, functions and methods
108
+ via ``operator()``.
109
+
110
+ .. code-block:: cpp
111
+
112
+ // Construct a Python object of class Decimal
113
+ py::object pi = Decimal("3.14159");
114
+
115
+ .. code-block:: cpp
116
+
117
+ // Use Python to make our directories
118
+ py::object os = py::module_::import("os");
119
+ py::object makedirs = os.attr("makedirs");
120
+ makedirs("/tmp/path/to/somewhere");
121
+
122
+ One can convert the result obtained from Python to a pure C++ version
123
+ if a ``py::class_`` or type conversion is defined.
124
+
125
+ .. code-block:: cpp
126
+
127
+ py::function f = <...>;
128
+ py::object result_py = f(1234, "hello", some_instance);
129
+ MyClass &result = result_py.cast<MyClass>();
130
+
131
+ .. _calling_python_methods:
132
+
133
+ Calling Python methods
134
+ ========================
135
+
136
+ To call an object's method, one can again use ``.attr`` to obtain access to the
137
+ Python method.
138
+
139
+ .. code-block:: cpp
140
+
141
+ // Calculate e^π in decimal
142
+ py::object exp_pi = pi.attr("exp")();
143
+ py::print(py::str(exp_pi));
144
+
145
+ In the example above ``pi.attr("exp")`` is a *bound method*: it will always call
146
+ the method for that same instance of the class. Alternately one can create an
147
+ *unbound method* via the Python class (instead of instance) and pass the ``self``
148
+ object explicitly, followed by other arguments.
149
+
150
+ .. code-block:: cpp
151
+
152
+ py::object decimal_exp = Decimal.attr("exp");
153
+
154
+ // Compute the e^n for n=0..4
155
+ for (int n = 0; n < 5; n++) {
156
+ py::print(decimal_exp(Decimal(n));
157
+ }
158
+
159
+ Keyword arguments
160
+ =================
161
+
162
+ Keyword arguments are also supported. In Python, there is the usual call syntax:
163
+
164
+ .. code-block:: python
165
+
166
+ def f(number, say, to):
167
+ ... # function code
168
+
169
+
170
+ f(1234, say="hello", to=some_instance) # keyword call in Python
171
+
172
+ In C++, the same call can be made using:
173
+
174
+ .. code-block:: cpp
175
+
176
+ using namespace pybind11::literals; // to bring in the `_a` literal
177
+ f(1234, "say"_a="hello", "to"_a=some_instance); // keyword call in C++
178
+
179
+ Unpacking arguments
180
+ ===================
181
+
182
+ Unpacking of ``*args`` and ``**kwargs`` is also possible and can be mixed with
183
+ other arguments:
184
+
185
+ .. code-block:: cpp
186
+
187
+ // * unpacking
188
+ py::tuple args = py::make_tuple(1234, "hello", some_instance);
189
+ f(*args);
190
+
191
+ // ** unpacking
192
+ py::dict kwargs = py::dict("number"_a=1234, "say"_a="hello", "to"_a=some_instance);
193
+ f(**kwargs);
194
+
195
+ // mixed keywords, * and ** unpacking
196
+ py::tuple args = py::make_tuple(1234);
197
+ py::dict kwargs = py::dict("to"_a=some_instance);
198
+ f(*args, "say"_a="hello", **kwargs);
199
+
200
+ Generalized unpacking according to PEP448_ is also supported:
201
+
202
+ .. code-block:: cpp
203
+
204
+ py::dict kwargs1 = py::dict("number"_a=1234);
205
+ py::dict kwargs2 = py::dict("to"_a=some_instance);
206
+ f(**kwargs1, "say"_a="hello", **kwargs2);
207
+
208
+ .. seealso::
209
+
210
+ The file :file:`tests/test_pytypes.cpp` contains a complete
211
+ example that demonstrates passing native Python types in more detail. The
212
+ file :file:`tests/test_callbacks.cpp` presents a few examples of calling
213
+ Python functions from C++, including keywords arguments and unpacking.
214
+
215
+ .. _PEP448: https://www.python.org/dev/peps/pep-0448/
216
+
217
+ .. _implicit_casting:
218
+
219
+ Implicit casting
220
+ ================
221
+
222
+ When using the C++ interface for Python types, or calling Python functions,
223
+ objects of type :class:`object` are returned. It is possible to invoke implicit
224
+ conversions to subclasses like :class:`dict`. The same holds for the proxy objects
225
+ returned by ``operator[]`` or ``obj.attr()``.
226
+ Casting to subtypes improves code readability and allows values to be passed to
227
+ C++ functions that require a specific subtype rather than a generic :class:`object`.
228
+
229
+ .. code-block:: cpp
230
+
231
+ #include <pybind11/numpy.h>
232
+ using namespace pybind11::literals;
233
+
234
+ py::module_ os = py::module_::import("os");
235
+ py::module_ path = py::module_::import("os.path"); // like 'import os.path as path'
236
+ py::module_ np = py::module_::import("numpy"); // like 'import numpy as np'
237
+
238
+ py::str curdir_abs = path.attr("abspath")(path.attr("curdir"));
239
+ py::print(py::str("Current directory: ") + curdir_abs);
240
+ py::dict environ = os.attr("environ");
241
+ py::print(environ["HOME"]);
242
+ py::array_t<float> arr = np.attr("ones")(3, "dtype"_a="float32");
243
+ py::print(py::repr(arr + py::int_(1)));
244
+
245
+ These implicit conversions are available for subclasses of :class:`object`; there
246
+ is no need to call ``obj.cast()`` explicitly as for custom classes, see
247
+ :ref:`casting_back_and_forth`.
248
+
249
+ .. note::
250
+ If a trivial conversion via move constructor is not possible, both implicit and
251
+ explicit casting (calling ``obj.cast()``) will attempt a "rich" conversion.
252
+ For instance, ``py::list env = os.attr("environ");`` will succeed and is
253
+ equivalent to the Python code ``env = list(os.environ)`` that produces a
254
+ list of the dict keys.
255
+
256
+ .. TODO: Adapt text once PR #2349 has landed
257
+
258
+ Handling exceptions
259
+ ===================
260
+
261
+ Python exceptions from wrapper classes will be thrown as a ``py::error_already_set``.
262
+ See :ref:`Handling exceptions from Python in C++
263
+ <handling_python_exceptions_cpp>` for more information on handling exceptions
264
+ raised when calling C++ wrapper classes.
265
+
266
+ .. _pytypes_gotchas:
267
+
268
+ Gotchas
269
+ =======
270
+
271
+ Default-Constructed Wrappers
272
+ ----------------------------
273
+
274
+ When a wrapper type is default-constructed, it is **not** a valid Python object (i.e. it is not ``py::none()``). It is simply the same as
275
+ ``PyObject*`` null pointer. To check for this, use
276
+ ``static_cast<bool>(my_wrapper)``.
277
+
278
+ Assigning py::none() to wrappers
279
+ --------------------------------
280
+
281
+ You may be tempted to use types like ``py::str`` and ``py::dict`` in C++
282
+ signatures (either pure C++, or in bound signatures), and assign them default
283
+ values of ``py::none()``. However, in a best case scenario, it will fail fast
284
+ because ``None`` is not convertible to that type (e.g. ``py::dict``), or in a
285
+ worse case scenario, it will silently work but corrupt the types you want to
286
+ work with (e.g. ``py::str(py::none())`` will yield ``"None"`` in Python).
third-party/DPVO/DPViewer/pybind11/docs/advanced/pycpp/utilities.rst ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Utilities
2
+ #########
3
+
4
+ Using Python's print function in C++
5
+ ====================================
6
+
7
+ The usual way to write output in C++ is using ``std::cout`` while in Python one
8
+ would use ``print``. Since these methods use different buffers, mixing them can
9
+ lead to output order issues. To resolve this, pybind11 modules can use the
10
+ :func:`py::print` function which writes to Python's ``sys.stdout`` for consistency.
11
+
12
+ Python's ``print`` function is replicated in the C++ API including optional
13
+ keyword arguments ``sep``, ``end``, ``file``, ``flush``. Everything works as
14
+ expected in Python:
15
+
16
+ .. code-block:: cpp
17
+
18
+ py::print(1, 2.0, "three"); // 1 2.0 three
19
+ py::print(1, 2.0, "three", "sep"_a="-"); // 1-2.0-three
20
+
21
+ auto args = py::make_tuple("unpacked", true);
22
+ py::print("->", *args, "end"_a="<-"); // -> unpacked True <-
23
+
24
+ .. _ostream_redirect:
25
+
26
+ Capturing standard output from ostream
27
+ ======================================
28
+
29
+ Often, a library will use the streams ``std::cout`` and ``std::cerr`` to print,
30
+ but this does not play well with Python's standard ``sys.stdout`` and ``sys.stderr``
31
+ redirection. Replacing a library's printing with ``py::print <print>`` may not
32
+ be feasible. This can be fixed using a guard around the library function that
33
+ redirects output to the corresponding Python streams:
34
+
35
+ .. code-block:: cpp
36
+
37
+ #include <pybind11/iostream.h>
38
+
39
+ ...
40
+
41
+ // Add a scoped redirect for your noisy code
42
+ m.def("noisy_func", []() {
43
+ py::scoped_ostream_redirect stream(
44
+ std::cout, // std::ostream&
45
+ py::module_::import("sys").attr("stdout") // Python output
46
+ );
47
+ call_noisy_func();
48
+ });
49
+
50
+ .. warning::
51
+
52
+ The implementation in ``pybind11/iostream.h`` is NOT thread safe. Multiple
53
+ threads writing to a redirected ostream concurrently cause data races
54
+ and potentially buffer overflows. Therefore it is currently a requirement
55
+ that all (possibly) concurrent redirected ostream writes are protected by
56
+ a mutex. #HelpAppreciated: Work on iostream.h thread safety. For more
57
+ background see the discussions under
58
+ `PR #2982 <https://github.com/pybind/pybind11/pull/2982>`_ and
59
+ `PR #2995 <https://github.com/pybind/pybind11/pull/2995>`_.
60
+
61
+ This method respects flushes on the output streams and will flush if needed
62
+ when the scoped guard is destroyed. This allows the output to be redirected in
63
+ real time, such as to a Jupyter notebook. The two arguments, the C++ stream and
64
+ the Python output, are optional, and default to standard output if not given. An
65
+ extra type, ``py::scoped_estream_redirect <scoped_estream_redirect>``, is identical
66
+ except for defaulting to ``std::cerr`` and ``sys.stderr``; this can be useful with
67
+ ``py::call_guard``, which allows multiple items, but uses the default constructor:
68
+
69
+ .. code-block:: cpp
70
+
71
+ // Alternative: Call single function using call guard
72
+ m.def("noisy_func", &call_noisy_function,
73
+ py::call_guard<py::scoped_ostream_redirect,
74
+ py::scoped_estream_redirect>());
75
+
76
+ The redirection can also be done in Python with the addition of a context
77
+ manager, using the ``py::add_ostream_redirect() <add_ostream_redirect>`` function:
78
+
79
+ .. code-block:: cpp
80
+
81
+ py::add_ostream_redirect(m, "ostream_redirect");
82
+
83
+ The name in Python defaults to ``ostream_redirect`` if no name is passed. This
84
+ creates the following context manager in Python:
85
+
86
+ .. code-block:: python
87
+
88
+ with ostream_redirect(stdout=True, stderr=True):
89
+ noisy_function()
90
+
91
+ It defaults to redirecting both streams, though you can use the keyword
92
+ arguments to disable one of the streams if needed.
93
+
94
+ .. note::
95
+
96
+ The above methods will not redirect C-level output to file descriptors, such
97
+ as ``fprintf``. For those cases, you'll need to redirect the file
98
+ descriptors either directly in C or with Python's ``os.dup2`` function
99
+ in an operating-system dependent way.
100
+
101
+ .. _eval:
102
+
103
+ Evaluating Python expressions from strings and files
104
+ ====================================================
105
+
106
+ pybind11 provides the ``eval``, ``exec`` and ``eval_file`` functions to evaluate
107
+ Python expressions and statements. The following example illustrates how they
108
+ can be used.
109
+
110
+ .. code-block:: cpp
111
+
112
+ // At beginning of file
113
+ #include <pybind11/eval.h>
114
+
115
+ ...
116
+
117
+ // Evaluate in scope of main module
118
+ py::object scope = py::module_::import("__main__").attr("__dict__");
119
+
120
+ // Evaluate an isolated expression
121
+ int result = py::eval("my_variable + 10", scope).cast<int>();
122
+
123
+ // Evaluate a sequence of statements
124
+ py::exec(
125
+ "print('Hello')\n"
126
+ "print('world!');",
127
+ scope);
128
+
129
+ // Evaluate the statements in an separate Python file on disk
130
+ py::eval_file("script.py", scope);
131
+
132
+ C++11 raw string literals are also supported and quite handy for this purpose.
133
+ The only requirement is that the first statement must be on a new line following
134
+ the raw string delimiter ``R"(``, ensuring all lines have common leading indent:
135
+
136
+ .. code-block:: cpp
137
+
138
+ py::exec(R"(
139
+ x = get_answer()
140
+ if x == 42:
141
+ print('Hello World!')
142
+ else:
143
+ print('Bye!')
144
+ )", scope
145
+ );
146
+
147
+ .. note::
148
+
149
+ `eval` and `eval_file` accept a template parameter that describes how the
150
+ string/file should be interpreted. Possible choices include ``eval_expr``
151
+ (isolated expression), ``eval_single_statement`` (a single statement, return
152
+ value is always ``none``), and ``eval_statements`` (sequence of statements,
153
+ return value is always ``none``). `eval` defaults to ``eval_expr``,
154
+ `eval_file` defaults to ``eval_statements`` and `exec` is just a shortcut
155
+ for ``eval<eval_statements>``.
third-party/DPVO/DPViewer/pybind11/docs/advanced/smart_ptrs.rst ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Smart pointers
2
+ ##############
3
+
4
+ std::unique_ptr
5
+ ===============
6
+
7
+ Given a class ``Example`` with Python bindings, it's possible to return
8
+ instances wrapped in C++11 unique pointers, like so
9
+
10
+ .. code-block:: cpp
11
+
12
+ std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
13
+
14
+ .. code-block:: cpp
15
+
16
+ m.def("create_example", &create_example);
17
+
18
+ In other words, there is nothing special that needs to be done. While returning
19
+ unique pointers in this way is allowed, it is *illegal* to use them as function
20
+ arguments. For instance, the following function signature cannot be processed
21
+ by pybind11.
22
+
23
+ .. code-block:: cpp
24
+
25
+ void do_something_with_example(std::unique_ptr<Example> ex) { ... }
26
+
27
+ The above signature would imply that Python needs to give up ownership of an
28
+ object that is passed to this function, which is generally not possible (for
29
+ instance, the object might be referenced elsewhere).
30
+
31
+ std::shared_ptr
32
+ ===============
33
+
34
+ The binding generator for classes, :class:`class_`, can be passed a template
35
+ type that denotes a special *holder* type that is used to manage references to
36
+ the object. If no such holder type template argument is given, the default for
37
+ a type named ``Type`` is ``std::unique_ptr<Type>``, which means that the object
38
+ is deallocated when Python's reference count goes to zero.
39
+
40
+ It is possible to switch to other types of reference counting wrappers or smart
41
+ pointers, which is useful in codebases that rely on them. For instance, the
42
+ following snippet causes ``std::shared_ptr`` to be used instead.
43
+
44
+ .. code-block:: cpp
45
+
46
+ py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
47
+
48
+ Note that any particular class can only be associated with a single holder type.
49
+
50
+ One potential stumbling block when using holder types is that they need to be
51
+ applied consistently. Can you guess what's broken about the following binding
52
+ code?
53
+
54
+ .. code-block:: cpp
55
+
56
+ class Child { };
57
+
58
+ class Parent {
59
+ public:
60
+ Parent() : child(std::make_shared<Child>()) { }
61
+ Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
62
+ private:
63
+ std::shared_ptr<Child> child;
64
+ };
65
+
66
+ PYBIND11_MODULE(example, m) {
67
+ py::class_<Child, std::shared_ptr<Child>>(m, "Child");
68
+
69
+ py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
70
+ .def(py::init<>())
71
+ .def("get_child", &Parent::get_child);
72
+ }
73
+
74
+ The following Python code will cause undefined behavior (and likely a
75
+ segmentation fault).
76
+
77
+ .. code-block:: python
78
+
79
+ from example import Parent
80
+
81
+ print(Parent().get_child())
82
+
83
+ The problem is that ``Parent::get_child()`` returns a pointer to an instance of
84
+ ``Child``, but the fact that this instance is already managed by
85
+ ``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
86
+ pybind11 will create a second independent ``std::shared_ptr<...>`` that also
87
+ claims ownership of the pointer. In the end, the object will be freed **twice**
88
+ since these shared pointers have no way of knowing about each other.
89
+
90
+ There are two ways to resolve this issue:
91
+
92
+ 1. For types that are managed by a smart pointer class, never use raw pointers
93
+ in function arguments or return values. In other words: always consistently
94
+ wrap pointers into their designated holder types (such as
95
+ ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
96
+ should be modified as follows:
97
+
98
+ .. code-block:: cpp
99
+
100
+ std::shared_ptr<Child> get_child() { return child; }
101
+
102
+ 2. Adjust the definition of ``Child`` by specifying
103
+ ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
104
+ base class. This adds a small bit of information to ``Child`` that allows
105
+ pybind11 to realize that there is already an existing
106
+ ``std::shared_ptr<...>`` and communicate with it. In this case, the
107
+ declaration of ``Child`` should look as follows:
108
+
109
+ .. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
110
+
111
+ .. code-block:: cpp
112
+
113
+ class Child : public std::enable_shared_from_this<Child> { };
114
+
115
+ .. _smart_pointers:
116
+
117
+ Custom smart pointers
118
+ =====================
119
+
120
+ pybind11 supports ``std::unique_ptr`` and ``std::shared_ptr`` right out of the
121
+ box. For any other custom smart pointer, transparent conversions can be enabled
122
+ using a macro invocation similar to the following. It must be declared at the
123
+ top namespace level before any binding code:
124
+
125
+ .. code-block:: cpp
126
+
127
+ PYBIND11_DECLARE_HOLDER_TYPE(T, SmartPtr<T>);
128
+
129
+ The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
130
+ placeholder name that is used as a template parameter of the second argument.
131
+ Thus, feel free to use any identifier, but use it consistently on both sides;
132
+ also, don't use the name of a type that already exists in your codebase.
133
+
134
+ The macro also accepts a third optional boolean parameter that is set to false
135
+ by default. Specify
136
+
137
+ .. code-block:: cpp
138
+
139
+ PYBIND11_DECLARE_HOLDER_TYPE(T, SmartPtr<T>, true);
140
+
141
+ if ``SmartPtr<T>`` can always be initialized from a ``T*`` pointer without the
142
+ risk of inconsistencies (such as multiple independent ``SmartPtr`` instances
143
+ believing that they are the sole owner of the ``T*`` pointer). A common
144
+ situation where ``true`` should be passed is when the ``T`` instances use
145
+ *intrusive* reference counting.
146
+
147
+ Please take a look at the :ref:`macro_notes` before using this feature.
148
+
149
+ By default, pybind11 assumes that your custom smart pointer has a standard
150
+ interface, i.e. provides a ``.get()`` member function to access the underlying
151
+ raw pointer. If this is not the case, pybind11's ``holder_helper`` must be
152
+ specialized:
153
+
154
+ .. code-block:: cpp
155
+
156
+ // Always needed for custom holder types
157
+ PYBIND11_DECLARE_HOLDER_TYPE(T, SmartPtr<T>);
158
+
159
+ // Only needed if the type's `.get()` goes by another name
160
+ namespace pybind11 { namespace detail {
161
+ template <typename T>
162
+ struct holder_helper<SmartPtr<T>> { // <-- specialization
163
+ static const T *get(const SmartPtr<T> &p) { return p.getPointer(); }
164
+ };
165
+ }}
166
+
167
+ The above specialization informs pybind11 that the custom ``SmartPtr`` class
168
+ provides ``.get()`` functionality via ``.getPointer()``.
169
+
170
+ .. seealso::
171
+
172
+ The file :file:`tests/test_smart_ptr.cpp` contains a complete example
173
+ that demonstrates how to work with custom reference-counting holder types
174
+ in more detail.
third-party/DPVO/DPViewer/pybind11/docs/basics.rst ADDED
@@ -0,0 +1,307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. _basics:
2
+
3
+ First steps
4
+ ###########
5
+
6
+ This sections demonstrates the basic features of pybind11. Before getting
7
+ started, make sure that development environment is set up to compile the
8
+ included set of test cases.
9
+
10
+
11
+ Compiling the test cases
12
+ ========================
13
+
14
+ Linux/macOS
15
+ -----------
16
+
17
+ On Linux you'll need to install the **python-dev** or **python3-dev** packages as
18
+ well as **cmake**. On macOS, the included python version works out of the box,
19
+ but **cmake** must still be installed.
20
+
21
+ After installing the prerequisites, run
22
+
23
+ .. code-block:: bash
24
+
25
+ mkdir build
26
+ cd build
27
+ cmake ..
28
+ make check -j 4
29
+
30
+ The last line will both compile and run the tests.
31
+
32
+ Windows
33
+ -------
34
+
35
+ On Windows, only **Visual Studio 2017** and newer are supported.
36
+
37
+ .. Note::
38
+
39
+ To use the C++17 in Visual Studio 2017 (MSVC 14.1), pybind11 requires the flag
40
+ ``/permissive-`` to be passed to the compiler `to enforce standard conformance`_. When
41
+ building with Visual Studio 2019, this is not strictly necessary, but still advised.
42
+
43
+ .. _`to enforce standard conformance`: https://docs.microsoft.com/en-us/cpp/build/reference/permissive-standards-conformance?view=vs-2017
44
+
45
+ To compile and run the tests:
46
+
47
+ .. code-block:: batch
48
+
49
+ mkdir build
50
+ cd build
51
+ cmake ..
52
+ cmake --build . --config Release --target check
53
+
54
+ This will create a Visual Studio project, compile and run the target, all from the
55
+ command line.
56
+
57
+ .. Note::
58
+
59
+ If all tests fail, make sure that the Python binary and the testcases are compiled
60
+ for the same processor type and bitness (i.e. either **i386** or **x86_64**). You
61
+ can specify **x86_64** as the target architecture for the generated Visual Studio
62
+ project using ``cmake -A x64 ..``.
63
+
64
+ .. seealso::
65
+
66
+ Advanced users who are already familiar with Boost.Python may want to skip
67
+ the tutorial and look at the test cases in the :file:`tests` directory,
68
+ which exercise all features of pybind11.
69
+
70
+ Header and namespace conventions
71
+ ================================
72
+
73
+ For brevity, all code examples assume that the following two lines are present:
74
+
75
+ .. code-block:: cpp
76
+
77
+ #include <pybind11/pybind11.h>
78
+
79
+ namespace py = pybind11;
80
+
81
+ Some features may require additional headers, but those will be specified as needed.
82
+
83
+ .. _simple_example:
84
+
85
+ Creating bindings for a simple function
86
+ =======================================
87
+
88
+ Let's start by creating Python bindings for an extremely simple function, which
89
+ adds two numbers and returns their result:
90
+
91
+ .. code-block:: cpp
92
+
93
+ int add(int i, int j) {
94
+ return i + j;
95
+ }
96
+
97
+ For simplicity [#f1]_, we'll put both this function and the binding code into
98
+ a file named :file:`example.cpp` with the following contents:
99
+
100
+ .. code-block:: cpp
101
+
102
+ #include <pybind11/pybind11.h>
103
+
104
+ int add(int i, int j) {
105
+ return i + j;
106
+ }
107
+
108
+ PYBIND11_MODULE(example, m) {
109
+ m.doc() = "pybind11 example plugin"; // optional module docstring
110
+
111
+ m.def("add", &add, "A function that adds two numbers");
112
+ }
113
+
114
+ .. [#f1] In practice, implementation and binding code will generally be located
115
+ in separate files.
116
+
117
+ The :func:`PYBIND11_MODULE` macro creates a function that will be called when an
118
+ ``import`` statement is issued from within Python. The module name (``example``)
119
+ is given as the first macro argument (it should not be in quotes). The second
120
+ argument (``m``) defines a variable of type :class:`py::module_ <module>` which
121
+ is the main interface for creating bindings. The method :func:`module_::def`
122
+ generates binding code that exposes the ``add()`` function to Python.
123
+
124
+ .. note::
125
+
126
+ Notice how little code was needed to expose our function to Python: all
127
+ details regarding the function's parameters and return value were
128
+ automatically inferred using template metaprogramming. This overall
129
+ approach and the used syntax are borrowed from Boost.Python, though the
130
+ underlying implementation is very different.
131
+
132
+ pybind11 is a header-only library, hence it is not necessary to link against
133
+ any special libraries and there are no intermediate (magic) translation steps.
134
+ On Linux, the above example can be compiled using the following command:
135
+
136
+ .. code-block:: bash
137
+
138
+ $ c++ -O3 -Wall -shared -std=c++11 -fPIC $(python3 -m pybind11 --includes) example.cpp -o example$(python3-config --extension-suffix)
139
+
140
+ .. note::
141
+
142
+ If you used :ref:`include_as_a_submodule` to get the pybind11 source, then
143
+ use ``$(python3-config --includes) -Iextern/pybind11/include`` instead of
144
+ ``$(python3 -m pybind11 --includes)`` in the above compilation, as
145
+ explained in :ref:`building_manually`.
146
+
147
+ For more details on the required compiler flags on Linux and macOS, see
148
+ :ref:`building_manually`. For complete cross-platform compilation instructions,
149
+ refer to the :ref:`compiling` page.
150
+
151
+ The `python_example`_ and `cmake_example`_ repositories are also a good place
152
+ to start. They are both complete project examples with cross-platform build
153
+ systems. The only difference between the two is that `python_example`_ uses
154
+ Python's ``setuptools`` to build the module, while `cmake_example`_ uses CMake
155
+ (which may be preferable for existing C++ projects).
156
+
157
+ .. _python_example: https://github.com/pybind/python_example
158
+ .. _cmake_example: https://github.com/pybind/cmake_example
159
+
160
+ Building the above C++ code will produce a binary module file that can be
161
+ imported to Python. Assuming that the compiled module is located in the
162
+ current directory, the following interactive Python session shows how to
163
+ load and execute the example:
164
+
165
+ .. code-block:: pycon
166
+
167
+ $ python
168
+ Python 3.9.10 (main, Jan 15 2022, 11:48:04)
169
+ [Clang 13.0.0 (clang-1300.0.29.3)] on darwin
170
+ Type "help", "copyright", "credits" or "license" for more information.
171
+ >>> import example
172
+ >>> example.add(1, 2)
173
+ 3
174
+ >>>
175
+
176
+ .. _keyword_args:
177
+
178
+ Keyword arguments
179
+ =================
180
+
181
+ With a simple code modification, it is possible to inform Python about the
182
+ names of the arguments ("i" and "j" in this case).
183
+
184
+ .. code-block:: cpp
185
+
186
+ m.def("add", &add, "A function which adds two numbers",
187
+ py::arg("i"), py::arg("j"));
188
+
189
+ :class:`arg` is one of several special tag classes which can be used to pass
190
+ metadata into :func:`module_::def`. With this modified binding code, we can now
191
+ call the function using keyword arguments, which is a more readable alternative
192
+ particularly for functions taking many parameters:
193
+
194
+ .. code-block:: pycon
195
+
196
+ >>> import example
197
+ >>> example.add(i=1, j=2)
198
+ 3L
199
+
200
+ The keyword names also appear in the function signatures within the documentation.
201
+
202
+ .. code-block:: pycon
203
+
204
+ >>> help(example)
205
+
206
+ ....
207
+
208
+ FUNCTIONS
209
+ add(...)
210
+ Signature : (i: int, j: int) -> int
211
+
212
+ A function which adds two numbers
213
+
214
+ A shorter notation for named arguments is also available:
215
+
216
+ .. code-block:: cpp
217
+
218
+ // regular notation
219
+ m.def("add1", &add, py::arg("i"), py::arg("j"));
220
+ // shorthand
221
+ using namespace pybind11::literals;
222
+ m.def("add2", &add, "i"_a, "j"_a);
223
+
224
+ The :var:`_a` suffix forms a C++11 literal which is equivalent to :class:`arg`.
225
+ Note that the literal operator must first be made visible with the directive
226
+ ``using namespace pybind11::literals``. This does not bring in anything else
227
+ from the ``pybind11`` namespace except for literals.
228
+
229
+ .. _default_args:
230
+
231
+ Default arguments
232
+ =================
233
+
234
+ Suppose now that the function to be bound has default arguments, e.g.:
235
+
236
+ .. code-block:: cpp
237
+
238
+ int add(int i = 1, int j = 2) {
239
+ return i + j;
240
+ }
241
+
242
+ Unfortunately, pybind11 cannot automatically extract these parameters, since they
243
+ are not part of the function's type information. However, they are simple to specify
244
+ using an extension of :class:`arg`:
245
+
246
+ .. code-block:: cpp
247
+
248
+ m.def("add", &add, "A function which adds two numbers",
249
+ py::arg("i") = 1, py::arg("j") = 2);
250
+
251
+ The default values also appear within the documentation.
252
+
253
+ .. code-block:: pycon
254
+
255
+ >>> help(example)
256
+
257
+ ....
258
+
259
+ FUNCTIONS
260
+ add(...)
261
+ Signature : (i: int = 1, j: int = 2) -> int
262
+
263
+ A function which adds two numbers
264
+
265
+ The shorthand notation is also available for default arguments:
266
+
267
+ .. code-block:: cpp
268
+
269
+ // regular notation
270
+ m.def("add1", &add, py::arg("i") = 1, py::arg("j") = 2);
271
+ // shorthand
272
+ m.def("add2", &add, "i"_a=1, "j"_a=2);
273
+
274
+ Exporting variables
275
+ ===================
276
+
277
+ To expose a value from C++, use the ``attr`` function to register it in a
278
+ module as shown below. Built-in types and general objects (more on that later)
279
+ are automatically converted when assigned as attributes, and can be explicitly
280
+ converted using the function ``py::cast``.
281
+
282
+ .. code-block:: cpp
283
+
284
+ PYBIND11_MODULE(example, m) {
285
+ m.attr("the_answer") = 42;
286
+ py::object world = py::cast("World");
287
+ m.attr("what") = world;
288
+ }
289
+
290
+ These are then accessible from Python:
291
+
292
+ .. code-block:: pycon
293
+
294
+ >>> import example
295
+ >>> example.the_answer
296
+ 42
297
+ >>> example.what
298
+ 'World'
299
+
300
+ .. _supported_types:
301
+
302
+ Supported data types
303
+ ====================
304
+
305
+ A large number of data types are supported out of the box and can be used
306
+ seamlessly as functions arguments, return values or with ``py::cast`` in general.
307
+ For a full overview, see the :doc:`advanced/cast/index` section.
third-party/DPVO/DPViewer/pybind11/docs/benchmark.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datetime as dt
2
+ import os
3
+ import random
4
+
5
+ nfns = 4 # Functions per class
6
+ nargs = 4 # Arguments per function
7
+
8
+
9
+ def generate_dummy_code_pybind11(nclasses=10):
10
+ decl = ""
11
+ bindings = ""
12
+
13
+ for cl in range(nclasses):
14
+ decl += f"class cl{cl:03};\n"
15
+ decl += "\n"
16
+
17
+ for cl in range(nclasses):
18
+ decl += f"class {cl:03} {{\n"
19
+ decl += "public:\n"
20
+ bindings += f' py::class_<cl{cl:03}>(m, "cl{cl:03}")\n'
21
+ for fn in range(nfns):
22
+ ret = random.randint(0, nclasses - 1)
23
+ params = [random.randint(0, nclasses - 1) for i in range(nargs)]
24
+ decl += f" cl{ret:03} *fn_{fn:03}("
25
+ decl += ", ".join(f"cl{p:03} *" for p in params)
26
+ decl += ");\n"
27
+ bindings += f' .def("fn_{fn:03}", &cl{cl:03}::fn_{fn:03})\n'
28
+ decl += "};\n\n"
29
+ bindings += " ;\n"
30
+
31
+ result = "#include <pybind11/pybind11.h>\n\n"
32
+ result += "namespace py = pybind11;\n\n"
33
+ result += decl + "\n"
34
+ result += "PYBIND11_MODULE(example, m) {\n"
35
+ result += bindings
36
+ result += "}"
37
+ return result
38
+
39
+
40
+ def generate_dummy_code_boost(nclasses=10):
41
+ decl = ""
42
+ bindings = ""
43
+
44
+ for cl in range(nclasses):
45
+ decl += f"class cl{cl:03};\n"
46
+ decl += "\n"
47
+
48
+ for cl in range(nclasses):
49
+ decl += "class cl%03i {\n" % cl
50
+ decl += "public:\n"
51
+ bindings += f' py::class_<cl{cl:03}>("cl{cl:03}")\n'
52
+ for fn in range(nfns):
53
+ ret = random.randint(0, nclasses - 1)
54
+ params = [random.randint(0, nclasses - 1) for i in range(nargs)]
55
+ decl += f" cl{ret:03} *fn_{fn:03}("
56
+ decl += ", ".join(f"cl{p:03} *" for p in params)
57
+ decl += ");\n"
58
+ bindings += f' .def("fn_{fn:03}", &cl{cl:03}::fn_{fn:03}, py::return_value_policy<py::manage_new_object>())\n'
59
+ decl += "};\n\n"
60
+ bindings += " ;\n"
61
+
62
+ result = "#include <boost/python.hpp>\n\n"
63
+ result += "namespace py = boost::python;\n\n"
64
+ result += decl + "\n"
65
+ result += "BOOST_PYTHON_MODULE(example) {\n"
66
+ result += bindings
67
+ result += "}"
68
+ return result
69
+
70
+
71
+ for codegen in [generate_dummy_code_pybind11, generate_dummy_code_boost]:
72
+ print("{")
73
+ for i in range(0, 10):
74
+ nclasses = 2**i
75
+ with open("test.cpp", "w") as f:
76
+ f.write(codegen(nclasses))
77
+ n1 = dt.datetime.now()
78
+ os.system(
79
+ "g++ -Os -shared -rdynamic -undefined dynamic_lookup "
80
+ "-fvisibility=hidden -std=c++14 test.cpp -I include "
81
+ "-I /System/Library/Frameworks/Python.framework/Headers -o test.so"
82
+ )
83
+ n2 = dt.datetime.now()
84
+ elapsed = (n2 - n1).total_seconds()
85
+ size = os.stat("test.so").st_size
86
+ print(" {%i, %f, %i}," % (nclasses * nfns, elapsed, size))
87
+ print("}")
third-party/DPVO/DPViewer/pybind11/docs/benchmark.rst ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Benchmark
2
+ =========
3
+
4
+ The following is the result of a synthetic benchmark comparing both compilation
5
+ time and module size of pybind11 against Boost.Python. A detailed report about a
6
+ Boost.Python to pybind11 conversion of a real project is available here: [#f1]_.
7
+
8
+ .. [#f1] http://graylab.jhu.edu/RosettaCon2016/PyRosetta-4.pdf
9
+
10
+ Setup
11
+ -----
12
+
13
+ A python script (see the ``docs/benchmark.py`` file) was used to generate a set
14
+ of files with dummy classes whose count increases for each successive benchmark
15
+ (between 1 and 2048 classes in powers of two). Each class has four methods with
16
+ a randomly generated signature with a return value and four arguments. (There
17
+ was no particular reason for this setup other than the desire to generate many
18
+ unique function signatures whose count could be controlled in a simple way.)
19
+
20
+ Here is an example of the binding code for one class:
21
+
22
+ .. code-block:: cpp
23
+
24
+ ...
25
+ class cl034 {
26
+ public:
27
+ cl279 *fn_000(cl084 *, cl057 *, cl065 *, cl042 *);
28
+ cl025 *fn_001(cl098 *, cl262 *, cl414 *, cl121 *);
29
+ cl085 *fn_002(cl445 *, cl297 *, cl145 *, cl421 *);
30
+ cl470 *fn_003(cl200 *, cl323 *, cl332 *, cl492 *);
31
+ };
32
+ ...
33
+
34
+ PYBIND11_MODULE(example, m) {
35
+ ...
36
+ py::class_<cl034>(m, "cl034")
37
+ .def("fn_000", &cl034::fn_000)
38
+ .def("fn_001", &cl034::fn_001)
39
+ .def("fn_002", &cl034::fn_002)
40
+ .def("fn_003", &cl034::fn_003)
41
+ ...
42
+ }
43
+
44
+ The Boost.Python version looks almost identical except that a return value
45
+ policy had to be specified as an argument to ``def()``. For both libraries,
46
+ compilation was done with
47
+
48
+ .. code-block:: bash
49
+
50
+ Apple LLVM version 7.0.2 (clang-700.1.81)
51
+
52
+ and the following compilation flags
53
+
54
+ .. code-block:: bash
55
+
56
+ g++ -Os -shared -rdynamic -undefined dynamic_lookup -fvisibility=hidden -std=c++14
57
+
58
+ Compilation time
59
+ ----------------
60
+
61
+ The following log-log plot shows how the compilation time grows for an
62
+ increasing number of class and function declarations. pybind11 includes many
63
+ fewer headers, which initially leads to shorter compilation times, but the
64
+ performance is ultimately fairly similar (pybind11 is 19.8 seconds faster for
65
+ the largest largest file with 2048 classes and a total of 8192 methods -- a
66
+ modest **1.2x** speedup relative to Boost.Python, which required 116.35
67
+ seconds).
68
+
69
+ .. only:: not latex
70
+
71
+ .. image:: pybind11_vs_boost_python1.svg
72
+
73
+ .. only:: latex
74
+
75
+ .. image:: pybind11_vs_boost_python1.png
76
+
77
+ Module size
78
+ -----------
79
+
80
+ Differences between the two libraries become much more pronounced when
81
+ considering the file size of the generated Python plugin: for the largest file,
82
+ the binary generated by Boost.Python required 16.8 MiB, which was **2.17
83
+ times** / **9.1 megabytes** larger than the output generated by pybind11. For
84
+ very small inputs, Boost.Python has an edge in the plot below -- however, note
85
+ that it stores many definitions in an external library, whose size was not
86
+ included here, hence the comparison is slightly shifted in Boost.Python's
87
+ favor.
88
+
89
+ .. only:: not latex
90
+
91
+ .. image:: pybind11_vs_boost_python2.svg
92
+
93
+ .. only:: latex
94
+
95
+ .. image:: pybind11_vs_boost_python2.png
third-party/DPVO/DPViewer/pybind11/docs/changelog.rst ADDED
The diff for this file is too large to render. See raw diff
 
third-party/DPVO/DPViewer/pybind11/docs/classes.rst ADDED
@@ -0,0 +1,541 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. _classes:
2
+
3
+ Object-oriented code
4
+ ####################
5
+
6
+ Creating bindings for a custom type
7
+ ===================================
8
+
9
+ Let's now look at a more complex example where we'll create bindings for a
10
+ custom C++ data structure named ``Pet``. Its definition is given below:
11
+
12
+ .. code-block:: cpp
13
+
14
+ struct Pet {
15
+ Pet(const std::string &name) : name(name) { }
16
+ void setName(const std::string &name_) { name = name_; }
17
+ const std::string &getName() const { return name; }
18
+
19
+ std::string name;
20
+ };
21
+
22
+ The binding code for ``Pet`` looks as follows:
23
+
24
+ .. code-block:: cpp
25
+
26
+ #include <pybind11/pybind11.h>
27
+
28
+ namespace py = pybind11;
29
+
30
+ PYBIND11_MODULE(example, m) {
31
+ py::class_<Pet>(m, "Pet")
32
+ .def(py::init<const std::string &>())
33
+ .def("setName", &Pet::setName)
34
+ .def("getName", &Pet::getName);
35
+ }
36
+
37
+ :class:`class_` creates bindings for a C++ *class* or *struct*-style data
38
+ structure. :func:`init` is a convenience function that takes the types of a
39
+ constructor's parameters as template arguments and wraps the corresponding
40
+ constructor (see the :ref:`custom_constructors` section for details). An
41
+ interactive Python session demonstrating this example is shown below:
42
+
43
+ .. code-block:: pycon
44
+
45
+ % python
46
+ >>> import example
47
+ >>> p = example.Pet("Molly")
48
+ >>> print(p)
49
+ <example.Pet object at 0x10cd98060>
50
+ >>> p.getName()
51
+ 'Molly'
52
+ >>> p.setName("Charly")
53
+ >>> p.getName()
54
+ 'Charly'
55
+
56
+ .. seealso::
57
+
58
+ Static member functions can be bound in the same way using
59
+ :func:`class_::def_static`.
60
+
61
+ Keyword and default arguments
62
+ =============================
63
+ It is possible to specify keyword and default arguments using the syntax
64
+ discussed in the previous chapter. Refer to the sections :ref:`keyword_args`
65
+ and :ref:`default_args` for details.
66
+
67
+ Binding lambda functions
68
+ ========================
69
+
70
+ Note how ``print(p)`` produced a rather useless summary of our data structure in the example above:
71
+
72
+ .. code-block:: pycon
73
+
74
+ >>> print(p)
75
+ <example.Pet object at 0x10cd98060>
76
+
77
+ To address this, we could bind a utility function that returns a human-readable
78
+ summary to the special method slot named ``__repr__``. Unfortunately, there is no
79
+ suitable functionality in the ``Pet`` data structure, and it would be nice if
80
+ we did not have to change it. This can easily be accomplished by binding a
81
+ Lambda function instead:
82
+
83
+ .. code-block:: cpp
84
+
85
+ py::class_<Pet>(m, "Pet")
86
+ .def(py::init<const std::string &>())
87
+ .def("setName", &Pet::setName)
88
+ .def("getName", &Pet::getName)
89
+ .def("__repr__",
90
+ [](const Pet &a) {
91
+ return "<example.Pet named '" + a.name + "'>";
92
+ }
93
+ );
94
+
95
+ Both stateless [#f1]_ and stateful lambda closures are supported by pybind11.
96
+ With the above change, the same Python code now produces the following output:
97
+
98
+ .. code-block:: pycon
99
+
100
+ >>> print(p)
101
+ <example.Pet named 'Molly'>
102
+
103
+ .. [#f1] Stateless closures are those with an empty pair of brackets ``[]`` as the capture object.
104
+
105
+ .. _properties:
106
+
107
+ Instance and static fields
108
+ ==========================
109
+
110
+ We can also directly expose the ``name`` field using the
111
+ :func:`class_::def_readwrite` method. A similar :func:`class_::def_readonly`
112
+ method also exists for ``const`` fields.
113
+
114
+ .. code-block:: cpp
115
+
116
+ py::class_<Pet>(m, "Pet")
117
+ .def(py::init<const std::string &>())
118
+ .def_readwrite("name", &Pet::name)
119
+ // ... remainder ...
120
+
121
+ This makes it possible to write
122
+
123
+ .. code-block:: pycon
124
+
125
+ >>> p = example.Pet("Molly")
126
+ >>> p.name
127
+ 'Molly'
128
+ >>> p.name = "Charly"
129
+ >>> p.name
130
+ 'Charly'
131
+
132
+ Now suppose that ``Pet::name`` was a private internal variable
133
+ that can only be accessed via setters and getters.
134
+
135
+ .. code-block:: cpp
136
+
137
+ class Pet {
138
+ public:
139
+ Pet(const std::string &name) : name(name) { }
140
+ void setName(const std::string &name_) { name = name_; }
141
+ const std::string &getName() const { return name; }
142
+ private:
143
+ std::string name;
144
+ };
145
+
146
+ In this case, the method :func:`class_::def_property`
147
+ (:func:`class_::def_property_readonly` for read-only data) can be used to
148
+ provide a field-like interface within Python that will transparently call
149
+ the setter and getter functions:
150
+
151
+ .. code-block:: cpp
152
+
153
+ py::class_<Pet>(m, "Pet")
154
+ .def(py::init<const std::string &>())
155
+ .def_property("name", &Pet::getName, &Pet::setName)
156
+ // ... remainder ...
157
+
158
+ Write only properties can be defined by passing ``nullptr`` as the
159
+ input for the read function.
160
+
161
+ .. seealso::
162
+
163
+ Similar functions :func:`class_::def_readwrite_static`,
164
+ :func:`class_::def_readonly_static` :func:`class_::def_property_static`,
165
+ and :func:`class_::def_property_readonly_static` are provided for binding
166
+ static variables and properties. Please also see the section on
167
+ :ref:`static_properties` in the advanced part of the documentation.
168
+
169
+ Dynamic attributes
170
+ ==================
171
+
172
+ Native Python classes can pick up new attributes dynamically:
173
+
174
+ .. code-block:: pycon
175
+
176
+ >>> class Pet:
177
+ ... name = "Molly"
178
+ ...
179
+ >>> p = Pet()
180
+ >>> p.name = "Charly" # overwrite existing
181
+ >>> p.age = 2 # dynamically add a new attribute
182
+
183
+ By default, classes exported from C++ do not support this and the only writable
184
+ attributes are the ones explicitly defined using :func:`class_::def_readwrite`
185
+ or :func:`class_::def_property`.
186
+
187
+ .. code-block:: cpp
188
+
189
+ py::class_<Pet>(m, "Pet")
190
+ .def(py::init<>())
191
+ .def_readwrite("name", &Pet::name);
192
+
193
+ Trying to set any other attribute results in an error:
194
+
195
+ .. code-block:: pycon
196
+
197
+ >>> p = example.Pet()
198
+ >>> p.name = "Charly" # OK, attribute defined in C++
199
+ >>> p.age = 2 # fail
200
+ AttributeError: 'Pet' object has no attribute 'age'
201
+
202
+ To enable dynamic attributes for C++ classes, the :class:`py::dynamic_attr` tag
203
+ must be added to the :class:`py::class_` constructor:
204
+
205
+ .. code-block:: cpp
206
+
207
+ py::class_<Pet>(m, "Pet", py::dynamic_attr())
208
+ .def(py::init<>())
209
+ .def_readwrite("name", &Pet::name);
210
+
211
+ Now everything works as expected:
212
+
213
+ .. code-block:: pycon
214
+
215
+ >>> p = example.Pet()
216
+ >>> p.name = "Charly" # OK, overwrite value in C++
217
+ >>> p.age = 2 # OK, dynamically add a new attribute
218
+ >>> p.__dict__ # just like a native Python class
219
+ {'age': 2}
220
+
221
+ Note that there is a small runtime cost for a class with dynamic attributes.
222
+ Not only because of the addition of a ``__dict__``, but also because of more
223
+ expensive garbage collection tracking which must be activated to resolve
224
+ possible circular references. Native Python classes incur this same cost by
225
+ default, so this is not anything to worry about. By default, pybind11 classes
226
+ are more efficient than native Python classes. Enabling dynamic attributes
227
+ just brings them on par.
228
+
229
+ .. _inheritance:
230
+
231
+ Inheritance and automatic downcasting
232
+ =====================================
233
+
234
+ Suppose now that the example consists of two data structures with an
235
+ inheritance relationship:
236
+
237
+ .. code-block:: cpp
238
+
239
+ struct Pet {
240
+ Pet(const std::string &name) : name(name) { }
241
+ std::string name;
242
+ };
243
+
244
+ struct Dog : Pet {
245
+ Dog(const std::string &name) : Pet(name) { }
246
+ std::string bark() const { return "woof!"; }
247
+ };
248
+
249
+ There are two different ways of indicating a hierarchical relationship to
250
+ pybind11: the first specifies the C++ base class as an extra template
251
+ parameter of the :class:`class_`:
252
+
253
+ .. code-block:: cpp
254
+
255
+ py::class_<Pet>(m, "Pet")
256
+ .def(py::init<const std::string &>())
257
+ .def_readwrite("name", &Pet::name);
258
+
259
+ // Method 1: template parameter:
260
+ py::class_<Dog, Pet /* <- specify C++ parent type */>(m, "Dog")
261
+ .def(py::init<const std::string &>())
262
+ .def("bark", &Dog::bark);
263
+
264
+ Alternatively, we can also assign a name to the previously bound ``Pet``
265
+ :class:`class_` object and reference it when binding the ``Dog`` class:
266
+
267
+ .. code-block:: cpp
268
+
269
+ py::class_<Pet> pet(m, "Pet");
270
+ pet.def(py::init<const std::string &>())
271
+ .def_readwrite("name", &Pet::name);
272
+
273
+ // Method 2: pass parent class_ object:
274
+ py::class_<Dog>(m, "Dog", pet /* <- specify Python parent type */)
275
+ .def(py::init<const std::string &>())
276
+ .def("bark", &Dog::bark);
277
+
278
+ Functionality-wise, both approaches are equivalent. Afterwards, instances will
279
+ expose fields and methods of both types:
280
+
281
+ .. code-block:: pycon
282
+
283
+ >>> p = example.Dog("Molly")
284
+ >>> p.name
285
+ 'Molly'
286
+ >>> p.bark()
287
+ 'woof!'
288
+
289
+ The C++ classes defined above are regular non-polymorphic types with an
290
+ inheritance relationship. This is reflected in Python:
291
+
292
+ .. code-block:: cpp
293
+
294
+ // Return a base pointer to a derived instance
295
+ m.def("pet_store", []() { return std::unique_ptr<Pet>(new Dog("Molly")); });
296
+
297
+ .. code-block:: pycon
298
+
299
+ >>> p = example.pet_store()
300
+ >>> type(p) # `Dog` instance behind `Pet` pointer
301
+ Pet # no pointer downcasting for regular non-polymorphic types
302
+ >>> p.bark()
303
+ AttributeError: 'Pet' object has no attribute 'bark'
304
+
305
+ The function returned a ``Dog`` instance, but because it's a non-polymorphic
306
+ type behind a base pointer, Python only sees a ``Pet``. In C++, a type is only
307
+ considered polymorphic if it has at least one virtual function and pybind11
308
+ will automatically recognize this:
309
+
310
+ .. code-block:: cpp
311
+
312
+ struct PolymorphicPet {
313
+ virtual ~PolymorphicPet() = default;
314
+ };
315
+
316
+ struct PolymorphicDog : PolymorphicPet {
317
+ std::string bark() const { return "woof!"; }
318
+ };
319
+
320
+ // Same binding code
321
+ py::class_<PolymorphicPet>(m, "PolymorphicPet");
322
+ py::class_<PolymorphicDog, PolymorphicPet>(m, "PolymorphicDog")
323
+ .def(py::init<>())
324
+ .def("bark", &PolymorphicDog::bark);
325
+
326
+ // Again, return a base pointer to a derived instance
327
+ m.def("pet_store2", []() { return std::unique_ptr<PolymorphicPet>(new PolymorphicDog); });
328
+
329
+ .. code-block:: pycon
330
+
331
+ >>> p = example.pet_store2()
332
+ >>> type(p)
333
+ PolymorphicDog # automatically downcast
334
+ >>> p.bark()
335
+ 'woof!'
336
+
337
+ Given a pointer to a polymorphic base, pybind11 performs automatic downcasting
338
+ to the actual derived type. Note that this goes beyond the usual situation in
339
+ C++: we don't just get access to the virtual functions of the base, we get the
340
+ concrete derived type including functions and attributes that the base type may
341
+ not even be aware of.
342
+
343
+ .. seealso::
344
+
345
+ For more information about polymorphic behavior see :ref:`overriding_virtuals`.
346
+
347
+
348
+ Overloaded methods
349
+ ==================
350
+
351
+ Sometimes there are several overloaded C++ methods with the same name taking
352
+ different kinds of input arguments:
353
+
354
+ .. code-block:: cpp
355
+
356
+ struct Pet {
357
+ Pet(const std::string &name, int age) : name(name), age(age) { }
358
+
359
+ void set(int age_) { age = age_; }
360
+ void set(const std::string &name_) { name = name_; }
361
+
362
+ std::string name;
363
+ int age;
364
+ };
365
+
366
+ Attempting to bind ``Pet::set`` will cause an error since the compiler does not
367
+ know which method the user intended to select. We can disambiguate by casting
368
+ them to function pointers. Binding multiple functions to the same Python name
369
+ automatically creates a chain of function overloads that will be tried in
370
+ sequence.
371
+
372
+ .. code-block:: cpp
373
+
374
+ py::class_<Pet>(m, "Pet")
375
+ .def(py::init<const std::string &, int>())
376
+ .def("set", static_cast<void (Pet::*)(int)>(&Pet::set), "Set the pet's age")
377
+ .def("set", static_cast<void (Pet::*)(const std::string &)>(&Pet::set), "Set the pet's name");
378
+
379
+ The overload signatures are also visible in the method's docstring:
380
+
381
+ .. code-block:: pycon
382
+
383
+ >>> help(example.Pet)
384
+
385
+ class Pet(__builtin__.object)
386
+ | Methods defined here:
387
+ |
388
+ | __init__(...)
389
+ | Signature : (Pet, str, int) -> NoneType
390
+ |
391
+ | set(...)
392
+ | 1. Signature : (Pet, int) -> NoneType
393
+ |
394
+ | Set the pet's age
395
+ |
396
+ | 2. Signature : (Pet, str) -> NoneType
397
+ |
398
+ | Set the pet's name
399
+
400
+ If you have a C++14 compatible compiler [#cpp14]_, you can use an alternative
401
+ syntax to cast the overloaded function:
402
+
403
+ .. code-block:: cpp
404
+
405
+ py::class_<Pet>(m, "Pet")
406
+ .def("set", py::overload_cast<int>(&Pet::set), "Set the pet's age")
407
+ .def("set", py::overload_cast<const std::string &>(&Pet::set), "Set the pet's name");
408
+
409
+ Here, ``py::overload_cast`` only requires the parameter types to be specified.
410
+ The return type and class are deduced. This avoids the additional noise of
411
+ ``void (Pet::*)()`` as seen in the raw cast. If a function is overloaded based
412
+ on constness, the ``py::const_`` tag should be used:
413
+
414
+ .. code-block:: cpp
415
+
416
+ struct Widget {
417
+ int foo(int x, float y);
418
+ int foo(int x, float y) const;
419
+ };
420
+
421
+ py::class_<Widget>(m, "Widget")
422
+ .def("foo_mutable", py::overload_cast<int, float>(&Widget::foo))
423
+ .def("foo_const", py::overload_cast<int, float>(&Widget::foo, py::const_));
424
+
425
+ If you prefer the ``py::overload_cast`` syntax but have a C++11 compatible compiler only,
426
+ you can use ``py::detail::overload_cast_impl`` with an additional set of parentheses:
427
+
428
+ .. code-block:: cpp
429
+
430
+ template <typename... Args>
431
+ using overload_cast_ = pybind11::detail::overload_cast_impl<Args...>;
432
+
433
+ py::class_<Pet>(m, "Pet")
434
+ .def("set", overload_cast_<int>()(&Pet::set), "Set the pet's age")
435
+ .def("set", overload_cast_<const std::string &>()(&Pet::set), "Set the pet's name");
436
+
437
+ .. [#cpp14] A compiler which supports the ``-std=c++14`` flag.
438
+
439
+ .. note::
440
+
441
+ To define multiple overloaded constructors, simply declare one after the
442
+ other using the ``.def(py::init<...>())`` syntax. The existing machinery
443
+ for specifying keyword and default arguments also works.
444
+
445
+ Enumerations and internal types
446
+ ===============================
447
+
448
+ Let's now suppose that the example class contains internal types like enumerations, e.g.:
449
+
450
+ .. code-block:: cpp
451
+
452
+ struct Pet {
453
+ enum Kind {
454
+ Dog = 0,
455
+ Cat
456
+ };
457
+
458
+ struct Attributes {
459
+ float age = 0;
460
+ };
461
+
462
+ Pet(const std::string &name, Kind type) : name(name), type(type) { }
463
+
464
+ std::string name;
465
+ Kind type;
466
+ Attributes attr;
467
+ };
468
+
469
+ The binding code for this example looks as follows:
470
+
471
+ .. code-block:: cpp
472
+
473
+ py::class_<Pet> pet(m, "Pet");
474
+
475
+ pet.def(py::init<const std::string &, Pet::Kind>())
476
+ .def_readwrite("name", &Pet::name)
477
+ .def_readwrite("type", &Pet::type)
478
+ .def_readwrite("attr", &Pet::attr);
479
+
480
+ py::enum_<Pet::Kind>(pet, "Kind")
481
+ .value("Dog", Pet::Kind::Dog)
482
+ .value("Cat", Pet::Kind::Cat)
483
+ .export_values();
484
+
485
+ py::class_<Pet::Attributes> attributes(pet, "Attributes")
486
+ .def(py::init<>())
487
+ .def_readwrite("age", &Pet::Attributes::age);
488
+
489
+
490
+ To ensure that the nested types ``Kind`` and ``Attributes`` are created within the scope of ``Pet``, the
491
+ ``pet`` :class:`class_` instance must be supplied to the :class:`enum_` and :class:`class_`
492
+ constructor. The :func:`enum_::export_values` function exports the enum entries
493
+ into the parent scope, which should be skipped for newer C++11-style strongly
494
+ typed enums.
495
+
496
+ .. code-block:: pycon
497
+
498
+ >>> p = Pet("Lucy", Pet.Cat)
499
+ >>> p.type
500
+ Kind.Cat
501
+ >>> int(p.type)
502
+ 1L
503
+
504
+ The entries defined by the enumeration type are exposed in the ``__members__`` property:
505
+
506
+ .. code-block:: pycon
507
+
508
+ >>> Pet.Kind.__members__
509
+ {'Dog': Kind.Dog, 'Cat': Kind.Cat}
510
+
511
+ The ``name`` property returns the name of the enum value as a unicode string.
512
+
513
+ .. note::
514
+
515
+ It is also possible to use ``str(enum)``, however these accomplish different
516
+ goals. The following shows how these two approaches differ.
517
+
518
+ .. code-block:: pycon
519
+
520
+ >>> p = Pet("Lucy", Pet.Cat)
521
+ >>> pet_type = p.type
522
+ >>> pet_type
523
+ Pet.Cat
524
+ >>> str(pet_type)
525
+ 'Pet.Cat'
526
+ >>> pet_type.name
527
+ 'Cat'
528
+
529
+ .. note::
530
+
531
+ When the special tag ``py::arithmetic()`` is specified to the ``enum_``
532
+ constructor, pybind11 creates an enumeration that also supports rudimentary
533
+ arithmetic and bit-level operations like comparisons, and, or, xor, negation,
534
+ etc.
535
+
536
+ .. code-block:: cpp
537
+
538
+ py::enum_<Pet::Kind>(pet, "Kind", py::arithmetic())
539
+ ...
540
+
541
+ By default, these are omitted to conserve space.
third-party/DPVO/DPViewer/pybind11/docs/cmake/index.rst ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ CMake helpers
2
+ -------------
3
+
4
+ Pybind11 can be used with ``add_subdirectory(extern/pybind11)``, or from an
5
+ install with ``find_package(pybind11 CONFIG)``. The interface provided in
6
+ either case is functionally identical.
7
+
8
+ .. cmake-module:: ../../tools/pybind11Config.cmake.in
third-party/DPVO/DPViewer/pybind11/docs/compiling.rst ADDED
@@ -0,0 +1,638 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. _compiling:
2
+
3
+ Build systems
4
+ #############
5
+
6
+ .. _build-setuptools:
7
+
8
+ Building with setuptools
9
+ ========================
10
+
11
+ For projects on PyPI, building with setuptools is the way to go. Sylvain Corlay
12
+ has kindly provided an example project which shows how to set up everything,
13
+ including automatic generation of documentation using Sphinx. Please refer to
14
+ the [python_example]_ repository.
15
+
16
+ .. [python_example] https://github.com/pybind/python_example
17
+
18
+ A helper file is provided with pybind11 that can simplify usage with setuptools.
19
+
20
+ To use pybind11 inside your ``setup.py``, you have to have some system to
21
+ ensure that ``pybind11`` is installed when you build your package. There are
22
+ four possible ways to do this, and pybind11 supports all four: You can ask all
23
+ users to install pybind11 beforehand (bad), you can use
24
+ :ref:`setup_helpers-pep518` (good, but very new and requires Pip 10),
25
+ :ref:`setup_helpers-setup_requires` (discouraged by Python packagers now that
26
+ PEP 518 is available, but it still works everywhere), or you can
27
+ :ref:`setup_helpers-copy-manually` (always works but you have to manually sync
28
+ your copy to get updates).
29
+
30
+ An example of a ``setup.py`` using pybind11's helpers:
31
+
32
+ .. code-block:: python
33
+
34
+ from glob import glob
35
+ from setuptools import setup
36
+ from pybind11.setup_helpers import Pybind11Extension
37
+
38
+ ext_modules = [
39
+ Pybind11Extension(
40
+ "python_example",
41
+ sorted(glob("src/*.cpp")), # Sort source files for reproducibility
42
+ ),
43
+ ]
44
+
45
+ setup(..., ext_modules=ext_modules)
46
+
47
+ If you want to do an automatic search for the highest supported C++ standard,
48
+ that is supported via a ``build_ext`` command override; it will only affect
49
+ ``Pybind11Extensions``:
50
+
51
+ .. code-block:: python
52
+
53
+ from glob import glob
54
+ from setuptools import setup
55
+ from pybind11.setup_helpers import Pybind11Extension, build_ext
56
+
57
+ ext_modules = [
58
+ Pybind11Extension(
59
+ "python_example",
60
+ sorted(glob("src/*.cpp")),
61
+ ),
62
+ ]
63
+
64
+ setup(..., cmdclass={"build_ext": build_ext}, ext_modules=ext_modules)
65
+
66
+ If you have single-file extension modules that are directly stored in the
67
+ Python source tree (``foo.cpp`` in the same directory as where a ``foo.py``
68
+ would be located), you can also generate ``Pybind11Extensions`` using
69
+ ``setup_helpers.intree_extensions``: ``intree_extensions(["path/to/foo.cpp",
70
+ ...])`` returns a list of ``Pybind11Extensions`` which can be passed to
71
+ ``ext_modules``, possibly after further customizing their attributes
72
+ (``libraries``, ``include_dirs``, etc.). By doing so, a ``foo.*.so`` extension
73
+ module will be generated and made available upon installation.
74
+
75
+ ``intree_extension`` will automatically detect if you are using a ``src``-style
76
+ layout (as long as no namespace packages are involved), but you can also
77
+ explicitly pass ``package_dir`` to it (as in ``setuptools.setup``).
78
+
79
+ Since pybind11 does not require NumPy when building, a light-weight replacement
80
+ for NumPy's parallel compilation distutils tool is included. Use it like this:
81
+
82
+ .. code-block:: python
83
+
84
+ from pybind11.setup_helpers import ParallelCompile
85
+
86
+ # Optional multithreaded build
87
+ ParallelCompile("NPY_NUM_BUILD_JOBS").install()
88
+
89
+ setup(...)
90
+
91
+ The argument is the name of an environment variable to control the number of
92
+ threads, such as ``NPY_NUM_BUILD_JOBS`` (as used by NumPy), though you can set
93
+ something different if you want; ``CMAKE_BUILD_PARALLEL_LEVEL`` is another choice
94
+ a user might expect. You can also pass ``default=N`` to set the default number
95
+ of threads (0 will take the number of threads available) and ``max=N``, the
96
+ maximum number of threads; if you have a large extension you may want set this
97
+ to a memory dependent number.
98
+
99
+ If you are developing rapidly and have a lot of C++ files, you may want to
100
+ avoid rebuilding files that have not changed. For simple cases were you are
101
+ using ``pip install -e .`` and do not have local headers, you can skip the
102
+ rebuild if an object file is newer than its source (headers are not checked!)
103
+ with the following:
104
+
105
+ .. code-block:: python
106
+
107
+ from pybind11.setup_helpers import ParallelCompile, naive_recompile
108
+
109
+ ParallelCompile("NPY_NUM_BUILD_JOBS", needs_recompile=naive_recompile).install()
110
+
111
+
112
+ If you have a more complex build, you can implement a smarter function and pass
113
+ it to ``needs_recompile``, or you can use [Ccache]_ instead. ``CXX="cache g++"
114
+ pip install -e .`` would be the way to use it with GCC, for example. Unlike the
115
+ simple solution, this even works even when not compiling in editable mode, but
116
+ it does require Ccache to be installed.
117
+
118
+ Keep in mind that Pip will not even attempt to rebuild if it thinks it has
119
+ already built a copy of your code, which it deduces from the version number.
120
+ One way to avoid this is to use [setuptools_scm]_, which will generate a
121
+ version number that includes the number of commits since your last tag and a
122
+ hash for a dirty directory. Another way to force a rebuild is purge your cache
123
+ or use Pip's ``--no-cache-dir`` option.
124
+
125
+ .. [Ccache] https://ccache.dev
126
+
127
+ .. [setuptools_scm] https://github.com/pypa/setuptools_scm
128
+
129
+ .. _setup_helpers-pep518:
130
+
131
+ PEP 518 requirements (Pip 10+ required)
132
+ ---------------------------------------
133
+
134
+ If you use `PEP 518's <https://www.python.org/dev/peps/pep-0518/>`_
135
+ ``pyproject.toml`` file, you can ensure that ``pybind11`` is available during
136
+ the compilation of your project. When this file exists, Pip will make a new
137
+ virtual environment, download just the packages listed here in ``requires=``,
138
+ and build a wheel (binary Python package). It will then throw away the
139
+ environment, and install your wheel.
140
+
141
+ Your ``pyproject.toml`` file will likely look something like this:
142
+
143
+ .. code-block:: toml
144
+
145
+ [build-system]
146
+ requires = ["setuptools>=42", "wheel", "pybind11~=2.6.1"]
147
+ build-backend = "setuptools.build_meta"
148
+
149
+ .. note::
150
+
151
+ The main drawback to this method is that a `PEP 517`_ compliant build tool,
152
+ such as Pip 10+, is required for this approach to work; older versions of
153
+ Pip completely ignore this file. If you distribute binaries (called wheels
154
+ in Python) using something like `cibuildwheel`_, remember that ``setup.py``
155
+ and ``pyproject.toml`` are not even contained in the wheel, so this high
156
+ Pip requirement is only for source builds, and will not affect users of
157
+ your binary wheels. If you are building SDists and wheels, then
158
+ `pypa-build`_ is the recommended official tool.
159
+
160
+ .. _PEP 517: https://www.python.org/dev/peps/pep-0517/
161
+ .. _cibuildwheel: https://cibuildwheel.readthedocs.io
162
+ .. _pypa-build: https://pypa-build.readthedocs.io/en/latest/
163
+
164
+ .. _setup_helpers-setup_requires:
165
+
166
+ Classic ``setup_requires``
167
+ --------------------------
168
+
169
+ If you want to support old versions of Pip with the classic
170
+ ``setup_requires=["pybind11"]`` keyword argument to setup, which triggers a
171
+ two-phase ``setup.py`` run, then you will need to use something like this to
172
+ ensure the first pass works (which has not yet installed the ``setup_requires``
173
+ packages, since it can't install something it does not know about):
174
+
175
+ .. code-block:: python
176
+
177
+ try:
178
+ from pybind11.setup_helpers import Pybind11Extension
179
+ except ImportError:
180
+ from setuptools import Extension as Pybind11Extension
181
+
182
+
183
+ It doesn't matter that the Extension class is not the enhanced subclass for the
184
+ first pass run; and the second pass will have the ``setup_requires``
185
+ requirements.
186
+
187
+ This is obviously more of a hack than the PEP 518 method, but it supports
188
+ ancient versions of Pip.
189
+
190
+ .. _setup_helpers-copy-manually:
191
+
192
+ Copy manually
193
+ -------------
194
+
195
+ You can also copy ``setup_helpers.py`` directly to your project; it was
196
+ designed to be usable standalone, like the old example ``setup.py``. You can
197
+ set ``include_pybind11=False`` to skip including the pybind11 package headers,
198
+ so you can use it with git submodules and a specific git version. If you use
199
+ this, you will need to import from a local file in ``setup.py`` and ensure the
200
+ helper file is part of your MANIFEST.
201
+
202
+
203
+ Closely related, if you include pybind11 as a subproject, you can run the
204
+ ``setup_helpers.py`` inplace. If loaded correctly, this should even pick up
205
+ the correct include for pybind11, though you can turn it off as shown above if
206
+ you want to input it manually.
207
+
208
+ Suggested usage if you have pybind11 as a submodule in ``extern/pybind11``:
209
+
210
+ .. code-block:: python
211
+
212
+ DIR = os.path.abspath(os.path.dirname(__file__))
213
+
214
+ sys.path.append(os.path.join(DIR, "extern", "pybind11"))
215
+ from pybind11.setup_helpers import Pybind11Extension # noqa: E402
216
+
217
+ del sys.path[-1]
218
+
219
+
220
+ .. versionchanged:: 2.6
221
+
222
+ Added ``setup_helpers`` file.
223
+
224
+ Building with cppimport
225
+ ========================
226
+
227
+ [cppimport]_ is a small Python import hook that determines whether there is a C++
228
+ source file whose name matches the requested module. If there is, the file is
229
+ compiled as a Python extension using pybind11 and placed in the same folder as
230
+ the C++ source file. Python is then able to find the module and load it.
231
+
232
+ .. [cppimport] https://github.com/tbenthompson/cppimport
233
+
234
+ .. _cmake:
235
+
236
+ Building with CMake
237
+ ===================
238
+
239
+ For C++ codebases that have an existing CMake-based build system, a Python
240
+ extension module can be created with just a few lines of code:
241
+
242
+ .. code-block:: cmake
243
+
244
+ cmake_minimum_required(VERSION 3.4...3.18)
245
+ project(example LANGUAGES CXX)
246
+
247
+ add_subdirectory(pybind11)
248
+ pybind11_add_module(example example.cpp)
249
+
250
+ This assumes that the pybind11 repository is located in a subdirectory named
251
+ :file:`pybind11` and that the code is located in a file named :file:`example.cpp`.
252
+ The CMake command ``add_subdirectory`` will import the pybind11 project which
253
+ provides the ``pybind11_add_module`` function. It will take care of all the
254
+ details needed to build a Python extension module on any platform.
255
+
256
+ A working sample project, including a way to invoke CMake from :file:`setup.py` for
257
+ PyPI integration, can be found in the [cmake_example]_ repository.
258
+
259
+ .. [cmake_example] https://github.com/pybind/cmake_example
260
+
261
+ .. versionchanged:: 2.6
262
+ CMake 3.4+ is required.
263
+
264
+ Further information can be found at :doc:`cmake/index`.
265
+
266
+ pybind11_add_module
267
+ -------------------
268
+
269
+ To ease the creation of Python extension modules, pybind11 provides a CMake
270
+ function with the following signature:
271
+
272
+ .. code-block:: cmake
273
+
274
+ pybind11_add_module(<name> [MODULE | SHARED] [EXCLUDE_FROM_ALL]
275
+ [NO_EXTRAS] [THIN_LTO] [OPT_SIZE] source1 [source2 ...])
276
+
277
+ This function behaves very much like CMake's builtin ``add_library`` (in fact,
278
+ it's a wrapper function around that command). It will add a library target
279
+ called ``<name>`` to be built from the listed source files. In addition, it
280
+ will take care of all the Python-specific compiler and linker flags as well
281
+ as the OS- and Python-version-specific file extension. The produced target
282
+ ``<name>`` can be further manipulated with regular CMake commands.
283
+
284
+ ``MODULE`` or ``SHARED`` may be given to specify the type of library. If no
285
+ type is given, ``MODULE`` is used by default which ensures the creation of a
286
+ Python-exclusive module. Specifying ``SHARED`` will create a more traditional
287
+ dynamic library which can also be linked from elsewhere. ``EXCLUDE_FROM_ALL``
288
+ removes this target from the default build (see CMake docs for details).
289
+
290
+ Since pybind11 is a template library, ``pybind11_add_module`` adds compiler
291
+ flags to ensure high quality code generation without bloat arising from long
292
+ symbol names and duplication of code in different translation units. It
293
+ sets default visibility to *hidden*, which is required for some pybind11
294
+ features and functionality when attempting to load multiple pybind11 modules
295
+ compiled under different pybind11 versions. It also adds additional flags
296
+ enabling LTO (Link Time Optimization) and strip unneeded symbols. See the
297
+ :ref:`FAQ entry <faq:symhidden>` for a more detailed explanation. These
298
+ latter optimizations are never applied in ``Debug`` mode. If ``NO_EXTRAS`` is
299
+ given, they will always be disabled, even in ``Release`` mode. However, this
300
+ will result in code bloat and is generally not recommended.
301
+
302
+ As stated above, LTO is enabled by default. Some newer compilers also support
303
+ different flavors of LTO such as `ThinLTO`_. Setting ``THIN_LTO`` will cause
304
+ the function to prefer this flavor if available. The function falls back to
305
+ regular LTO if ``-flto=thin`` is not available. If
306
+ ``CMAKE_INTERPROCEDURAL_OPTIMIZATION`` is set (either ``ON`` or ``OFF``), then
307
+ that will be respected instead of the built-in flag search.
308
+
309
+ .. note::
310
+
311
+ If you want to set the property form on targets or the
312
+ ``CMAKE_INTERPROCEDURAL_OPTIMIZATION_<CONFIG>`` versions of this, you should
313
+ still use ``set(CMAKE_INTERPROCEDURAL_OPTIMIZATION OFF)`` (otherwise a
314
+ no-op) to disable pybind11's ipo flags.
315
+
316
+ The ``OPT_SIZE`` flag enables size-based optimization equivalent to the
317
+ standard ``/Os`` or ``-Os`` compiler flags and the ``MinSizeRel`` build type,
318
+ which avoid optimizations that that can substantially increase the size of the
319
+ resulting binary. This flag is particularly useful in projects that are split
320
+ into performance-critical parts and associated bindings. In this case, we can
321
+ compile the project in release mode (and hence, optimize performance globally),
322
+ and specify ``OPT_SIZE`` for the binding target, where size might be the main
323
+ concern as performance is often less critical here. A ~25% size reduction has
324
+ been observed in practice. This flag only changes the optimization behavior at
325
+ a per-target level and takes precedence over the global CMake build type
326
+ (``Release``, ``RelWithDebInfo``) except for ``Debug`` builds, where
327
+ optimizations remain disabled.
328
+
329
+ .. _ThinLTO: http://clang.llvm.org/docs/ThinLTO.html
330
+
331
+ Configuration variables
332
+ -----------------------
333
+
334
+ By default, pybind11 will compile modules with the compiler default or the
335
+ minimum standard required by pybind11, whichever is higher. You can set the
336
+ standard explicitly with
337
+ `CMAKE_CXX_STANDARD <https://cmake.org/cmake/help/latest/variable/CMAKE_CXX_STANDARD.html>`_:
338
+
339
+ .. code-block:: cmake
340
+
341
+ set(CMAKE_CXX_STANDARD 14 CACHE STRING "C++ version selection") # or 11, 14, 17, 20
342
+ set(CMAKE_CXX_STANDARD_REQUIRED ON) # optional, ensure standard is supported
343
+ set(CMAKE_CXX_EXTENSIONS OFF) # optional, keep compiler extensions off
344
+
345
+ The variables can also be set when calling CMake from the command line using
346
+ the ``-D<variable>=<value>`` flag. You can also manually set ``CXX_STANDARD``
347
+ on a target or use ``target_compile_features`` on your targets - anything that
348
+ CMake supports.
349
+
350
+ Classic Python support: The target Python version can be selected by setting
351
+ ``PYBIND11_PYTHON_VERSION`` or an exact Python installation can be specified
352
+ with ``PYTHON_EXECUTABLE``. For example:
353
+
354
+ .. code-block:: bash
355
+
356
+ cmake -DPYBIND11_PYTHON_VERSION=3.6 ..
357
+
358
+ # Another method:
359
+ cmake -DPYTHON_EXECUTABLE=/path/to/python ..
360
+
361
+ # This often is a good way to get the current Python, works in environments:
362
+ cmake -DPYTHON_EXECUTABLE=$(python3 -c "import sys; print(sys.executable)") ..
363
+
364
+
365
+ find_package vs. add_subdirectory
366
+ ---------------------------------
367
+
368
+ For CMake-based projects that don't include the pybind11 repository internally,
369
+ an external installation can be detected through ``find_package(pybind11)``.
370
+ See the `Config file`_ docstring for details of relevant CMake variables.
371
+
372
+ .. code-block:: cmake
373
+
374
+ cmake_minimum_required(VERSION 3.4...3.18)
375
+ project(example LANGUAGES CXX)
376
+
377
+ find_package(pybind11 REQUIRED)
378
+ pybind11_add_module(example example.cpp)
379
+
380
+ Note that ``find_package(pybind11)`` will only work correctly if pybind11
381
+ has been correctly installed on the system, e. g. after downloading or cloning
382
+ the pybind11 repository :
383
+
384
+ .. code-block:: bash
385
+
386
+ # Classic CMake
387
+ cd pybind11
388
+ mkdir build
389
+ cd build
390
+ cmake ..
391
+ make install
392
+
393
+ # CMake 3.15+
394
+ cd pybind11
395
+ cmake -S . -B build
396
+ cmake --build build -j 2 # Build on 2 cores
397
+ cmake --install build
398
+
399
+ Once detected, the aforementioned ``pybind11_add_module`` can be employed as
400
+ before. The function usage and configuration variables are identical no matter
401
+ if pybind11 is added as a subdirectory or found as an installed package. You
402
+ can refer to the same [cmake_example]_ repository for a full sample project
403
+ -- just swap out ``add_subdirectory`` for ``find_package``.
404
+
405
+ .. _Config file: https://github.com/pybind/pybind11/blob/master/tools/pybind11Config.cmake.in
406
+
407
+
408
+ .. _find-python-mode:
409
+
410
+ FindPython mode
411
+ ---------------
412
+
413
+ CMake 3.12+ (3.15+ recommended, 3.18.2+ ideal) added a new module called
414
+ FindPython that had a highly improved search algorithm and modern targets
415
+ and tools. If you use FindPython, pybind11 will detect this and use the
416
+ existing targets instead:
417
+
418
+ .. code-block:: cmake
419
+
420
+ cmake_minimum_required(VERSION 3.15...3.22)
421
+ project(example LANGUAGES CXX)
422
+
423
+ find_package(Python 3.6 COMPONENTS Interpreter Development REQUIRED)
424
+ find_package(pybind11 CONFIG REQUIRED)
425
+ # or add_subdirectory(pybind11)
426
+
427
+ pybind11_add_module(example example.cpp)
428
+
429
+ You can also use the targets (as listed below) with FindPython. If you define
430
+ ``PYBIND11_FINDPYTHON``, pybind11 will perform the FindPython step for you
431
+ (mostly useful when building pybind11's own tests, or as a way to change search
432
+ algorithms from the CMake invocation, with ``-DPYBIND11_FINDPYTHON=ON``.
433
+
434
+ .. warning::
435
+
436
+ If you use FindPython to multi-target Python versions, use the individual
437
+ targets listed below, and avoid targets that directly include Python parts.
438
+
439
+ There are `many ways to hint or force a discovery of a specific Python
440
+ installation <https://cmake.org/cmake/help/latest/module/FindPython.html>`_),
441
+ setting ``Python_ROOT_DIR`` may be the most common one (though with
442
+ virtualenv/venv support, and Conda support, this tends to find the correct
443
+ Python version more often than the old system did).
444
+
445
+ .. warning::
446
+
447
+ When the Python libraries (i.e. ``libpythonXX.a`` and ``libpythonXX.so``
448
+ on Unix) are not available, as is the case on a manylinux image, the
449
+ ``Development`` component will not be resolved by ``FindPython``. When not
450
+ using the embedding functionality, CMake 3.18+ allows you to specify
451
+ ``Development.Module`` instead of ``Development`` to resolve this issue.
452
+
453
+ .. versionadded:: 2.6
454
+
455
+ Advanced: interface library targets
456
+ -----------------------------------
457
+
458
+ Pybind11 supports modern CMake usage patterns with a set of interface targets,
459
+ available in all modes. The targets provided are:
460
+
461
+ ``pybind11::headers``
462
+ Just the pybind11 headers and minimum compile requirements
463
+
464
+ ``pybind11::pybind11``
465
+ Python headers + ``pybind11::headers``
466
+
467
+ ``pybind11::python_link_helper``
468
+ Just the "linking" part of pybind11:module
469
+
470
+ ``pybind11::module``
471
+ Everything for extension modules - ``pybind11::pybind11`` + ``Python::Module`` (FindPython CMake 3.15+) or ``pybind11::python_link_helper``
472
+
473
+ ``pybind11::embed``
474
+ Everything for embedding the Python interpreter - ``pybind11::pybind11`` + ``Python::Python`` (FindPython) or Python libs
475
+
476
+ ``pybind11::lto`` / ``pybind11::thin_lto``
477
+ An alternative to `INTERPROCEDURAL_OPTIMIZATION` for adding link-time optimization.
478
+
479
+ ``pybind11::windows_extras``
480
+ ``/bigobj`` and ``/mp`` for MSVC.
481
+
482
+ ``pybind11::opt_size``
483
+ ``/Os`` for MSVC, ``-Os`` for other compilers. Does nothing for debug builds.
484
+
485
+ Two helper functions are also provided:
486
+
487
+ ``pybind11_strip(target)``
488
+ Strips a target (uses ``CMAKE_STRIP`` after the target is built)
489
+
490
+ ``pybind11_extension(target)``
491
+ Sets the correct extension (with SOABI) for a target.
492
+
493
+ You can use these targets to build complex applications. For example, the
494
+ ``add_python_module`` function is identical to:
495
+
496
+ .. code-block:: cmake
497
+
498
+ cmake_minimum_required(VERSION 3.4)
499
+ project(example LANGUAGES CXX)
500
+
501
+ find_package(pybind11 REQUIRED) # or add_subdirectory(pybind11)
502
+
503
+ add_library(example MODULE main.cpp)
504
+
505
+ target_link_libraries(example PRIVATE pybind11::module pybind11::lto pybind11::windows_extras)
506
+
507
+ pybind11_extension(example)
508
+ if(NOT MSVC AND NOT ${CMAKE_BUILD_TYPE} MATCHES Debug|RelWithDebInfo)
509
+ # Strip unnecessary sections of the binary on Linux/macOS
510
+ pybind11_strip(example)
511
+ endif()
512
+
513
+ set_target_properties(example PROPERTIES CXX_VISIBILITY_PRESET "hidden"
514
+ CUDA_VISIBILITY_PRESET "hidden")
515
+
516
+ Instead of setting properties, you can set ``CMAKE_*`` variables to initialize these correctly.
517
+
518
+ .. warning::
519
+
520
+ Since pybind11 is a metatemplate library, it is crucial that certain
521
+ compiler flags are provided to ensure high quality code generation. In
522
+ contrast to the ``pybind11_add_module()`` command, the CMake interface
523
+ provides a *composable* set of targets to ensure that you retain flexibility.
524
+ It can be especially important to provide or set these properties; the
525
+ :ref:`FAQ <faq:symhidden>` contains an explanation on why these are needed.
526
+
527
+ .. versionadded:: 2.6
528
+
529
+ .. _nopython-mode:
530
+
531
+ Advanced: NOPYTHON mode
532
+ -----------------------
533
+
534
+ If you want complete control, you can set ``PYBIND11_NOPYTHON`` to completely
535
+ disable Python integration (this also happens if you run ``FindPython2`` and
536
+ ``FindPython3`` without running ``FindPython``). This gives you complete
537
+ freedom to integrate into an existing system (like `Scikit-Build's
538
+ <https://scikit-build.readthedocs.io>`_ ``PythonExtensions``).
539
+ ``pybind11_add_module`` and ``pybind11_extension`` will be unavailable, and the
540
+ targets will be missing any Python specific behavior.
541
+
542
+ .. versionadded:: 2.6
543
+
544
+ Embedding the Python interpreter
545
+ --------------------------------
546
+
547
+ In addition to extension modules, pybind11 also supports embedding Python into
548
+ a C++ executable or library. In CMake, simply link with the ``pybind11::embed``
549
+ target. It provides everything needed to get the interpreter running. The Python
550
+ headers and libraries are attached to the target. Unlike ``pybind11::module``,
551
+ there is no need to manually set any additional properties here. For more
552
+ information about usage in C++, see :doc:`/advanced/embedding`.
553
+
554
+ .. code-block:: cmake
555
+
556
+ cmake_minimum_required(VERSION 3.4...3.18)
557
+ project(example LANGUAGES CXX)
558
+
559
+ find_package(pybind11 REQUIRED) # or add_subdirectory(pybind11)
560
+
561
+ add_executable(example main.cpp)
562
+ target_link_libraries(example PRIVATE pybind11::embed)
563
+
564
+ .. _building_manually:
565
+
566
+ Building manually
567
+ =================
568
+
569
+ pybind11 is a header-only library, hence it is not necessary to link against
570
+ any special libraries and there are no intermediate (magic) translation steps.
571
+
572
+ On Linux, you can compile an example such as the one given in
573
+ :ref:`simple_example` using the following command:
574
+
575
+ .. code-block:: bash
576
+
577
+ $ c++ -O3 -Wall -shared -std=c++11 -fPIC $(python3 -m pybind11 --includes) example.cpp -o example$(python3-config --extension-suffix)
578
+
579
+ The ``python3 -m pybind11 --includes`` command fetches the include paths for
580
+ both pybind11 and Python headers. This assumes that pybind11 has been installed
581
+ using ``pip`` or ``conda``. If it hasn't, you can also manually specify
582
+ ``-I <path-to-pybind11>/include`` together with the Python includes path
583
+ ``python3-config --includes``.
584
+
585
+ On macOS: the build command is almost the same but it also requires passing
586
+ the ``-undefined dynamic_lookup`` flag so as to ignore missing symbols when
587
+ building the module:
588
+
589
+ .. code-block:: bash
590
+
591
+ $ c++ -O3 -Wall -shared -std=c++11 -undefined dynamic_lookup $(python3 -m pybind11 --includes) example.cpp -o example$(python3-config --extension-suffix)
592
+
593
+ In general, it is advisable to include several additional build parameters
594
+ that can considerably reduce the size of the created binary. Refer to section
595
+ :ref:`cmake` for a detailed example of a suitable cross-platform CMake-based
596
+ build system that works on all platforms including Windows.
597
+
598
+ .. note::
599
+
600
+ On Linux and macOS, it's better to (intentionally) not link against
601
+ ``libpython``. The symbols will be resolved when the extension library
602
+ is loaded into a Python binary. This is preferable because you might
603
+ have several different installations of a given Python version (e.g. the
604
+ system-provided Python, and one that ships with a piece of commercial
605
+ software). In this way, the plugin will work with both versions, instead
606
+ of possibly importing a second Python library into a process that already
607
+ contains one (which will lead to a segfault).
608
+
609
+
610
+ Building with Bazel
611
+ ===================
612
+
613
+ You can build with the Bazel build system using the `pybind11_bazel
614
+ <https://github.com/pybind/pybind11_bazel>`_ repository.
615
+
616
+ Generating binding code automatically
617
+ =====================================
618
+
619
+ The ``Binder`` project is a tool for automatic generation of pybind11 binding
620
+ code by introspecting existing C++ codebases using LLVM/Clang. See the
621
+ [binder]_ documentation for details.
622
+
623
+ .. [binder] http://cppbinder.readthedocs.io/en/latest/about.html
624
+
625
+ [AutoWIG]_ is a Python library that wraps automatically compiled libraries into
626
+ high-level languages. It parses C++ code using LLVM/Clang technologies and
627
+ generates the wrappers using the Mako templating engine. The approach is automatic,
628
+ extensible, and applies to very complex C++ libraries, composed of thousands of
629
+ classes or incorporating modern meta-programming constructs.
630
+
631
+ .. [AutoWIG] https://github.com/StatisKit/AutoWIG
632
+
633
+ [robotpy-build]_ is a is a pure python, cross platform build tool that aims to
634
+ simplify creation of python wheels for pybind11 projects, and provide
635
+ cross-project dependency management. Additionally, it is able to autogenerate
636
+ customizable pybind11-based wrappers by parsing C++ header files.
637
+
638
+ .. [robotpy-build] https://robotpy-build.readthedocs.io
third-party/DPVO/DPViewer/pybind11/docs/conf.py ADDED
@@ -0,0 +1,380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ #
3
+ # pybind11 documentation build configuration file, created by
4
+ # sphinx-quickstart on Sun Oct 11 19:23:48 2015.
5
+ #
6
+ # This file is execfile()d with the current directory set to its
7
+ # containing dir.
8
+ #
9
+ # Note that not all possible configuration values are present in this
10
+ # autogenerated file.
11
+ #
12
+ # All configuration values have a default; values that are commented out
13
+ # serve to show the default.
14
+
15
+ import os
16
+ import re
17
+ import subprocess
18
+ import sys
19
+ from pathlib import Path
20
+
21
+ DIR = Path(__file__).parent.resolve()
22
+
23
+ # If extensions (or modules to document with autodoc) are in another directory,
24
+ # add these directories to sys.path here. If the directory is relative to the
25
+ # documentation root, use os.path.abspath to make it absolute, like shown here.
26
+ # sys.path.insert(0, os.path.abspath('.'))
27
+
28
+ # -- General configuration ------------------------------------------------
29
+
30
+ # If your documentation needs a minimal Sphinx version, state it here.
31
+ # needs_sphinx = '1.0'
32
+
33
+ # Add any Sphinx extension module names here, as strings. They can be
34
+ # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
35
+ # ones.
36
+ extensions = [
37
+ "breathe",
38
+ "sphinxcontrib.rsvgconverter",
39
+ "sphinxcontrib.moderncmakedomain",
40
+ ]
41
+
42
+ breathe_projects = {"pybind11": ".build/doxygenxml/"}
43
+ breathe_default_project = "pybind11"
44
+ breathe_domain_by_extension = {"h": "cpp"}
45
+
46
+ # Add any paths that contain templates here, relative to this directory.
47
+ templates_path = [".templates"]
48
+
49
+ # The suffix(es) of source filenames.
50
+ # You can specify multiple suffix as a list of string:
51
+ # source_suffix = ['.rst', '.md']
52
+ source_suffix = ".rst"
53
+
54
+ # The encoding of source files.
55
+ # source_encoding = 'utf-8-sig'
56
+
57
+ # The master toctree document.
58
+ master_doc = "index"
59
+
60
+ # General information about the project.
61
+ project = "pybind11"
62
+ copyright = "2017, Wenzel Jakob"
63
+ author = "Wenzel Jakob"
64
+
65
+ # The version info for the project you're documenting, acts as replacement for
66
+ # |version| and |release|, also used in various other places throughout the
67
+ # built documents.
68
+
69
+ # Read the listed version
70
+ with open("../pybind11/_version.py") as f:
71
+ code = compile(f.read(), "../pybind11/_version.py", "exec")
72
+ loc = {}
73
+ exec(code, loc)
74
+
75
+ # The full version, including alpha/beta/rc tags.
76
+ version = loc["__version__"]
77
+
78
+ # The language for content autogenerated by Sphinx. Refer to documentation
79
+ # for a list of supported languages.
80
+ #
81
+ # This is also used if you do content translation via gettext catalogs.
82
+ # Usually you set "language" from the command line for these cases.
83
+ language = None
84
+
85
+ # There are two options for replacing |today|: either, you set today to some
86
+ # non-false value, then it is used:
87
+ # today = ''
88
+ # Else, today_fmt is used as the format for a strftime call.
89
+ # today_fmt = '%B %d, %Y'
90
+
91
+ # List of patterns, relative to source directory, that match files and
92
+ # directories to ignore when looking for source files.
93
+ exclude_patterns = [".build", "release.rst"]
94
+
95
+ # The reST default role (used for this markup: `text`) to use for all
96
+ # documents.
97
+ default_role = "any"
98
+
99
+ # If true, '()' will be appended to :func: etc. cross-reference text.
100
+ # add_function_parentheses = True
101
+
102
+ # If true, the current module name will be prepended to all description
103
+ # unit titles (such as .. function::).
104
+ # add_module_names = True
105
+
106
+ # If true, sectionauthor and moduleauthor directives will be shown in the
107
+ # output. They are ignored by default.
108
+ # show_authors = False
109
+
110
+ # The name of the Pygments (syntax highlighting) style to use.
111
+ # pygments_style = 'monokai'
112
+
113
+ # A list of ignored prefixes for module index sorting.
114
+ # modindex_common_prefix = []
115
+
116
+ # If true, keep warnings as "system message" paragraphs in the built documents.
117
+ # keep_warnings = False
118
+
119
+ # If true, `todo` and `todoList` produce output, else they produce nothing.
120
+ todo_include_todos = False
121
+
122
+
123
+ # -- Options for HTML output ----------------------------------------------
124
+
125
+ # The theme to use for HTML and HTML Help pages. See the documentation for
126
+ # a list of builtin themes.
127
+
128
+ on_rtd = os.environ.get("READTHEDOCS", None) == "True"
129
+
130
+ if not on_rtd: # only import and set the theme if we're building docs locally
131
+ import sphinx_rtd_theme
132
+
133
+ html_theme = "sphinx_rtd_theme"
134
+ html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]
135
+
136
+ html_context = {"css_files": ["_static/theme_overrides.css"]}
137
+ else:
138
+ html_context = {
139
+ "css_files": [
140
+ "//media.readthedocs.org/css/sphinx_rtd_theme.css",
141
+ "//media.readthedocs.org/css/readthedocs-doc-embed.css",
142
+ "_static/theme_overrides.css",
143
+ ]
144
+ }
145
+
146
+ # Theme options are theme-specific and customize the look and feel of a theme
147
+ # further. For a list of options available for each theme, see the
148
+ # documentation.
149
+ # html_theme_options = {}
150
+
151
+ # Add any paths that contain custom themes here, relative to this directory.
152
+ # html_theme_path = []
153
+
154
+ # The name for this set of Sphinx documents. If None, it defaults to
155
+ # "<project> v<version> documentation".
156
+ # html_title = None
157
+
158
+ # A shorter title for the navigation bar. Default is the same as html_title.
159
+ # html_short_title = None
160
+
161
+ # The name of an image file (relative to this directory) to place at the top
162
+ # of the sidebar.
163
+ # html_logo = None
164
+
165
+ # The name of an image file (within the static path) to use as favicon of the
166
+ # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
167
+ # pixels large.
168
+ # html_favicon = None
169
+
170
+ # Add any paths that contain custom static files (such as style sheets) here,
171
+ # relative to this directory. They are copied after the builtin static files,
172
+ # so a file named "default.css" will overwrite the builtin "default.css".
173
+ html_static_path = ["_static"]
174
+
175
+ # Add any extra paths that contain custom files (such as robots.txt or
176
+ # .htaccess) here, relative to this directory. These files are copied
177
+ # directly to the root of the documentation.
178
+ # html_extra_path = []
179
+
180
+ # If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
181
+ # using the given strftime format.
182
+ # html_last_updated_fmt = '%b %d, %Y'
183
+
184
+ # If true, SmartyPants will be used to convert quotes and dashes to
185
+ # typographically correct entities.
186
+ # html_use_smartypants = True
187
+
188
+ # Custom sidebar templates, maps document names to template names.
189
+ # html_sidebars = {}
190
+
191
+ # Additional templates that should be rendered to pages, maps page names to
192
+ # template names.
193
+ # html_additional_pages = {}
194
+
195
+ # If false, no module index is generated.
196
+ # html_domain_indices = True
197
+
198
+ # If false, no index is generated.
199
+ # html_use_index = True
200
+
201
+ # If true, the index is split into individual pages for each letter.
202
+ # html_split_index = False
203
+
204
+ # If true, links to the reST sources are added to the pages.
205
+ # html_show_sourcelink = True
206
+
207
+ # If true, "Created using Sphinx" is shown in the HTML footer. Default is True.
208
+ # html_show_sphinx = True
209
+
210
+ # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True.
211
+ # html_show_copyright = True
212
+
213
+ # If true, an OpenSearch description file will be output, and all pages will
214
+ # contain a <link> tag referring to it. The value of this option must be the
215
+ # base URL from which the finished HTML is served.
216
+ # html_use_opensearch = ''
217
+
218
+ # This is the file name suffix for HTML files (e.g. ".xhtml").
219
+ # html_file_suffix = None
220
+
221
+ # Language to be used for generating the HTML full-text search index.
222
+ # Sphinx supports the following languages:
223
+ # 'da', 'de', 'en', 'es', 'fi', 'fr', 'h', 'it', 'ja'
224
+ # 'nl', 'no', 'pt', 'ro', 'r', 'sv', 'tr'
225
+ # html_search_language = 'en'
226
+
227
+ # A dictionary with options for the search language support, empty by default.
228
+ # Now only 'ja' uses this config value
229
+ # html_search_options = {'type': 'default'}
230
+
231
+ # The name of a javascript file (relative to the configuration directory) that
232
+ # implements a search results scorer. If empty, the default will be used.
233
+ # html_search_scorer = 'scorer.js'
234
+
235
+ # Output file base name for HTML help builder.
236
+ htmlhelp_basename = "pybind11doc"
237
+
238
+ # -- Options for LaTeX output ---------------------------------------------
239
+
240
+ latex_engine = "pdflatex"
241
+
242
+ latex_elements = {
243
+ # The paper size ('letterpaper' or 'a4paper').
244
+ # 'papersize': 'letterpaper',
245
+ #
246
+ # The font size ('10pt', '11pt' or '12pt').
247
+ # 'pointsize': '10pt',
248
+ #
249
+ # Additional stuff for the LaTeX preamble.
250
+ # remove blank pages (between the title page and the TOC, etc.)
251
+ "classoptions": ",openany,oneside",
252
+ "preamble": r"""
253
+ \usepackage{fontawesome}
254
+ \usepackage{textgreek}
255
+ \DeclareUnicodeCharacter{00A0}{}
256
+ \DeclareUnicodeCharacter{2194}{\faArrowsH}
257
+ \DeclareUnicodeCharacter{1F382}{\faBirthdayCake}
258
+ \DeclareUnicodeCharacter{1F355}{\faAdjust}
259
+ \DeclareUnicodeCharacter{0301}{'}
260
+ \DeclareUnicodeCharacter{03C0}{\textpi}
261
+
262
+ """,
263
+ # Latex figure (float) alignment
264
+ # 'figure_align': 'htbp',
265
+ }
266
+
267
+ # Grouping the document tree into LaTeX files. List of tuples
268
+ # (source start file, target name, title,
269
+ # author, documentclass [howto, manual, or own class]).
270
+ latex_documents = [
271
+ (master_doc, "pybind11.tex", "pybind11 Documentation", "Wenzel Jakob", "manual"),
272
+ ]
273
+
274
+ # The name of an image file (relative to this directory) to place at the top of
275
+ # the title page.
276
+ # latex_logo = 'pybind11-logo.png'
277
+
278
+ # For "manual" documents, if this is true, then toplevel headings are parts,
279
+ # not chapters.
280
+ # latex_use_parts = False
281
+
282
+ # If true, show page references after internal links.
283
+ # latex_show_pagerefs = False
284
+
285
+ # If true, show URL addresses after external links.
286
+ # latex_show_urls = False
287
+
288
+ # Documents to append as an appendix to all manuals.
289
+ # latex_appendices = []
290
+
291
+ # If false, no module index is generated.
292
+ # latex_domain_indices = True
293
+
294
+
295
+ # -- Options for manual page output ---------------------------------------
296
+
297
+ # One entry per manual page. List of tuples
298
+ # (source start file, name, description, authors, manual section).
299
+ man_pages = [(master_doc, "pybind11", "pybind11 Documentation", [author], 1)]
300
+
301
+ # If true, show URL addresses after external links.
302
+ # man_show_urls = False
303
+
304
+
305
+ # -- Options for Texinfo output -------------------------------------------
306
+
307
+ # Grouping the document tree into Texinfo files. List of tuples
308
+ # (source start file, target name, title, author,
309
+ # dir menu entry, description, category)
310
+ texinfo_documents = [
311
+ (
312
+ master_doc,
313
+ "pybind11",
314
+ "pybind11 Documentation",
315
+ author,
316
+ "pybind11",
317
+ "One line description of project.",
318
+ "Miscellaneous",
319
+ ),
320
+ ]
321
+
322
+ # Documents to append as an appendix to all manuals.
323
+ # texinfo_appendices = []
324
+
325
+ # If false, no module index is generated.
326
+ # texinfo_domain_indices = True
327
+
328
+ # How to display URL addresses: 'footnote', 'no', or 'inline'.
329
+ # texinfo_show_urls = 'footnote'
330
+
331
+ # If true, do not generate a @detailmenu in the "Top" node's menu.
332
+ # texinfo_no_detailmenu = False
333
+
334
+ primary_domain = "cpp"
335
+ highlight_language = "cpp"
336
+
337
+
338
+ def generate_doxygen_xml(app):
339
+ build_dir = os.path.join(app.confdir, ".build")
340
+ if not os.path.exists(build_dir):
341
+ os.mkdir(build_dir)
342
+
343
+ try:
344
+ subprocess.call(["doxygen", "--version"])
345
+ retcode = subprocess.call(["doxygen"], cwd=app.confdir)
346
+ if retcode < 0:
347
+ sys.stderr.write(f"doxygen error code: {-retcode}\n")
348
+ except OSError as e:
349
+ sys.stderr.write(f"doxygen execution failed: {e}\n")
350
+
351
+
352
+ def prepare(app):
353
+ with open(DIR.parent / "README.rst") as f:
354
+ contents = f.read()
355
+
356
+ if app.builder.name == "latex":
357
+ # Remove badges and stuff from start
358
+ contents = contents[contents.find(r".. start") :]
359
+
360
+ # Filter out section titles for index.rst for LaTeX
361
+ contents = re.sub(r"^(.*)\n[-~]{3,}$", r"**\1**", contents, flags=re.MULTILINE)
362
+
363
+ with open(DIR / "readme.rst", "w") as f:
364
+ f.write(contents)
365
+
366
+
367
+ def clean_up(app, exception):
368
+ (DIR / "readme.rst").unlink()
369
+
370
+
371
+ def setup(app):
372
+
373
+ # Add hook for building doxygen xml when needed
374
+ app.connect("builder-inited", generate_doxygen_xml)
375
+
376
+ # Copy the readme in
377
+ app.connect("builder-inited", prepare)
378
+
379
+ # Clean up the generated readme
380
+ app.connect("build-finished", clean_up)
third-party/DPVO/DPViewer/pybind11/docs/faq.rst ADDED
@@ -0,0 +1,307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Frequently asked questions
2
+ ##########################
3
+
4
+ "ImportError: dynamic module does not define init function"
5
+ ===========================================================
6
+
7
+ 1. Make sure that the name specified in PYBIND11_MODULE is identical to the
8
+ filename of the extension library (without suffixes such as ``.so``).
9
+
10
+ 2. If the above did not fix the issue, you are likely using an incompatible
11
+ version of Python that does not match what you compiled with.
12
+
13
+ "Symbol not found: ``__Py_ZeroStruct`` / ``_PyInstanceMethod_Type``"
14
+ ========================================================================
15
+
16
+ See the first answer.
17
+
18
+ "SystemError: dynamic module not initialized properly"
19
+ ======================================================
20
+
21
+ See the first answer.
22
+
23
+ The Python interpreter immediately crashes when importing my module
24
+ ===================================================================
25
+
26
+ See the first answer.
27
+
28
+ .. _faq_reference_arguments:
29
+
30
+ Limitations involving reference arguments
31
+ =========================================
32
+
33
+ In C++, it's fairly common to pass arguments using mutable references or
34
+ mutable pointers, which allows both read and write access to the value
35
+ supplied by the caller. This is sometimes done for efficiency reasons, or to
36
+ realize functions that have multiple return values. Here are two very basic
37
+ examples:
38
+
39
+ .. code-block:: cpp
40
+
41
+ void increment(int &i) { i++; }
42
+ void increment_ptr(int *i) { (*i)++; }
43
+
44
+ In Python, all arguments are passed by reference, so there is no general
45
+ issue in binding such code from Python.
46
+
47
+ However, certain basic Python types (like ``str``, ``int``, ``bool``,
48
+ ``float``, etc.) are **immutable**. This means that the following attempt
49
+ to port the function to Python doesn't have the same effect on the value
50
+ provided by the caller -- in fact, it does nothing at all.
51
+
52
+ .. code-block:: python
53
+
54
+ def increment(i):
55
+ i += 1 # nope..
56
+
57
+ pybind11 is also affected by such language-level conventions, which means that
58
+ binding ``increment`` or ``increment_ptr`` will also create Python functions
59
+ that don't modify their arguments.
60
+
61
+ Although inconvenient, one workaround is to encapsulate the immutable types in
62
+ a custom type that does allow modifications.
63
+
64
+ An other alternative involves binding a small wrapper lambda function that
65
+ returns a tuple with all output arguments (see the remainder of the
66
+ documentation for examples on binding lambda functions). An example:
67
+
68
+ .. code-block:: cpp
69
+
70
+ int foo(int &i) { i++; return 123; }
71
+
72
+ and the binding code
73
+
74
+ .. code-block:: cpp
75
+
76
+ m.def("foo", [](int i) { int rv = foo(i); return std::make_tuple(rv, i); });
77
+
78
+
79
+ How can I reduce the build time?
80
+ ================================
81
+
82
+ It's good practice to split binding code over multiple files, as in the
83
+ following example:
84
+
85
+ :file:`example.cpp`:
86
+
87
+ .. code-block:: cpp
88
+
89
+ void init_ex1(py::module_ &);
90
+ void init_ex2(py::module_ &);
91
+ /* ... */
92
+
93
+ PYBIND11_MODULE(example, m) {
94
+ init_ex1(m);
95
+ init_ex2(m);
96
+ /* ... */
97
+ }
98
+
99
+ :file:`ex1.cpp`:
100
+
101
+ .. code-block:: cpp
102
+
103
+ void init_ex1(py::module_ &m) {
104
+ m.def("add", [](int a, int b) { return a + b; });
105
+ }
106
+
107
+ :file:`ex2.cpp`:
108
+
109
+ .. code-block:: cpp
110
+
111
+ void init_ex2(py::module_ &m) {
112
+ m.def("sub", [](int a, int b) { return a - b; });
113
+ }
114
+
115
+ :command:`python`:
116
+
117
+ .. code-block:: pycon
118
+
119
+ >>> import example
120
+ >>> example.add(1, 2)
121
+ 3
122
+ >>> example.sub(1, 1)
123
+ 0
124
+
125
+ As shown above, the various ``init_ex`` functions should be contained in
126
+ separate files that can be compiled independently from one another, and then
127
+ linked together into the same final shared object. Following this approach
128
+ will:
129
+
130
+ 1. reduce memory requirements per compilation unit.
131
+
132
+ 2. enable parallel builds (if desired).
133
+
134
+ 3. allow for faster incremental builds. For instance, when a single class
135
+ definition is changed, only a subset of the binding code will generally need
136
+ to be recompiled.
137
+
138
+ "recursive template instantiation exceeded maximum depth of 256"
139
+ ================================================================
140
+
141
+ If you receive an error about excessive recursive template evaluation, try
142
+ specifying a larger value, e.g. ``-ftemplate-depth=1024`` on GCC/Clang. The
143
+ culprit is generally the generation of function signatures at compile time
144
+ using C++14 template metaprogramming.
145
+
146
+ .. _`faq:hidden_visibility`:
147
+
148
+ "'SomeClass' declared with greater visibility than the type of its field 'SomeClass::member' [-Wattributes]"
149
+ ============================================================================================================
150
+
151
+ This error typically indicates that you are compiling without the required
152
+ ``-fvisibility`` flag. pybind11 code internally forces hidden visibility on
153
+ all internal code, but if non-hidden (and thus *exported*) code attempts to
154
+ include a pybind type (for example, ``py::object`` or ``py::list``) you can run
155
+ into this warning.
156
+
157
+ To avoid it, make sure you are specifying ``-fvisibility=hidden`` when
158
+ compiling pybind code.
159
+
160
+ As to why ``-fvisibility=hidden`` is necessary, because pybind modules could
161
+ have been compiled under different versions of pybind itself, it is also
162
+ important that the symbols defined in one module do not clash with the
163
+ potentially-incompatible symbols defined in another. While Python extension
164
+ modules are usually loaded with localized symbols (under POSIX systems
165
+ typically using ``dlopen`` with the ``RTLD_LOCAL`` flag), this Python default
166
+ can be changed, but even if it isn't it is not always enough to guarantee
167
+ complete independence of the symbols involved when not using
168
+ ``-fvisibility=hidden``.
169
+
170
+ Additionally, ``-fvisibility=hidden`` can deliver considerably binary size
171
+ savings. (See the following section for more details.)
172
+
173
+
174
+ .. _`faq:symhidden`:
175
+
176
+ How can I create smaller binaries?
177
+ ==================================
178
+
179
+ To do its job, pybind11 extensively relies on a programming technique known as
180
+ *template metaprogramming*, which is a way of performing computation at compile
181
+ time using type information. Template metaprogramming usually instantiates code
182
+ involving significant numbers of deeply nested types that are either completely
183
+ removed or reduced to just a few instructions during the compiler's optimization
184
+ phase. However, due to the nested nature of these types, the resulting symbol
185
+ names in the compiled extension library can be extremely long. For instance,
186
+ the included test suite contains the following symbol:
187
+
188
+ .. only:: html
189
+
190
+ .. code-block:: none
191
+
192
+ _​_​Z​N​8​p​y​b​i​n​d​1​1​1​2​c​p​p​_​f​u​n​c​t​i​o​n​C​1​I​v​8​E​x​a​m​p​l​e​2​J​R​N​S​t​3​_​_​1​6​v​e​c​t​o​r​I​N​S​3​_​1​2​b​a​s​i​c​_​s​t​r​i​n​g​I​w​N​S​3​_​1​1​c​h​a​r​_​t​r​a​i​t​s​I​w​E​E​N​S​3​_​9​a​l​l​o​c​a​t​o​r​I​w​E​E​E​E​N​S​8​_​I​S​A​_​E​E​E​E​E​J​N​S​_​4​n​a​m​e​E​N​S​_​7​s​i​b​l​i​n​g​E​N​S​_​9​i​s​_​m​e​t​h​o​d​E​A​2​8​_​c​E​E​E​M​T​0​_​F​T​_​D​p​T​1​_​E​D​p​R​K​T​2​_
193
+
194
+ .. only:: not html
195
+
196
+ .. code-block:: cpp
197
+
198
+ __ZN8pybind1112cpp_functionC1Iv8Example2JRNSt3__16vectorINS3_12basic_stringIwNS3_11char_traitsIwEENS3_9allocatorIwEEEENS8_ISA_EEEEEJNS_4nameENS_7siblingENS_9is_methodEA28_cEEEMT0_FT_DpT1_EDpRKT2_
199
+
200
+ which is the mangled form of the following function type:
201
+
202
+ .. code-block:: cpp
203
+
204
+ pybind11::cpp_function::cpp_function<void, Example2, std::__1::vector<std::__1::basic_string<wchar_t, std::__1::char_traits<wchar_t>, std::__1::allocator<wchar_t> >, std::__1::allocator<std::__1::basic_string<wchar_t, std::__1::char_traits<wchar_t>, std::__1::allocator<wchar_t> > > >&, pybind11::name, pybind11::sibling, pybind11::is_method, char [28]>(void (Example2::*)(std::__1::vector<std::__1::basic_string<wchar_t, std::__1::char_traits<wchar_t>, std::__1::allocator<wchar_t> >, std::__1::allocator<std::__1::basic_string<wchar_t, std::__1::char_traits<wchar_t>, std::__1::allocator<wchar_t> > > >&), pybind11::name const&, pybind11::sibling const&, pybind11::is_method const&, char const (&) [28])
205
+
206
+ The memory needed to store just the mangled name of this function (196 bytes)
207
+ is larger than the actual piece of code (111 bytes) it represents! On the other
208
+ hand, it's silly to even give this function a name -- after all, it's just a
209
+ tiny cog in a bigger piece of machinery that is not exposed to the outside
210
+ world. So we'll generally only want to export symbols for those functions which
211
+ are actually called from the outside.
212
+
213
+ This can be achieved by specifying the parameter ``-fvisibility=hidden`` to GCC
214
+ and Clang, which sets the default symbol visibility to *hidden*, which has a
215
+ tremendous impact on the final binary size of the resulting extension library.
216
+ (On Visual Studio, symbols are already hidden by default, so nothing needs to
217
+ be done there.)
218
+
219
+ In addition to decreasing binary size, ``-fvisibility=hidden`` also avoids
220
+ potential serious issues when loading multiple modules and is required for
221
+ proper pybind operation. See the previous FAQ entry for more details.
222
+
223
+ How can I properly handle Ctrl-C in long-running functions?
224
+ ===========================================================
225
+
226
+ Ctrl-C is received by the Python interpreter, and holds it until the GIL
227
+ is released, so a long-running function won't be interrupted.
228
+
229
+ To interrupt from inside your function, you can use the ``PyErr_CheckSignals()``
230
+ function, that will tell if a signal has been raised on the Python side. This
231
+ function merely checks a flag, so its impact is negligible. When a signal has
232
+ been received, you must either explicitly interrupt execution by throwing
233
+ ``py::error_already_set`` (which will propagate the existing
234
+ ``KeyboardInterrupt``), or clear the error (which you usually will not want):
235
+
236
+ .. code-block:: cpp
237
+
238
+ PYBIND11_MODULE(example, m)
239
+ {
240
+ m.def("long running_func", []()
241
+ {
242
+ for (;;) {
243
+ if (PyErr_CheckSignals() != 0)
244
+ throw py::error_already_set();
245
+ // Long running iteration
246
+ }
247
+ });
248
+ }
249
+
250
+ CMake doesn't detect the right Python version
251
+ =============================================
252
+
253
+ The CMake-based build system will try to automatically detect the installed
254
+ version of Python and link against that. When this fails, or when there are
255
+ multiple versions of Python and it finds the wrong one, delete
256
+ ``CMakeCache.txt`` and then add ``-DPYTHON_EXECUTABLE=$(which python)`` to your
257
+ CMake configure line. (Replace ``$(which python)`` with a path to python if
258
+ your prefer.)
259
+
260
+ You can alternatively try ``-DPYBIND11_FINDPYTHON=ON``, which will activate the
261
+ new CMake FindPython support instead of pybind11's custom search. Requires
262
+ CMake 3.12+, and 3.15+ or 3.18.2+ are even better. You can set this in your
263
+ ``CMakeLists.txt`` before adding or finding pybind11, as well.
264
+
265
+ Inconsistent detection of Python version in CMake and pybind11
266
+ ==============================================================
267
+
268
+ The functions ``find_package(PythonInterp)`` and ``find_package(PythonLibs)``
269
+ provided by CMake for Python version detection are modified by pybind11 due to
270
+ unreliability and limitations that make them unsuitable for pybind11's needs.
271
+ Instead pybind11 provides its own, more reliable Python detection CMake code.
272
+ Conflicts can arise, however, when using pybind11 in a project that *also* uses
273
+ the CMake Python detection in a system with several Python versions installed.
274
+
275
+ This difference may cause inconsistencies and errors if *both* mechanisms are
276
+ used in the same project.
277
+
278
+ There are three possible solutions:
279
+
280
+ 1. Avoid using ``find_package(PythonInterp)`` and ``find_package(PythonLibs)``
281
+ from CMake and rely on pybind11 in detecting Python version. If this is not
282
+ possible, the CMake machinery should be called *before* including pybind11.
283
+ 2. Set ``PYBIND11_FINDPYTHON`` to ``True`` or use ``find_package(Python
284
+ COMPONENTS Interpreter Development)`` on modern CMake (3.12+, 3.15+ better,
285
+ 3.18.2+ best). Pybind11 in these cases uses the new CMake FindPython instead
286
+ of the old, deprecated search tools, and these modules are much better at
287
+ finding the correct Python.
288
+ 3. Set ``PYBIND11_NOPYTHON`` to ``TRUE``. Pybind11 will not search for Python.
289
+ However, you will have to use the target-based system, and do more setup
290
+ yourself, because it does not know about or include things that depend on
291
+ Python, like ``pybind11_add_module``. This might be ideal for integrating
292
+ into an existing system, like scikit-build's Python helpers.
293
+
294
+ How to cite this project?
295
+ =========================
296
+
297
+ We suggest the following BibTeX template to cite pybind11 in scientific
298
+ discourse:
299
+
300
+ .. code-block:: bash
301
+
302
+ @misc{pybind11,
303
+ author = {Wenzel Jakob and Jason Rhinelander and Dean Moldovan},
304
+ year = {2017},
305
+ note = {https://github.com/pybind/pybind11},
306
+ title = {pybind11 -- Seamless operability between C++11 and Python}
307
+ }
third-party/DPVO/DPViewer/pybind11/docs/index.rst ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. only:: latex
2
+
3
+ Intro
4
+ =====
5
+
6
+ .. include:: readme.rst
7
+
8
+ .. only:: not latex
9
+
10
+ Contents:
11
+
12
+ .. toctree::
13
+ :maxdepth: 1
14
+
15
+ changelog
16
+ upgrade
17
+
18
+ .. toctree::
19
+ :caption: The Basics
20
+ :maxdepth: 2
21
+
22
+ installing
23
+ basics
24
+ classes
25
+ compiling
26
+
27
+ .. toctree::
28
+ :caption: Advanced Topics
29
+ :maxdepth: 2
30
+
31
+ advanced/functions
32
+ advanced/classes
33
+ advanced/exceptions
34
+ advanced/smart_ptrs
35
+ advanced/cast/index
36
+ advanced/pycpp/index
37
+ advanced/embedding
38
+ advanced/misc
39
+
40
+ .. toctree::
41
+ :caption: Extra Information
42
+ :maxdepth: 1
43
+
44
+ faq
45
+ benchmark
46
+ limitations
47
+ reference
48
+ cmake/index
third-party/DPVO/DPViewer/pybind11/docs/installing.rst ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. _installing:
2
+
3
+ Installing the library
4
+ ######################
5
+
6
+ There are several ways to get the pybind11 source, which lives at
7
+ `pybind/pybind11 on GitHub <https://github.com/pybind/pybind11>`_. The pybind11
8
+ developers recommend one of the first three ways listed here, submodule, PyPI,
9
+ or conda-forge, for obtaining pybind11.
10
+
11
+ .. _include_as_a_submodule:
12
+
13
+ Include as a submodule
14
+ ======================
15
+
16
+ When you are working on a project in Git, you can use the pybind11 repository
17
+ as a submodule. From your git repository, use:
18
+
19
+ .. code-block:: bash
20
+
21
+ git submodule add -b stable ../../pybind/pybind11 extern/pybind11
22
+ git submodule update --init
23
+
24
+ This assumes you are placing your dependencies in ``extern/``, and that you are
25
+ using GitHub; if you are not using GitHub, use the full https or ssh URL
26
+ instead of the relative URL ``../../pybind/pybind11`` above. Some other servers
27
+ also require the ``.git`` extension (GitHub does not).
28
+
29
+ From here, you can now include ``extern/pybind11/include``, or you can use
30
+ the various integration tools (see :ref:`compiling`) pybind11 provides directly
31
+ from the local folder.
32
+
33
+ Include with PyPI
34
+ =================
35
+
36
+ You can download the sources and CMake files as a Python package from PyPI
37
+ using Pip. Just use:
38
+
39
+ .. code-block:: bash
40
+
41
+ pip install pybind11
42
+
43
+ This will provide pybind11 in a standard Python package format. If you want
44
+ pybind11 available directly in your environment root, you can use:
45
+
46
+ .. code-block:: bash
47
+
48
+ pip install "pybind11[global]"
49
+
50
+ This is not recommended if you are installing with your system Python, as it
51
+ will add files to ``/usr/local/include/pybind11`` and
52
+ ``/usr/local/share/cmake/pybind11``, so unless that is what you want, it is
53
+ recommended only for use in virtual environments or your ``pyproject.toml``
54
+ file (see :ref:`compiling`).
55
+
56
+ Include with conda-forge
57
+ ========================
58
+
59
+ You can use pybind11 with conda packaging via `conda-forge
60
+ <https://github.com/conda-forge/pybind11-feedstock>`_:
61
+
62
+ .. code-block:: bash
63
+
64
+ conda install -c conda-forge pybind11
65
+
66
+
67
+ Include with vcpkg
68
+ ==================
69
+ You can download and install pybind11 using the Microsoft `vcpkg
70
+ <https://github.com/Microsoft/vcpkg/>`_ dependency manager:
71
+
72
+ .. code-block:: bash
73
+
74
+ git clone https://github.com/Microsoft/vcpkg.git
75
+ cd vcpkg
76
+ ./bootstrap-vcpkg.sh
77
+ ./vcpkg integrate install
78
+ vcpkg install pybind11
79
+
80
+ The pybind11 port in vcpkg is kept up to date by Microsoft team members and
81
+ community contributors. If the version is out of date, please `create an issue
82
+ or pull request <https://github.com/Microsoft/vcpkg/>`_ on the vcpkg
83
+ repository.
84
+
85
+ Global install with brew
86
+ ========================
87
+
88
+ The brew package manager (Homebrew on macOS, or Linuxbrew on Linux) has a
89
+ `pybind11 package
90
+ <https://github.com/Homebrew/homebrew-core/blob/master/Formula/pybind11.rb>`_.
91
+ To install:
92
+
93
+ .. code-block:: bash
94
+
95
+ brew install pybind11
96
+
97
+ .. We should list Conan, and possibly a few other C++ package managers (hunter,
98
+ .. perhaps). Conan has a very clean CMake integration that would be good to show.
99
+
100
+ Other options
101
+ =============
102
+
103
+ Other locations you can find pybind11 are `listed here
104
+ <https://repology.org/project/python:pybind11/versions>`_; these are maintained
105
+ by various packagers and the community.
third-party/DPVO/DPViewer/pybind11/docs/limitations.rst ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Limitations
2
+ ###########
3
+
4
+ Design choices
5
+ ^^^^^^^^^^^^^^
6
+
7
+ pybind11 strives to be a general solution to binding generation, but it also has
8
+ certain limitations:
9
+
10
+ - pybind11 casts away ``const``-ness in function arguments and return values.
11
+ This is in line with the Python language, which has no concept of ``const``
12
+ values. This means that some additional care is needed to avoid bugs that
13
+ would be caught by the type checker in a traditional C++ program.
14
+
15
+ - The NumPy interface ``pybind11::array`` greatly simplifies accessing
16
+ numerical data from C++ (and vice versa), but it's not a full-blown array
17
+ class like ``Eigen::Array`` or ``boost.multi_array``. ``Eigen`` objects are
18
+ directly supported, however, with ``pybind11/eigen.h``.
19
+
20
+ Large but useful features could be implemented in pybind11 but would lead to a
21
+ significant increase in complexity. Pybind11 strives to be simple and compact.
22
+ Users who require large new features are encouraged to write an extension to
23
+ pybind11; see `pybind11_json <https://github.com/pybind/pybind11_json>`_ for an
24
+ example.
25
+
26
+
27
+ Known bugs
28
+ ^^^^^^^^^^
29
+
30
+ These are issues that hopefully will one day be fixed, but currently are
31
+ unsolved. If you know how to help with one of these issues, contributions
32
+ are welcome!
33
+
34
+ - Intel 20.2 is currently having an issue with the test suite.
35
+ `#2573 <https://github.com/pybind/pybind11/pull/2573>`_
36
+
37
+ - Debug mode Python does not support 1-5 tests in the test suite currently.
38
+ `#2422 <https://github.com/pybind/pybind11/pull/2422>`_
39
+
40
+ - PyPy3 7.3.1 and 7.3.2 have issues with several tests on 32-bit Windows.
41
+
42
+ Known limitations
43
+ ^^^^^^^^^^^^^^^^^
44
+
45
+ These are issues that are probably solvable, but have not been fixed yet. A
46
+ clean, well written patch would likely be accepted to solve them.
47
+
48
+ - Type casters are not kept alive recursively.
49
+ `#2527 <https://github.com/pybind/pybind11/issues/2527>`_
50
+ One consequence is that containers of ``char *`` are currently not supported.
51
+ `#2245 <https://github.com/pybind/pybind11/issues/2245>`_
52
+
53
+ - The ``cpptest`` does not run on Windows with Python 3.8 or newer, due to DLL
54
+ loader changes. User code that is correctly installed should not be affected.
55
+ `#2560 <https://github.com/pybind/pybind11/issue/2560>`_
56
+
57
+ Python 3.9.0 warning
58
+ ^^^^^^^^^^^^^^^^^^^^
59
+
60
+ Combining older versions of pybind11 (< 2.6.0) with Python on exactly 3.9.0
61
+ will trigger undefined behavior that typically manifests as crashes during
62
+ interpreter shutdown (but could also destroy your data. **You have been
63
+ warned**).
64
+
65
+ This issue was `fixed in Python <https://github.com/python/cpython/pull/22670>`_.
66
+ As a mitigation for this bug, pybind11 2.6.0 or newer includes a workaround
67
+ specifically when Python 3.9.0 is detected at runtime, leaking about 50 bytes
68
+ of memory when a callback function is garbage collected. For reference, the
69
+ pybind11 test suite has about 2,000 such callbacks, but only 49 are garbage
70
+ collected before the end-of-process. Wheels (even if built with Python 3.9.0)
71
+ will correctly avoid the leak when run in Python 3.9.1, and this does not
72
+ affect other 3.X versions.
third-party/DPVO/DPViewer/pybind11/docs/pybind11-logo.png ADDED
third-party/DPVO/DPViewer/pybind11/docs/pybind11_vs_boost_python1.png ADDED
third-party/DPVO/DPViewer/pybind11/docs/pybind11_vs_boost_python1.svg ADDED
third-party/DPVO/DPViewer/pybind11/docs/pybind11_vs_boost_python2.png ADDED
third-party/DPVO/DPViewer/pybind11/docs/pybind11_vs_boost_python2.svg ADDED
third-party/DPVO/DPViewer/pybind11/docs/reference.rst ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. _reference:
2
+
3
+ .. warning::
4
+
5
+ Please be advised that the reference documentation discussing pybind11
6
+ internals is currently incomplete. Please refer to the previous sections
7
+ and the pybind11 header files for the nitty gritty details.
8
+
9
+ Reference
10
+ #########
11
+
12
+ .. _macros:
13
+
14
+ Macros
15
+ ======
16
+
17
+ .. doxygendefine:: PYBIND11_MODULE
18
+
19
+ .. _core_types:
20
+
21
+ Convenience classes for arbitrary Python types
22
+ ==============================================
23
+
24
+ Common member functions
25
+ -----------------------
26
+
27
+ .. doxygenclass:: object_api
28
+ :members:
29
+
30
+ Without reference counting
31
+ --------------------------
32
+
33
+ .. doxygenclass:: handle
34
+ :members:
35
+
36
+ With reference counting
37
+ -----------------------
38
+
39
+ .. doxygenclass:: object
40
+ :members:
41
+
42
+ .. doxygenfunction:: reinterpret_borrow
43
+
44
+ .. doxygenfunction:: reinterpret_steal
45
+
46
+ Convenience classes for specific Python types
47
+ =============================================
48
+
49
+ .. doxygenclass:: module_
50
+ :members:
51
+
52
+ .. doxygengroup:: pytypes
53
+ :members:
54
+
55
+ Convenience functions converting to Python types
56
+ ================================================
57
+
58
+ .. doxygenfunction:: make_tuple(Args&&...)
59
+
60
+ .. doxygenfunction:: make_iterator(Iterator, Sentinel, Extra &&...)
61
+ .. doxygenfunction:: make_iterator(Type &, Extra&&...)
62
+
63
+ .. doxygenfunction:: make_key_iterator(Iterator, Sentinel, Extra &&...)
64
+ .. doxygenfunction:: make_key_iterator(Type &, Extra&&...)
65
+
66
+ .. doxygenfunction:: make_value_iterator(Iterator, Sentinel, Extra &&...)
67
+ .. doxygenfunction:: make_value_iterator(Type &, Extra&&...)
68
+
69
+ .. _extras:
70
+
71
+ Passing extra arguments to ``def`` or ``class_``
72
+ ================================================
73
+
74
+ .. doxygengroup:: annotations
75
+ :members:
76
+
77
+ Embedding the interpreter
78
+ =========================
79
+
80
+ .. doxygendefine:: PYBIND11_EMBEDDED_MODULE
81
+
82
+ .. doxygenfunction:: initialize_interpreter
83
+
84
+ .. doxygenfunction:: finalize_interpreter
85
+
86
+ .. doxygenclass:: scoped_interpreter
87
+
88
+ Redirecting C++ streams
89
+ =======================
90
+
91
+ .. doxygenclass:: scoped_ostream_redirect
92
+
93
+ .. doxygenclass:: scoped_estream_redirect
94
+
95
+ .. doxygenfunction:: add_ostream_redirect
96
+
97
+ Python built-in functions
98
+ =========================
99
+
100
+ .. doxygengroup:: python_builtins
101
+ :members:
102
+
103
+ Inheritance
104
+ ===========
105
+
106
+ See :doc:`/classes` and :doc:`/advanced/classes` for more detail.
107
+
108
+ .. doxygendefine:: PYBIND11_OVERRIDE
109
+
110
+ .. doxygendefine:: PYBIND11_OVERRIDE_PURE
111
+
112
+ .. doxygendefine:: PYBIND11_OVERRIDE_NAME
113
+
114
+ .. doxygendefine:: PYBIND11_OVERRIDE_PURE_NAME
115
+
116
+ .. doxygenfunction:: get_override
117
+
118
+ Exceptions
119
+ ==========
120
+
121
+ .. doxygenclass:: error_already_set
122
+ :members:
123
+
124
+ .. doxygenclass:: builtin_exception
125
+ :members:
126
+
127
+ Literals
128
+ ========
129
+
130
+ .. doxygennamespace:: literals
third-party/DPVO/DPViewer/pybind11/docs/release.rst ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ On version numbers
2
+ ^^^^^^^^^^^^^^^^^^
3
+
4
+ The two version numbers (C++ and Python) must match when combined (checked when
5
+ you build the PyPI package), and must be a valid `PEP 440
6
+ <https://www.python.org/dev/peps/pep-0440>`_ version when combined.
7
+
8
+ For example:
9
+
10
+ .. code-block:: C++
11
+
12
+ #define PYBIND11_VERSION_MAJOR X
13
+ #define PYBIND11_VERSION_MINOR Y
14
+ #define PYBIND11_VERSION_PATCH Z.dev1
15
+
16
+ For beta, ``PYBIND11_VERSION_PATCH`` should be ``Z.b1``. RC's can be ``Z.rc1``.
17
+ Always include the dot (even though PEP 440 allows it to be dropped). For a
18
+ final release, this must be a simple integer. There is also a HEX version of
19
+ the version just below.
20
+
21
+
22
+ To release a new version of pybind11:
23
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24
+
25
+ If you don't have nox, you should either use ``pipx run nox`` instead, or use
26
+ ``pipx install nox`` or ``brew install nox`` (Unix).
27
+
28
+ - Update the version number
29
+ - Update ``PYBIND11_VERSION_MAJOR`` etc. in
30
+ ``include/pybind11/detail/common.h``. PATCH should be a simple integer.
31
+ - Update the version HEX just below, as well.
32
+ - Update ``pybind11/_version.py`` (match above)
33
+ - Run ``nox -s tests_packaging`` to ensure this was done correctly.
34
+ - Ensure that all the information in ``setup.cfg`` is up-to-date, like
35
+ supported Python versions.
36
+ - Add release date in ``docs/changelog.rst``.
37
+ - Check to make sure
38
+ `needs-changelog <https://github.com/pybind/pybind11/pulls?q=is%3Apr+is%3Aclosed+label%3A%22needs+changelog%22>`_
39
+ issues are entered in the changelog (clear the label when done).
40
+ - ``git add`` and ``git commit``, ``git push``. **Ensure CI passes**. (If it
41
+ fails due to a known flake issue, either ignore or restart CI.)
42
+ - Add a release branch if this is a new minor version, or update the existing release branch if it is a patch version
43
+ - New branch: ``git checkout -b vX.Y``, ``git push -u origin vX.Y``
44
+ - Update branch: ``git checkout vX.Y``, ``git merge <release branch>``, ``git push``
45
+ - Update tags (optional; if you skip this, the GitHub release makes a
46
+ non-annotated tag for you)
47
+ - ``git tag -a vX.Y.Z -m 'vX.Y.Z release'``.
48
+ - ``git push --tags``.
49
+ - Update stable
50
+ - ``git checkout stable``
51
+ - ``git merge master``
52
+ - ``git push``
53
+ - Make a GitHub release (this shows up in the UI, sends new release
54
+ notifications to users watching releases, and also uploads PyPI packages).
55
+ (Note: if you do not use an existing tag, this creates a new lightweight tag
56
+ for you, so you could skip the above step.)
57
+ - GUI method: Under `releases <https://github.com/pybind/pybind11/releases>`_
58
+ click "Draft a new release" on the far right, fill in the tag name
59
+ (if you didn't tag above, it will be made here), fill in a release name
60
+ like "Version X.Y.Z", and copy-and-paste the markdown-formatted (!) changelog
61
+ into the description (usually ``cat docs/changelog.rst | pandoc -f rst -t gfm``).
62
+ Check "pre-release" if this is a beta/RC.
63
+ - CLI method: with ``gh`` installed, run ``gh release create vX.Y.Z -t "Version X.Y.Z"``
64
+ If this is a pre-release, add ``-p``.
65
+
66
+ - Get back to work
67
+ - Make sure you are on master, not somewhere else: ``git checkout master``
68
+ - Update version macros in ``include/pybind11/detail/common.h`` (set PATCH to
69
+ ``0.dev1`` and increment MINOR).
70
+ - Update ``_version.py`` to match
71
+ - Run ``nox -s tests_packaging`` to ensure this was done correctly.
72
+ - Add a spot for in-development updates in ``docs/changelog.rst``.
73
+ - ``git add``, ``git commit``, ``git push``
74
+
75
+ If a version branch is updated, remember to set PATCH to ``1.dev1``.
76
+
77
+ If you'd like to bump homebrew, run:
78
+
79
+ .. code-block:: console
80
+
81
+ brew bump-formula-pr --url https://github.com/pybind/pybind11/archive/vX.Y.Z.tar.gz
82
+
83
+ Conda-forge should automatically make a PR in a few hours, and automatically
84
+ merge it if there are no issues.
85
+
86
+
87
+ Manual packaging
88
+ ^^^^^^^^^^^^^^^^
89
+
90
+ If you need to manually upload releases, you can download the releases from the job artifacts and upload them with twine. You can also make the files locally (not recommended in general, as your local directory is more likely to be "dirty" and SDists love picking up random unrelated/hidden files); this is the procedure:
91
+
92
+ .. code-block:: bash
93
+
94
+ nox -s build
95
+ twine upload dist/*
96
+
97
+ This makes SDists and wheels, and the final line uploads them.
third-party/DPVO/DPViewer/pybind11/docs/requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ breathe==4.32.0
2
+ sphinx==4.4.0
3
+ sphinx_rtd_theme==1.0.0
4
+ sphinxcontrib-moderncmakedomain==3.21.4
5
+ sphinxcontrib-svg2pdfconverter==1.2.0
third-party/DPVO/DPViewer/pybind11/docs/upgrade.rst ADDED
@@ -0,0 +1,552 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Upgrade guide
2
+ #############
3
+
4
+ This is a companion guide to the :doc:`changelog`. While the changelog briefly
5
+ lists all of the new features, improvements and bug fixes, this upgrade guide
6
+ focuses only the subset which directly impacts your experience when upgrading
7
+ to a new version. But it goes into more detail. This includes things like
8
+ deprecated APIs and their replacements, build system changes, general code
9
+ modernization and other useful information.
10
+
11
+ .. _upgrade-guide-2.9:
12
+
13
+ v2.9
14
+ ====
15
+
16
+ * Any usage of the recently added ``py::make_simple_namespace`` should be
17
+ converted to using ``py::module_::import("types").attr("SimpleNamespace")``
18
+ instead.
19
+
20
+ * The use of ``_`` in custom type casters can now be replaced with the more
21
+ readable ``const_name`` instead. The old ``_`` shortcut has been retained
22
+ unless it is being used as a macro (like for gettext).
23
+
24
+
25
+ .. _upgrade-guide-2.7:
26
+
27
+ v2.7
28
+ ====
29
+
30
+ *Before* v2.7, ``py::str`` can hold ``PyUnicodeObject`` or ``PyBytesObject``,
31
+ and ``py::isinstance<str>()`` is ``true`` for both ``py::str`` and
32
+ ``py::bytes``. Starting with v2.7, ``py::str`` exclusively holds
33
+ ``PyUnicodeObject`` (`#2409 <https://github.com/pybind/pybind11/pull/2409>`_),
34
+ and ``py::isinstance<str>()`` is ``true`` only for ``py::str``. To help in
35
+ the transition of user code, the ``PYBIND11_STR_LEGACY_PERMISSIVE`` macro
36
+ is provided as an escape hatch to go back to the legacy behavior. This macro
37
+ will be removed in future releases. Two types of required fixes are expected
38
+ to be common:
39
+
40
+ * Accidental use of ``py::str`` instead of ``py::bytes``, masked by the legacy
41
+ behavior. These are probably very easy to fix, by changing from
42
+ ``py::str`` to ``py::bytes``.
43
+
44
+ * Reliance on py::isinstance<str>(obj) being ``true`` for
45
+ ``py::bytes``. This is likely to be easy to fix in most cases by adding
46
+ ``|| py::isinstance<bytes>(obj)``, but a fix may be more involved, e.g. if
47
+ ``py::isinstance<T>`` appears in a template. Such situations will require
48
+ careful review and custom fixes.
49
+
50
+
51
+ .. _upgrade-guide-2.6:
52
+
53
+ v2.6
54
+ ====
55
+
56
+ Usage of the ``PYBIND11_OVERLOAD*`` macros and ``get_overload`` function should
57
+ be replaced by ``PYBIND11_OVERRIDE*`` and ``get_override``. In the future, the
58
+ old macros may be deprecated and removed.
59
+
60
+ ``py::module`` has been renamed ``py::module_``, but a backward compatible
61
+ typedef has been included. This change was to avoid a language change in C++20
62
+ that requires unqualified ``module`` not be placed at the start of a logical
63
+ line. Qualified usage is unaffected and the typedef will remain unless the
64
+ C++ language rules change again.
65
+
66
+ The public constructors of ``py::module_`` have been deprecated. Use
67
+ ``PYBIND11_MODULE`` or ``module_::create_extension_module`` instead.
68
+
69
+ An error is now thrown when ``__init__`` is forgotten on subclasses. This was
70
+ incorrect before, but was not checked. Add a call to ``__init__`` if it is
71
+ missing.
72
+
73
+ A ``py::type_error`` is now thrown when casting to a subclass (like
74
+ ``py::bytes`` from ``py::object``) if the conversion is not valid. Make a valid
75
+ conversion instead.
76
+
77
+ The undocumented ``h.get_type()`` method has been deprecated and replaced by
78
+ ``py::type::of(h)``.
79
+
80
+ Enums now have a ``__str__`` method pre-defined; if you want to override it,
81
+ the simplest fix is to add the new ``py::prepend()`` tag when defining
82
+ ``"__str__"``.
83
+
84
+ If ``__eq__`` defined but not ``__hash__``, ``__hash__`` is now set to
85
+ ``None``, as in normal CPython. You should add ``__hash__`` if you intended the
86
+ class to be hashable, possibly using the new ``py::hash`` shortcut.
87
+
88
+ The constructors for ``py::array`` now always take signed integers for size,
89
+ for consistency. This may lead to compiler warnings on some systems. Cast to
90
+ ``py::ssize_t`` instead of ``std::size_t``.
91
+
92
+ The ``tools/clang`` submodule and ``tools/mkdoc.py`` have been moved to a
93
+ standalone package, `pybind11-mkdoc`_. If you were using those tools, please
94
+ use them via a pip install from the new location.
95
+
96
+ The ``pybind11`` package on PyPI no longer fills the wheel "headers" slot - if
97
+ you were using the headers from this slot, they are available by requesting the
98
+ ``global`` extra, that is, ``pip install "pybind11[global]"``. (Most users will
99
+ be unaffected, as the ``pybind11/include`` location is reported by ``python -m
100
+ pybind11 --includes`` and ``pybind11.get_include()`` is still correct and has
101
+ not changed since 2.5).
102
+
103
+ .. _pybind11-mkdoc: https://github.com/pybind/pybind11-mkdoc
104
+
105
+ CMake support:
106
+ --------------
107
+
108
+ The minimum required version of CMake is now 3.4. Several details of the CMake
109
+ support have been deprecated; warnings will be shown if you need to change
110
+ something. The changes are:
111
+
112
+ * ``PYBIND11_CPP_STANDARD=<platform-flag>`` is deprecated, please use
113
+ ``CMAKE_CXX_STANDARD=<number>`` instead, or any other valid CMake CXX or CUDA
114
+ standard selection method, like ``target_compile_features``.
115
+
116
+ * If you do not request a standard, pybind11 targets will compile with the
117
+ compiler default, but not less than C++11, instead of forcing C++14 always.
118
+ If you depend on the old behavior, please use ``set(CMAKE_CXX_STANDARD 14 CACHE STRING "")``
119
+ instead.
120
+
121
+ * Direct ``pybind11::module`` usage should always be accompanied by at least
122
+ ``set(CMAKE_CXX_VISIBILITY_PRESET hidden)`` or similar - it used to try to
123
+ manually force this compiler flag (but not correctly on all compilers or with
124
+ CUDA).
125
+
126
+ * ``pybind11_add_module``'s ``SYSTEM`` argument is deprecated and does nothing;
127
+ linking now behaves like other imported libraries consistently in both
128
+ config and submodule mode, and behaves like a ``SYSTEM`` library by
129
+ default.
130
+
131
+ * If ``PYTHON_EXECUTABLE`` is not set, virtual environments (``venv``,
132
+ ``virtualenv``, and ``conda``) are prioritized over the standard search
133
+ (similar to the new FindPython mode).
134
+
135
+ In addition, the following changes may be of interest:
136
+
137
+ * ``CMAKE_INTERPROCEDURAL_OPTIMIZATION`` will be respected by
138
+ ``pybind11_add_module`` if set instead of linking to ``pybind11::lto`` or
139
+ ``pybind11::thin_lto``.
140
+
141
+ * Using ``find_package(Python COMPONENTS Interpreter Development)`` before
142
+ pybind11 will cause pybind11 to use the new Python mechanisms instead of its
143
+ own custom search, based on a patched version of classic ``FindPythonInterp``
144
+ / ``FindPythonLibs``. In the future, this may become the default. A recent
145
+ (3.15+ or 3.18.2+) version of CMake is recommended.
146
+
147
+
148
+
149
+ v2.5
150
+ ====
151
+
152
+ The Python package now includes the headers as data in the package itself, as
153
+ well as in the "headers" wheel slot. ``pybind11 --includes`` and
154
+ ``pybind11.get_include()`` report the new location, which is always correct
155
+ regardless of how pybind11 was installed, making the old ``user=`` argument
156
+ meaningless. If you are not using the function to get the location already, you
157
+ are encouraged to switch to the package location.
158
+
159
+
160
+ v2.2
161
+ ====
162
+
163
+ Deprecation of the ``PYBIND11_PLUGIN`` macro
164
+ --------------------------------------------
165
+
166
+ ``PYBIND11_MODULE`` is now the preferred way to create module entry points.
167
+ The old macro emits a compile-time deprecation warning.
168
+
169
+ .. code-block:: cpp
170
+
171
+ // old
172
+ PYBIND11_PLUGIN(example) {
173
+ py::module m("example", "documentation string");
174
+
175
+ m.def("add", [](int a, int b) { return a + b; });
176
+
177
+ return m.ptr();
178
+ }
179
+
180
+ // new
181
+ PYBIND11_MODULE(example, m) {
182
+ m.doc() = "documentation string"; // optional
183
+
184
+ m.def("add", [](int a, int b) { return a + b; });
185
+ }
186
+
187
+
188
+ New API for defining custom constructors and pickling functions
189
+ ---------------------------------------------------------------
190
+
191
+ The old placement-new custom constructors have been deprecated. The new approach
192
+ uses ``py::init()`` and factory functions to greatly improve type safety.
193
+
194
+ Placement-new can be called accidentally with an incompatible type (without any
195
+ compiler errors or warnings), or it can initialize the same object multiple times
196
+ if not careful with the Python-side ``__init__`` calls. The new-style custom
197
+ constructors prevent such mistakes. See :ref:`custom_constructors` for details.
198
+
199
+ .. code-block:: cpp
200
+
201
+ // old -- deprecated (runtime warning shown only in debug mode)
202
+ py::class<Foo>(m, "Foo")
203
+ .def("__init__", [](Foo &self, ...) {
204
+ new (&self) Foo(...); // uses placement-new
205
+ });
206
+
207
+ // new
208
+ py::class<Foo>(m, "Foo")
209
+ .def(py::init([](...) { // Note: no `self` argument
210
+ return new Foo(...); // return by raw pointer
211
+ // or: return std::make_unique<Foo>(...); // return by holder
212
+ // or: return Foo(...); // return by value (move constructor)
213
+ }));
214
+
215
+ Mirroring the custom constructor changes, ``py::pickle()`` is now the preferred
216
+ way to get and set object state. See :ref:`pickling` for details.
217
+
218
+ .. code-block:: cpp
219
+
220
+ // old -- deprecated (runtime warning shown only in debug mode)
221
+ py::class<Foo>(m, "Foo")
222
+ ...
223
+ .def("__getstate__", [](const Foo &self) {
224
+ return py::make_tuple(self.value1(), self.value2(), ...);
225
+ })
226
+ .def("__setstate__", [](Foo &self, py::tuple t) {
227
+ new (&self) Foo(t[0].cast<std::string>(), ...);
228
+ });
229
+
230
+ // new
231
+ py::class<Foo>(m, "Foo")
232
+ ...
233
+ .def(py::pickle(
234
+ [](const Foo &self) { // __getstate__
235
+ return py::make_tuple(self.value1(), self.value2(), ...); // unchanged
236
+ },
237
+ [](py::tuple t) { // __setstate__, note: no `self` argument
238
+ return new Foo(t[0].cast<std::string>(), ...);
239
+ // or: return std::make_unique<Foo>(...); // return by holder
240
+ // or: return Foo(...); // return by value (move constructor)
241
+ }
242
+ ));
243
+
244
+ For both the constructors and pickling, warnings are shown at module
245
+ initialization time (on import, not when the functions are called).
246
+ They're only visible when compiled in debug mode. Sample warning:
247
+
248
+ .. code-block:: none
249
+
250
+ pybind11-bound class 'mymodule.Foo' is using an old-style placement-new '__init__'
251
+ which has been deprecated. See the upgrade guide in pybind11's docs.
252
+
253
+
254
+ Stricter enforcement of hidden symbol visibility for pybind11 modules
255
+ ---------------------------------------------------------------------
256
+
257
+ pybind11 now tries to actively enforce hidden symbol visibility for modules.
258
+ If you're using either one of pybind11's :doc:`CMake or Python build systems
259
+ <compiling>` (the two example repositories) and you haven't been exporting any
260
+ symbols, there's nothing to be concerned about. All the changes have been done
261
+ transparently in the background. If you were building manually or relied on
262
+ specific default visibility, read on.
263
+
264
+ Setting default symbol visibility to *hidden* has always been recommended for
265
+ pybind11 (see :ref:`faq:symhidden`). On Linux and macOS, hidden symbol
266
+ visibility (in conjunction with the ``strip`` utility) yields much smaller
267
+ module binaries. `CPython's extension docs`_ also recommend hiding symbols
268
+ by default, with the goal of avoiding symbol name clashes between modules.
269
+ Starting with v2.2, pybind11 enforces this more strictly: (1) by declaring
270
+ all symbols inside the ``pybind11`` namespace as hidden and (2) by including
271
+ the ``-fvisibility=hidden`` flag on Linux and macOS (only for extension
272
+ modules, not for embedding the interpreter).
273
+
274
+ .. _CPython's extension docs: https://docs.python.org/3/extending/extending.html#providing-a-c-api-for-an-extension-module
275
+
276
+ The namespace-scope hidden visibility is done automatically in pybind11's
277
+ headers and it's generally transparent to users. It ensures that:
278
+
279
+ * Modules compiled with different pybind11 versions don't clash with each other.
280
+
281
+ * Some new features, like ``py::module_local`` bindings, can work as intended.
282
+
283
+ The ``-fvisibility=hidden`` flag applies the same visibility to user bindings
284
+ outside of the ``pybind11`` namespace. It's now set automatic by pybind11's
285
+ CMake and Python build systems, but this needs to be done manually by users
286
+ of other build systems. Adding this flag:
287
+
288
+ * Minimizes the chances of symbol conflicts between modules. E.g. if two
289
+ unrelated modules were statically linked to different (ABI-incompatible)
290
+ versions of the same third-party library, a symbol clash would be likely
291
+ (and would end with unpredictable results).
292
+
293
+ * Produces smaller binaries on Linux and macOS, as pointed out previously.
294
+
295
+ Within pybind11's CMake build system, ``pybind11_add_module`` has always been
296
+ setting the ``-fvisibility=hidden`` flag in release mode. From now on, it's
297
+ being applied unconditionally, even in debug mode and it can no longer be opted
298
+ out of with the ``NO_EXTRAS`` option. The ``pybind11::module`` target now also
299
+ adds this flag to its interface. The ``pybind11::embed`` target is unchanged.
300
+
301
+ The most significant change here is for the ``pybind11::module`` target. If you
302
+ were previously relying on default visibility, i.e. if your Python module was
303
+ doubling as a shared library with dependents, you'll need to either export
304
+ symbols manually (recommended for cross-platform libraries) or factor out the
305
+ shared library (and have the Python module link to it like the other
306
+ dependents). As a temporary workaround, you can also restore default visibility
307
+ using the CMake code below, but this is not recommended in the long run:
308
+
309
+ .. code-block:: cmake
310
+
311
+ target_link_libraries(mymodule PRIVATE pybind11::module)
312
+
313
+ add_library(restore_default_visibility INTERFACE)
314
+ target_compile_options(restore_default_visibility INTERFACE -fvisibility=default)
315
+ target_link_libraries(mymodule PRIVATE restore_default_visibility)
316
+
317
+
318
+ Local STL container bindings
319
+ ----------------------------
320
+
321
+ Previous pybind11 versions could only bind types globally -- all pybind11
322
+ modules, even unrelated ones, would have access to the same exported types.
323
+ However, this would also result in a conflict if two modules exported the
324
+ same C++ type, which is especially problematic for very common types, e.g.
325
+ ``std::vector<int>``. :ref:`module_local` were added to resolve this (see
326
+ that section for a complete usage guide).
327
+
328
+ ``py::class_`` still defaults to global bindings (because these types are
329
+ usually unique across modules), however in order to avoid clashes of opaque
330
+ types, ``py::bind_vector`` and ``py::bind_map`` will now bind STL containers
331
+ as ``py::module_local`` if their elements are: builtins (``int``, ``float``,
332
+ etc.), not bound using ``py::class_``, or bound as ``py::module_local``. For
333
+ example, this change allows multiple modules to bind ``std::vector<int>``
334
+ without causing conflicts. See :ref:`stl_bind` for more details.
335
+
336
+ When upgrading to this version, if you have multiple modules which depend on
337
+ a single global binding of an STL container, note that all modules can still
338
+ accept foreign ``py::module_local`` types in the direction of Python-to-C++.
339
+ The locality only affects the C++-to-Python direction. If this is needed in
340
+ multiple modules, you'll need to either:
341
+
342
+ * Add a copy of the same STL binding to all of the modules which need it.
343
+
344
+ * Restore the global status of that single binding by marking it
345
+ ``py::module_local(false)``.
346
+
347
+ The latter is an easy workaround, but in the long run it would be best to
348
+ localize all common type bindings in order to avoid conflicts with
349
+ third-party modules.
350
+
351
+
352
+ Negative strides for Python buffer objects and numpy arrays
353
+ -----------------------------------------------------------
354
+
355
+ Support for negative strides required changing the integer type from unsigned
356
+ to signed in the interfaces of ``py::buffer_info`` and ``py::array``. If you
357
+ have compiler warnings enabled, you may notice some new conversion warnings
358
+ after upgrading. These can be resolved using ``static_cast``.
359
+
360
+
361
+ Deprecation of some ``py::object`` APIs
362
+ ---------------------------------------
363
+
364
+ To compare ``py::object`` instances by pointer, you should now use
365
+ ``obj1.is(obj2)`` which is equivalent to ``obj1 is obj2`` in Python.
366
+ Previously, pybind11 used ``operator==`` for this (``obj1 == obj2``), but
367
+ that could be confusing and is now deprecated (so that it can eventually
368
+ be replaced with proper rich object comparison in a future release).
369
+
370
+ For classes which inherit from ``py::object``, ``borrowed`` and ``stolen``
371
+ were previously available as protected constructor tags. Now the types
372
+ should be used directly instead: ``borrowed_t{}`` and ``stolen_t{}``
373
+ (`#771 <https://github.com/pybind/pybind11/pull/771>`_).
374
+
375
+
376
+ Stricter compile-time error checking
377
+ ------------------------------------
378
+
379
+ Some error checks have been moved from run time to compile time. Notably,
380
+ automatic conversion of ``std::shared_ptr<T>`` is not possible when ``T`` is
381
+ not directly registered with ``py::class_<T>`` (e.g. ``std::shared_ptr<int>``
382
+ or ``std::shared_ptr<std::vector<T>>`` are not automatically convertible).
383
+ Attempting to bind a function with such arguments now results in a compile-time
384
+ error instead of waiting to fail at run time.
385
+
386
+ ``py::init<...>()`` constructor definitions are also stricter and now prevent
387
+ bindings which could cause unexpected behavior:
388
+
389
+ .. code-block:: cpp
390
+
391
+ struct Example {
392
+ Example(int &);
393
+ };
394
+
395
+ py::class_<Example>(m, "Example")
396
+ .def(py::init<int &>()); // OK, exact match
397
+ // .def(py::init<int>()); // compile-time error, mismatch
398
+
399
+ A non-``const`` lvalue reference is not allowed to bind to an rvalue. However,
400
+ note that a constructor taking ``const T &`` can still be registered using
401
+ ``py::init<T>()`` because a ``const`` lvalue reference can bind to an rvalue.
402
+
403
+ v2.1
404
+ ====
405
+
406
+ Minimum compiler versions are enforced at compile time
407
+ ------------------------------------------------------
408
+
409
+ The minimums also apply to v2.0 but the check is now explicit and a compile-time
410
+ error is raised if the compiler does not meet the requirements:
411
+
412
+ * GCC >= 4.8
413
+ * clang >= 3.3 (appleclang >= 5.0)
414
+ * MSVC >= 2015u3
415
+ * Intel C++ >= 15.0
416
+
417
+
418
+ The ``py::metaclass`` attribute is not required for static properties
419
+ ---------------------------------------------------------------------
420
+
421
+ Binding classes with static properties is now possible by default. The
422
+ zero-parameter version of ``py::metaclass()`` is deprecated. However, a new
423
+ one-parameter ``py::metaclass(python_type)`` version was added for rare
424
+ cases when a custom metaclass is needed to override pybind11's default.
425
+
426
+ .. code-block:: cpp
427
+
428
+ // old -- emits a deprecation warning
429
+ py::class_<Foo>(m, "Foo", py::metaclass())
430
+ .def_property_readonly_static("foo", ...);
431
+
432
+ // new -- static properties work without the attribute
433
+ py::class_<Foo>(m, "Foo")
434
+ .def_property_readonly_static("foo", ...);
435
+
436
+ // new -- advanced feature, override pybind11's default metaclass
437
+ py::class_<Bar>(m, "Bar", py::metaclass(custom_python_type))
438
+ ...
439
+
440
+
441
+ v2.0
442
+ ====
443
+
444
+ Breaking changes in ``py::class_``
445
+ ----------------------------------
446
+
447
+ These changes were necessary to make type definitions in pybind11
448
+ future-proof, to support PyPy via its ``cpyext`` mechanism (`#527
449
+ <https://github.com/pybind/pybind11/pull/527>`_), and to improve efficiency
450
+ (`rev. 86d825 <https://github.com/pybind/pybind11/commit/86d825>`_).
451
+
452
+ 1. Declarations of types that provide access via the buffer protocol must
453
+ now include the ``py::buffer_protocol()`` annotation as an argument to
454
+ the ``py::class_`` constructor.
455
+
456
+ .. code-block:: cpp
457
+
458
+ py::class_<Matrix>("Matrix", py::buffer_protocol())
459
+ .def(py::init<...>())
460
+ .def_buffer(...);
461
+
462
+ 2. Classes which include static properties (e.g. ``def_readwrite_static()``)
463
+ must now include the ``py::metaclass()`` attribute. Note: this requirement
464
+ has since been removed in v2.1. If you're upgrading from 1.x, it's
465
+ recommended to skip directly to v2.1 or newer.
466
+
467
+ 3. This version of pybind11 uses a redesigned mechanism for instantiating
468
+ trampoline classes that are used to override virtual methods from within
469
+ Python. This led to the following user-visible syntax change:
470
+
471
+ .. code-block:: cpp
472
+
473
+ // old v1.x syntax
474
+ py::class_<TrampolineClass>("MyClass")
475
+ .alias<MyClass>()
476
+ ...
477
+
478
+ // new v2.x syntax
479
+ py::class_<MyClass, TrampolineClass>("MyClass")
480
+ ...
481
+
482
+ Importantly, both the original and the trampoline class are now specified
483
+ as arguments to the ``py::class_`` template, and the ``alias<..>()`` call
484
+ is gone. The new scheme has zero overhead in cases when Python doesn't
485
+ override any functions of the underlying C++ class.
486
+ `rev. 86d825 <https://github.com/pybind/pybind11/commit/86d825>`_.
487
+
488
+ The class type must be the first template argument given to ``py::class_``
489
+ while the trampoline can be mixed in arbitrary order with other arguments
490
+ (see the following section).
491
+
492
+
493
+ Deprecation of the ``py::base<T>()`` attribute
494
+ ----------------------------------------------
495
+
496
+ ``py::base<T>()`` was deprecated in favor of specifying ``T`` as a template
497
+ argument to ``py::class_``. This new syntax also supports multiple inheritance.
498
+ Note that, while the type being exported must be the first argument in the
499
+ ``py::class_<Class, ...>`` template, the order of the following types (bases,
500
+ holder and/or trampoline) is not important.
501
+
502
+ .. code-block:: cpp
503
+
504
+ // old v1.x
505
+ py::class_<Derived>("Derived", py::base<Base>());
506
+
507
+ // new v2.x
508
+ py::class_<Derived, Base>("Derived");
509
+
510
+ // new -- multiple inheritance
511
+ py::class_<Derived, Base1, Base2>("Derived");
512
+
513
+ // new -- apart from `Derived` the argument order can be arbitrary
514
+ py::class_<Derived, Base1, Holder, Base2, Trampoline>("Derived");
515
+
516
+
517
+ Out-of-the-box support for ``std::shared_ptr``
518
+ ----------------------------------------------
519
+
520
+ The relevant type caster is now built in, so it's no longer necessary to
521
+ include a declaration of the form:
522
+
523
+ .. code-block:: cpp
524
+
525
+ PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>)
526
+
527
+ Continuing to do so won't cause an error or even a deprecation warning,
528
+ but it's completely redundant.
529
+
530
+
531
+ Deprecation of a few ``py::object`` APIs
532
+ ----------------------------------------
533
+
534
+ All of the old-style calls emit deprecation warnings.
535
+
536
+ +---------------------------------------+---------------------------------------------+
537
+ | Old syntax | New syntax |
538
+ +=======================================+=============================================+
539
+ | ``obj.call(args...)`` | ``obj(args...)`` |
540
+ +---------------------------------------+---------------------------------------------+
541
+ | ``obj.str()`` | ``py::str(obj)`` |
542
+ +---------------------------------------+---------------------------------------------+
543
+ | ``auto l = py::list(obj); l.check()`` | ``py::isinstance<py::list>(obj)`` |
544
+ +---------------------------------------+---------------------------------------------+
545
+ | ``py::object(ptr, true)`` | ``py::reinterpret_borrow<py::object>(ptr)`` |
546
+ +---------------------------------------+---------------------------------------------+
547
+ | ``py::object(ptr, false)`` | ``py::reinterpret_steal<py::object>(ptr)`` |
548
+ +---------------------------------------+---------------------------------------------+
549
+ | ``if (obj.attr("foo"))`` | ``if (py::hasattr(obj, "foo"))`` |
550
+ +---------------------------------------+---------------------------------------------+
551
+ | ``if (obj["bar"])`` | ``if (obj.contains("bar"))`` |
552
+ +---------------------------------------+---------------------------------------------+
third-party/DPVO/DPViewer/pybind11/include/pybind11/attr.h ADDED
@@ -0,0 +1,676 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ pybind11/attr.h: Infrastructure for processing custom
3
+ type and function attributes
4
+
5
+ Copyright (c) 2016 Wenzel Jakob <[email protected]>
6
+
7
+ All rights reserved. Use of this source code is governed by a
8
+ BSD-style license that can be found in the LICENSE file.
9
+ */
10
+
11
+ #pragma once
12
+
13
+ #include "detail/common.h"
14
+ #include "cast.h"
15
+
16
+ #include <functional>
17
+
18
+ PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
19
+
20
+ /// \addtogroup annotations
21
+ /// @{
22
+
23
+ /// Annotation for methods
24
+ struct is_method {
25
+ handle class_;
26
+ explicit is_method(const handle &c) : class_(c) {}
27
+ };
28
+
29
+ /// Annotation for operators
30
+ struct is_operator {};
31
+
32
+ /// Annotation for classes that cannot be subclassed
33
+ struct is_final {};
34
+
35
+ /// Annotation for parent scope
36
+ struct scope {
37
+ handle value;
38
+ explicit scope(const handle &s) : value(s) {}
39
+ };
40
+
41
+ /// Annotation for documentation
42
+ struct doc {
43
+ const char *value;
44
+ explicit doc(const char *value) : value(value) {}
45
+ };
46
+
47
+ /// Annotation for function names
48
+ struct name {
49
+ const char *value;
50
+ explicit name(const char *value) : value(value) {}
51
+ };
52
+
53
+ /// Annotation indicating that a function is an overload associated with a given "sibling"
54
+ struct sibling {
55
+ handle value;
56
+ explicit sibling(const handle &value) : value(value.ptr()) {}
57
+ };
58
+
59
+ /// Annotation indicating that a class derives from another given type
60
+ template <typename T>
61
+ struct base {
62
+
63
+ PYBIND11_DEPRECATED(
64
+ "base<T>() was deprecated in favor of specifying 'T' as a template argument to class_")
65
+ base() = default;
66
+ };
67
+
68
+ /// Keep patient alive while nurse lives
69
+ template <size_t Nurse, size_t Patient>
70
+ struct keep_alive {};
71
+
72
+ /// Annotation indicating that a class is involved in a multiple inheritance relationship
73
+ struct multiple_inheritance {};
74
+
75
+ /// Annotation which enables dynamic attributes, i.e. adds `__dict__` to a class
76
+ struct dynamic_attr {};
77
+
78
+ /// Annotation which enables the buffer protocol for a type
79
+ struct buffer_protocol {};
80
+
81
+ /// Annotation which requests that a special metaclass is created for a type
82
+ struct metaclass {
83
+ handle value;
84
+
85
+ PYBIND11_DEPRECATED("py::metaclass() is no longer required. It's turned on by default now.")
86
+ metaclass() = default;
87
+
88
+ /// Override pybind11's default metaclass
89
+ explicit metaclass(handle value) : value(value) {}
90
+ };
91
+
92
+ /// Specifies a custom callback with signature `void (PyHeapTypeObject*)` that
93
+ /// may be used to customize the Python type.
94
+ ///
95
+ /// The callback is invoked immediately before `PyType_Ready`.
96
+ ///
97
+ /// Note: This is an advanced interface, and uses of it may require changes to
98
+ /// work with later versions of pybind11. You may wish to consult the
99
+ /// implementation of `make_new_python_type` in `detail/classes.h` to understand
100
+ /// the context in which the callback will be run.
101
+ struct custom_type_setup {
102
+ using callback = std::function<void(PyHeapTypeObject *heap_type)>;
103
+
104
+ explicit custom_type_setup(callback value) : value(std::move(value)) {}
105
+
106
+ callback value;
107
+ };
108
+
109
+ /// Annotation that marks a class as local to the module:
110
+ struct module_local {
111
+ const bool value;
112
+ constexpr explicit module_local(bool v = true) : value(v) {}
113
+ };
114
+
115
+ /// Annotation to mark enums as an arithmetic type
116
+ struct arithmetic {};
117
+
118
+ /// Mark a function for addition at the beginning of the existing overload chain instead of the end
119
+ struct prepend {};
120
+
121
+ /** \rst
122
+ A call policy which places one or more guard variables (``Ts...``) around the function call.
123
+
124
+ For example, this definition:
125
+
126
+ .. code-block:: cpp
127
+
128
+ m.def("foo", foo, py::call_guard<T>());
129
+
130
+ is equivalent to the following pseudocode:
131
+
132
+ .. code-block:: cpp
133
+
134
+ m.def("foo", [](args...) {
135
+ T scope_guard;
136
+ return foo(args...); // forwarded arguments
137
+ });
138
+ \endrst */
139
+ template <typename... Ts>
140
+ struct call_guard;
141
+
142
+ template <>
143
+ struct call_guard<> {
144
+ using type = detail::void_type;
145
+ };
146
+
147
+ template <typename T>
148
+ struct call_guard<T> {
149
+ static_assert(std::is_default_constructible<T>::value,
150
+ "The guard type must be default constructible");
151
+
152
+ using type = T;
153
+ };
154
+
155
+ template <typename T, typename... Ts>
156
+ struct call_guard<T, Ts...> {
157
+ struct type {
158
+ T guard{}; // Compose multiple guard types with left-to-right default-constructor order
159
+ typename call_guard<Ts...>::type next{};
160
+ };
161
+ };
162
+
163
+ /// @} annotations
164
+
165
+ PYBIND11_NAMESPACE_BEGIN(detail)
166
+ /* Forward declarations */
167
+ enum op_id : int;
168
+ enum op_type : int;
169
+ struct undefined_t;
170
+ template <op_id id, op_type ot, typename L = undefined_t, typename R = undefined_t>
171
+ struct op_;
172
+ void keep_alive_impl(size_t Nurse, size_t Patient, function_call &call, handle ret);
173
+
174
+ /// Internal data structure which holds metadata about a keyword argument
175
+ struct argument_record {
176
+ const char *name; ///< Argument name
177
+ const char *descr; ///< Human-readable version of the argument value
178
+ handle value; ///< Associated Python object
179
+ bool convert : 1; ///< True if the argument is allowed to convert when loading
180
+ bool none : 1; ///< True if None is allowed when loading
181
+
182
+ argument_record(const char *name, const char *descr, handle value, bool convert, bool none)
183
+ : name(name), descr(descr), value(value), convert(convert), none(none) {}
184
+ };
185
+
186
+ /// Internal data structure which holds metadata about a bound function (signature, overloads,
187
+ /// etc.)
188
+ struct function_record {
189
+ function_record()
190
+ : is_constructor(false), is_new_style_constructor(false), is_stateless(false),
191
+ is_operator(false), is_method(false), has_args(false), has_kwargs(false),
192
+ prepend(false) {}
193
+
194
+ /// Function name
195
+ char *name = nullptr; /* why no C++ strings? They generate heavier code.. */
196
+
197
+ // User-specified documentation string
198
+ char *doc = nullptr;
199
+
200
+ /// Human-readable version of the function signature
201
+ char *signature = nullptr;
202
+
203
+ /// List of registered keyword arguments
204
+ std::vector<argument_record> args;
205
+
206
+ /// Pointer to lambda function which converts arguments and performs the actual call
207
+ handle (*impl)(function_call &) = nullptr;
208
+
209
+ /// Storage for the wrapped function pointer and captured data, if any
210
+ void *data[3] = {};
211
+
212
+ /// Pointer to custom destructor for 'data' (if needed)
213
+ void (*free_data)(function_record *ptr) = nullptr;
214
+
215
+ /// Return value policy associated with this function
216
+ return_value_policy policy = return_value_policy::automatic;
217
+
218
+ /// True if name == '__init__'
219
+ bool is_constructor : 1;
220
+
221
+ /// True if this is a new-style `__init__` defined in `detail/init.h`
222
+ bool is_new_style_constructor : 1;
223
+
224
+ /// True if this is a stateless function pointer
225
+ bool is_stateless : 1;
226
+
227
+ /// True if this is an operator (__add__), etc.
228
+ bool is_operator : 1;
229
+
230
+ /// True if this is a method
231
+ bool is_method : 1;
232
+
233
+ /// True if the function has a '*args' argument
234
+ bool has_args : 1;
235
+
236
+ /// True if the function has a '**kwargs' argument
237
+ bool has_kwargs : 1;
238
+
239
+ /// True if this function is to be inserted at the beginning of the overload resolution chain
240
+ bool prepend : 1;
241
+
242
+ /// Number of arguments (including py::args and/or py::kwargs, if present)
243
+ std::uint16_t nargs;
244
+
245
+ /// Number of leading positional arguments, which are terminated by a py::args or py::kwargs
246
+ /// argument or by a py::kw_only annotation.
247
+ std::uint16_t nargs_pos = 0;
248
+
249
+ /// Number of leading arguments (counted in `nargs`) that are positional-only
250
+ std::uint16_t nargs_pos_only = 0;
251
+
252
+ /// Python method object
253
+ PyMethodDef *def = nullptr;
254
+
255
+ /// Python handle to the parent scope (a class or a module)
256
+ handle scope;
257
+
258
+ /// Python handle to the sibling function representing an overload chain
259
+ handle sibling;
260
+
261
+ /// Pointer to next overload
262
+ function_record *next = nullptr;
263
+ };
264
+
265
+ /// Special data structure which (temporarily) holds metadata about a bound class
266
+ struct type_record {
267
+ PYBIND11_NOINLINE type_record()
268
+ : multiple_inheritance(false), dynamic_attr(false), buffer_protocol(false),
269
+ default_holder(true), module_local(false), is_final(false) {}
270
+
271
+ /// Handle to the parent scope
272
+ handle scope;
273
+
274
+ /// Name of the class
275
+ const char *name = nullptr;
276
+
277
+ // Pointer to RTTI type_info data structure
278
+ const std::type_info *type = nullptr;
279
+
280
+ /// How large is the underlying C++ type?
281
+ size_t type_size = 0;
282
+
283
+ /// What is the alignment of the underlying C++ type?
284
+ size_t type_align = 0;
285
+
286
+ /// How large is the type's holder?
287
+ size_t holder_size = 0;
288
+
289
+ /// The global operator new can be overridden with a class-specific variant
290
+ void *(*operator_new)(size_t) = nullptr;
291
+
292
+ /// Function pointer to class_<..>::init_instance
293
+ void (*init_instance)(instance *, const void *) = nullptr;
294
+
295
+ /// Function pointer to class_<..>::dealloc
296
+ void (*dealloc)(detail::value_and_holder &) = nullptr;
297
+
298
+ /// List of base classes of the newly created type
299
+ list bases;
300
+
301
+ /// Optional docstring
302
+ const char *doc = nullptr;
303
+
304
+ /// Custom metaclass (optional)
305
+ handle metaclass;
306
+
307
+ /// Custom type setup.
308
+ custom_type_setup::callback custom_type_setup_callback;
309
+
310
+ /// Multiple inheritance marker
311
+ bool multiple_inheritance : 1;
312
+
313
+ /// Does the class manage a __dict__?
314
+ bool dynamic_attr : 1;
315
+
316
+ /// Does the class implement the buffer protocol?
317
+ bool buffer_protocol : 1;
318
+
319
+ /// Is the default (unique_ptr) holder type used?
320
+ bool default_holder : 1;
321
+
322
+ /// Is the class definition local to the module shared object?
323
+ bool module_local : 1;
324
+
325
+ /// Is the class inheritable from python classes?
326
+ bool is_final : 1;
327
+
328
+ PYBIND11_NOINLINE void add_base(const std::type_info &base, void *(*caster)(void *) ) {
329
+ auto *base_info = detail::get_type_info(base, false);
330
+ if (!base_info) {
331
+ std::string tname(base.name());
332
+ detail::clean_type_id(tname);
333
+ pybind11_fail("generic_type: type \"" + std::string(name)
334
+ + "\" referenced unknown base type \"" + tname + "\"");
335
+ }
336
+
337
+ if (default_holder != base_info->default_holder) {
338
+ std::string tname(base.name());
339
+ detail::clean_type_id(tname);
340
+ pybind11_fail("generic_type: type \"" + std::string(name) + "\" "
341
+ + (default_holder ? "does not have" : "has")
342
+ + " a non-default holder type while its base \"" + tname + "\" "
343
+ + (base_info->default_holder ? "does not" : "does"));
344
+ }
345
+
346
+ bases.append((PyObject *) base_info->type);
347
+
348
+ if (base_info->type->tp_dictoffset != 0) {
349
+ dynamic_attr = true;
350
+ }
351
+
352
+ if (caster) {
353
+ base_info->implicit_casts.emplace_back(type, caster);
354
+ }
355
+ }
356
+ };
357
+
358
+ inline function_call::function_call(const function_record &f, handle p) : func(f), parent(p) {
359
+ args.reserve(f.nargs);
360
+ args_convert.reserve(f.nargs);
361
+ }
362
+
363
+ /// Tag for a new-style `__init__` defined in `detail/init.h`
364
+ struct is_new_style_constructor {};
365
+
366
+ /**
367
+ * Partial template specializations to process custom attributes provided to
368
+ * cpp_function_ and class_. These are either used to initialize the respective
369
+ * fields in the type_record and function_record data structures or executed at
370
+ * runtime to deal with custom call policies (e.g. keep_alive).
371
+ */
372
+ template <typename T, typename SFINAE = void>
373
+ struct process_attribute;
374
+
375
+ template <typename T>
376
+ struct process_attribute_default {
377
+ /// Default implementation: do nothing
378
+ static void init(const T &, function_record *) {}
379
+ static void init(const T &, type_record *) {}
380
+ static void precall(function_call &) {}
381
+ static void postcall(function_call &, handle) {}
382
+ };
383
+
384
+ /// Process an attribute specifying the function's name
385
+ template <>
386
+ struct process_attribute<name> : process_attribute_default<name> {
387
+ static void init(const name &n, function_record *r) { r->name = const_cast<char *>(n.value); }
388
+ };
389
+
390
+ /// Process an attribute specifying the function's docstring
391
+ template <>
392
+ struct process_attribute<doc> : process_attribute_default<doc> {
393
+ static void init(const doc &n, function_record *r) { r->doc = const_cast<char *>(n.value); }
394
+ };
395
+
396
+ /// Process an attribute specifying the function's docstring (provided as a C-style string)
397
+ template <>
398
+ struct process_attribute<const char *> : process_attribute_default<const char *> {
399
+ static void init(const char *d, function_record *r) { r->doc = const_cast<char *>(d); }
400
+ static void init(const char *d, type_record *r) { r->doc = const_cast<char *>(d); }
401
+ };
402
+ template <>
403
+ struct process_attribute<char *> : process_attribute<const char *> {};
404
+
405
+ /// Process an attribute indicating the function's return value policy
406
+ template <>
407
+ struct process_attribute<return_value_policy> : process_attribute_default<return_value_policy> {
408
+ static void init(const return_value_policy &p, function_record *r) { r->policy = p; }
409
+ };
410
+
411
+ /// Process an attribute which indicates that this is an overloaded function associated with a
412
+ /// given sibling
413
+ template <>
414
+ struct process_attribute<sibling> : process_attribute_default<sibling> {
415
+ static void init(const sibling &s, function_record *r) { r->sibling = s.value; }
416
+ };
417
+
418
+ /// Process an attribute which indicates that this function is a method
419
+ template <>
420
+ struct process_attribute<is_method> : process_attribute_default<is_method> {
421
+ static void init(const is_method &s, function_record *r) {
422
+ r->is_method = true;
423
+ r->scope = s.class_;
424
+ }
425
+ };
426
+
427
+ /// Process an attribute which indicates the parent scope of a method
428
+ template <>
429
+ struct process_attribute<scope> : process_attribute_default<scope> {
430
+ static void init(const scope &s, function_record *r) { r->scope = s.value; }
431
+ };
432
+
433
+ /// Process an attribute which indicates that this function is an operator
434
+ template <>
435
+ struct process_attribute<is_operator> : process_attribute_default<is_operator> {
436
+ static void init(const is_operator &, function_record *r) { r->is_operator = true; }
437
+ };
438
+
439
+ template <>
440
+ struct process_attribute<is_new_style_constructor>
441
+ : process_attribute_default<is_new_style_constructor> {
442
+ static void init(const is_new_style_constructor &, function_record *r) {
443
+ r->is_new_style_constructor = true;
444
+ }
445
+ };
446
+
447
+ inline void check_kw_only_arg(const arg &a, function_record *r) {
448
+ if (r->args.size() > r->nargs_pos && (!a.name || a.name[0] == '\0')) {
449
+ pybind11_fail("arg(): cannot specify an unnamed argument after a kw_only() annotation or "
450
+ "args() argument");
451
+ }
452
+ }
453
+
454
+ inline void append_self_arg_if_needed(function_record *r) {
455
+ if (r->is_method && r->args.empty()) {
456
+ r->args.emplace_back("self", nullptr, handle(), /*convert=*/true, /*none=*/false);
457
+ }
458
+ }
459
+
460
+ /// Process a keyword argument attribute (*without* a default value)
461
+ template <>
462
+ struct process_attribute<arg> : process_attribute_default<arg> {
463
+ static void init(const arg &a, function_record *r) {
464
+ append_self_arg_if_needed(r);
465
+ r->args.emplace_back(a.name, nullptr, handle(), !a.flag_noconvert, a.flag_none);
466
+
467
+ check_kw_only_arg(a, r);
468
+ }
469
+ };
470
+
471
+ /// Process a keyword argument attribute (*with* a default value)
472
+ template <>
473
+ struct process_attribute<arg_v> : process_attribute_default<arg_v> {
474
+ static void init(const arg_v &a, function_record *r) {
475
+ if (r->is_method && r->args.empty()) {
476
+ r->args.emplace_back(
477
+ "self", /*descr=*/nullptr, /*parent=*/handle(), /*convert=*/true, /*none=*/false);
478
+ }
479
+
480
+ if (!a.value) {
481
+ #if defined(PYBIND11_DETAILED_ERROR_MESSAGES)
482
+ std::string descr("'");
483
+ if (a.name) {
484
+ descr += std::string(a.name) + ": ";
485
+ }
486
+ descr += a.type + "'";
487
+ if (r->is_method) {
488
+ if (r->name) {
489
+ descr += " in method '" + (std::string) str(r->scope) + "."
490
+ + (std::string) r->name + "'";
491
+ } else {
492
+ descr += " in method of '" + (std::string) str(r->scope) + "'";
493
+ }
494
+ } else if (r->name) {
495
+ descr += " in function '" + (std::string) r->name + "'";
496
+ }
497
+ pybind11_fail("arg(): could not convert default argument " + descr
498
+ + " into a Python object (type not registered yet?)");
499
+ #else
500
+ pybind11_fail("arg(): could not convert default argument "
501
+ "into a Python object (type not registered yet?). "
502
+ "#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for "
503
+ "more information.");
504
+ #endif
505
+ }
506
+ r->args.emplace_back(a.name, a.descr, a.value.inc_ref(), !a.flag_noconvert, a.flag_none);
507
+
508
+ check_kw_only_arg(a, r);
509
+ }
510
+ };
511
+
512
+ /// Process a keyword-only-arguments-follow pseudo argument
513
+ template <>
514
+ struct process_attribute<kw_only> : process_attribute_default<kw_only> {
515
+ static void init(const kw_only &, function_record *r) {
516
+ append_self_arg_if_needed(r);
517
+ if (r->has_args && r->nargs_pos != static_cast<std::uint16_t>(r->args.size())) {
518
+ pybind11_fail("Mismatched args() and kw_only(): they must occur at the same relative "
519
+ "argument location (or omit kw_only() entirely)");
520
+ }
521
+ r->nargs_pos = static_cast<std::uint16_t>(r->args.size());
522
+ }
523
+ };
524
+
525
+ /// Process a positional-only-argument maker
526
+ template <>
527
+ struct process_attribute<pos_only> : process_attribute_default<pos_only> {
528
+ static void init(const pos_only &, function_record *r) {
529
+ append_self_arg_if_needed(r);
530
+ r->nargs_pos_only = static_cast<std::uint16_t>(r->args.size());
531
+ if (r->nargs_pos_only > r->nargs_pos) {
532
+ pybind11_fail("pos_only(): cannot follow a py::args() argument");
533
+ }
534
+ // It also can't follow a kw_only, but a static_assert in pybind11.h checks that
535
+ }
536
+ };
537
+
538
+ /// Process a parent class attribute. Single inheritance only (class_ itself already guarantees
539
+ /// that)
540
+ template <typename T>
541
+ struct process_attribute<T, enable_if_t<is_pyobject<T>::value>>
542
+ : process_attribute_default<handle> {
543
+ static void init(const handle &h, type_record *r) { r->bases.append(h); }
544
+ };
545
+
546
+ /// Process a parent class attribute (deprecated, does not support multiple inheritance)
547
+ template <typename T>
548
+ struct process_attribute<base<T>> : process_attribute_default<base<T>> {
549
+ static void init(const base<T> &, type_record *r) { r->add_base(typeid(T), nullptr); }
550
+ };
551
+
552
+ /// Process a multiple inheritance attribute
553
+ template <>
554
+ struct process_attribute<multiple_inheritance> : process_attribute_default<multiple_inheritance> {
555
+ static void init(const multiple_inheritance &, type_record *r) {
556
+ r->multiple_inheritance = true;
557
+ }
558
+ };
559
+
560
+ template <>
561
+ struct process_attribute<dynamic_attr> : process_attribute_default<dynamic_attr> {
562
+ static void init(const dynamic_attr &, type_record *r) { r->dynamic_attr = true; }
563
+ };
564
+
565
+ template <>
566
+ struct process_attribute<custom_type_setup> {
567
+ static void init(const custom_type_setup &value, type_record *r) {
568
+ r->custom_type_setup_callback = value.value;
569
+ }
570
+ };
571
+
572
+ template <>
573
+ struct process_attribute<is_final> : process_attribute_default<is_final> {
574
+ static void init(const is_final &, type_record *r) { r->is_final = true; }
575
+ };
576
+
577
+ template <>
578
+ struct process_attribute<buffer_protocol> : process_attribute_default<buffer_protocol> {
579
+ static void init(const buffer_protocol &, type_record *r) { r->buffer_protocol = true; }
580
+ };
581
+
582
+ template <>
583
+ struct process_attribute<metaclass> : process_attribute_default<metaclass> {
584
+ static void init(const metaclass &m, type_record *r) { r->metaclass = m.value; }
585
+ };
586
+
587
+ template <>
588
+ struct process_attribute<module_local> : process_attribute_default<module_local> {
589
+ static void init(const module_local &l, type_record *r) { r->module_local = l.value; }
590
+ };
591
+
592
+ /// Process a 'prepend' attribute, putting this at the beginning of the overload chain
593
+ template <>
594
+ struct process_attribute<prepend> : process_attribute_default<prepend> {
595
+ static void init(const prepend &, function_record *r) { r->prepend = true; }
596
+ };
597
+
598
+ /// Process an 'arithmetic' attribute for enums (does nothing here)
599
+ template <>
600
+ struct process_attribute<arithmetic> : process_attribute_default<arithmetic> {};
601
+
602
+ template <typename... Ts>
603
+ struct process_attribute<call_guard<Ts...>> : process_attribute_default<call_guard<Ts...>> {};
604
+
605
+ /**
606
+ * Process a keep_alive call policy -- invokes keep_alive_impl during the
607
+ * pre-call handler if both Nurse, Patient != 0 and use the post-call handler
608
+ * otherwise
609
+ */
610
+ template <size_t Nurse, size_t Patient>
611
+ struct process_attribute<keep_alive<Nurse, Patient>>
612
+ : public process_attribute_default<keep_alive<Nurse, Patient>> {
613
+ template <size_t N = Nurse, size_t P = Patient, enable_if_t<N != 0 && P != 0, int> = 0>
614
+ static void precall(function_call &call) {
615
+ keep_alive_impl(Nurse, Patient, call, handle());
616
+ }
617
+ template <size_t N = Nurse, size_t P = Patient, enable_if_t<N != 0 && P != 0, int> = 0>
618
+ static void postcall(function_call &, handle) {}
619
+ template <size_t N = Nurse, size_t P = Patient, enable_if_t<N == 0 || P == 0, int> = 0>
620
+ static void precall(function_call &) {}
621
+ template <size_t N = Nurse, size_t P = Patient, enable_if_t<N == 0 || P == 0, int> = 0>
622
+ static void postcall(function_call &call, handle ret) {
623
+ keep_alive_impl(Nurse, Patient, call, ret);
624
+ }
625
+ };
626
+
627
+ /// Recursively iterate over variadic template arguments
628
+ template <typename... Args>
629
+ struct process_attributes {
630
+ static void init(const Args &...args, function_record *r) {
631
+ PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(r);
632
+ PYBIND11_WORKAROUND_INCORRECT_GCC_UNUSED_BUT_SET_PARAMETER(r);
633
+ using expander = int[];
634
+ (void) expander{
635
+ 0, ((void) process_attribute<typename std::decay<Args>::type>::init(args, r), 0)...};
636
+ }
637
+ static void init(const Args &...args, type_record *r) {
638
+ PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(r);
639
+ PYBIND11_WORKAROUND_INCORRECT_GCC_UNUSED_BUT_SET_PARAMETER(r);
640
+ using expander = int[];
641
+ (void) expander{0,
642
+ (process_attribute<typename std::decay<Args>::type>::init(args, r), 0)...};
643
+ }
644
+ static void precall(function_call &call) {
645
+ PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(call);
646
+ using expander = int[];
647
+ (void) expander{0,
648
+ (process_attribute<typename std::decay<Args>::type>::precall(call), 0)...};
649
+ }
650
+ static void postcall(function_call &call, handle fn_ret) {
651
+ PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(call, fn_ret);
652
+ PYBIND11_WORKAROUND_INCORRECT_GCC_UNUSED_BUT_SET_PARAMETER(fn_ret);
653
+ using expander = int[];
654
+ (void) expander{
655
+ 0, (process_attribute<typename std::decay<Args>::type>::postcall(call, fn_ret), 0)...};
656
+ }
657
+ };
658
+
659
+ template <typename T>
660
+ using is_call_guard = is_instantiation<call_guard, T>;
661
+
662
+ /// Extract the ``type`` from the first `call_guard` in `Extras...` (or `void_type` if none found)
663
+ template <typename... Extra>
664
+ using extract_guard_t = typename exactly_one_t<is_call_guard, call_guard<>, Extra...>::type;
665
+
666
+ /// Check the number of named arguments at compile time
667
+ template <typename... Extra,
668
+ size_t named = constexpr_sum(std::is_base_of<arg, Extra>::value...),
669
+ size_t self = constexpr_sum(std::is_same<is_method, Extra>::value...)>
670
+ constexpr bool expected_num_args(size_t nargs, bool has_args, bool has_kwargs) {
671
+ PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(nargs, has_args, has_kwargs);
672
+ return named == 0 || (self + named + size_t(has_args) + size_t(has_kwargs)) == nargs;
673
+ }
674
+
675
+ PYBIND11_NAMESPACE_END(detail)
676
+ PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
third-party/DPVO/DPViewer/pybind11/include/pybind11/buffer_info.h ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ pybind11/buffer_info.h: Python buffer object interface
3
+
4
+ Copyright (c) 2016 Wenzel Jakob <[email protected]>
5
+
6
+ All rights reserved. Use of this source code is governed by a
7
+ BSD-style license that can be found in the LICENSE file.
8
+ */
9
+
10
+ #pragma once
11
+
12
+ #include "detail/common.h"
13
+
14
+ PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
15
+
16
+ PYBIND11_NAMESPACE_BEGIN(detail)
17
+
18
+ // Default, C-style strides
19
+ inline std::vector<ssize_t> c_strides(const std::vector<ssize_t> &shape, ssize_t itemsize) {
20
+ auto ndim = shape.size();
21
+ std::vector<ssize_t> strides(ndim, itemsize);
22
+ if (ndim > 0) {
23
+ for (size_t i = ndim - 1; i > 0; --i) {
24
+ strides[i - 1] = strides[i] * shape[i];
25
+ }
26
+ }
27
+ return strides;
28
+ }
29
+
30
+ // F-style strides; default when constructing an array_t with `ExtraFlags & f_style`
31
+ inline std::vector<ssize_t> f_strides(const std::vector<ssize_t> &shape, ssize_t itemsize) {
32
+ auto ndim = shape.size();
33
+ std::vector<ssize_t> strides(ndim, itemsize);
34
+ for (size_t i = 1; i < ndim; ++i) {
35
+ strides[i] = strides[i - 1] * shape[i - 1];
36
+ }
37
+ return strides;
38
+ }
39
+
40
+ PYBIND11_NAMESPACE_END(detail)
41
+
42
+ /// Information record describing a Python buffer object
43
+ struct buffer_info {
44
+ void *ptr = nullptr; // Pointer to the underlying storage
45
+ ssize_t itemsize = 0; // Size of individual items in bytes
46
+ ssize_t size = 0; // Total number of entries
47
+ std::string format; // For homogeneous buffers, this should be set to
48
+ // format_descriptor<T>::format()
49
+ ssize_t ndim = 0; // Number of dimensions
50
+ std::vector<ssize_t> shape; // Shape of the tensor (1 entry per dimension)
51
+ std::vector<ssize_t> strides; // Number of bytes between adjacent entries
52
+ // (for each per dimension)
53
+ bool readonly = false; // flag to indicate if the underlying storage may be written to
54
+
55
+ buffer_info() = default;
56
+
57
+ buffer_info(void *ptr,
58
+ ssize_t itemsize,
59
+ const std::string &format,
60
+ ssize_t ndim,
61
+ detail::any_container<ssize_t> shape_in,
62
+ detail::any_container<ssize_t> strides_in,
63
+ bool readonly = false)
64
+ : ptr(ptr), itemsize(itemsize), size(1), format(format), ndim(ndim),
65
+ shape(std::move(shape_in)), strides(std::move(strides_in)), readonly(readonly) {
66
+ if (ndim != (ssize_t) shape.size() || ndim != (ssize_t) strides.size()) {
67
+ pybind11_fail("buffer_info: ndim doesn't match shape and/or strides length");
68
+ }
69
+ for (size_t i = 0; i < (size_t) ndim; ++i) {
70
+ size *= shape[i];
71
+ }
72
+ }
73
+
74
+ template <typename T>
75
+ buffer_info(T *ptr,
76
+ detail::any_container<ssize_t> shape_in,
77
+ detail::any_container<ssize_t> strides_in,
78
+ bool readonly = false)
79
+ : buffer_info(private_ctr_tag(),
80
+ ptr,
81
+ sizeof(T),
82
+ format_descriptor<T>::format(),
83
+ static_cast<ssize_t>(shape_in->size()),
84
+ std::move(shape_in),
85
+ std::move(strides_in),
86
+ readonly) {}
87
+
88
+ buffer_info(void *ptr,
89
+ ssize_t itemsize,
90
+ const std::string &format,
91
+ ssize_t size,
92
+ bool readonly = false)
93
+ : buffer_info(ptr, itemsize, format, 1, {size}, {itemsize}, readonly) {}
94
+
95
+ template <typename T>
96
+ buffer_info(T *ptr, ssize_t size, bool readonly = false)
97
+ : buffer_info(ptr, sizeof(T), format_descriptor<T>::format(), size, readonly) {}
98
+
99
+ template <typename T>
100
+ buffer_info(const T *ptr, ssize_t size, bool readonly = true)
101
+ : buffer_info(
102
+ const_cast<T *>(ptr), sizeof(T), format_descriptor<T>::format(), size, readonly) {}
103
+
104
+ explicit buffer_info(Py_buffer *view, bool ownview = true)
105
+ : buffer_info(
106
+ view->buf,
107
+ view->itemsize,
108
+ view->format,
109
+ view->ndim,
110
+ {view->shape, view->shape + view->ndim},
111
+ /* Though buffer::request() requests PyBUF_STRIDES, ctypes objects
112
+ * ignore this flag and return a view with NULL strides.
113
+ * When strides are NULL, build them manually. */
114
+ view->strides
115
+ ? std::vector<ssize_t>(view->strides, view->strides + view->ndim)
116
+ : detail::c_strides({view->shape, view->shape + view->ndim}, view->itemsize),
117
+ (view->readonly != 0)) {
118
+ // NOLINTNEXTLINE(cppcoreguidelines-prefer-member-initializer)
119
+ this->m_view = view;
120
+ // NOLINTNEXTLINE(cppcoreguidelines-prefer-member-initializer)
121
+ this->ownview = ownview;
122
+ }
123
+
124
+ buffer_info(const buffer_info &) = delete;
125
+ buffer_info &operator=(const buffer_info &) = delete;
126
+
127
+ buffer_info(buffer_info &&other) noexcept { (*this) = std::move(other); }
128
+
129
+ buffer_info &operator=(buffer_info &&rhs) noexcept {
130
+ ptr = rhs.ptr;
131
+ itemsize = rhs.itemsize;
132
+ size = rhs.size;
133
+ format = std::move(rhs.format);
134
+ ndim = rhs.ndim;
135
+ shape = std::move(rhs.shape);
136
+ strides = std::move(rhs.strides);
137
+ std::swap(m_view, rhs.m_view);
138
+ std::swap(ownview, rhs.ownview);
139
+ readonly = rhs.readonly;
140
+ return *this;
141
+ }
142
+
143
+ ~buffer_info() {
144
+ if (m_view && ownview) {
145
+ PyBuffer_Release(m_view);
146
+ delete m_view;
147
+ }
148
+ }
149
+
150
+ Py_buffer *view() const { return m_view; }
151
+ Py_buffer *&view() { return m_view; }
152
+
153
+ private:
154
+ struct private_ctr_tag {};
155
+
156
+ buffer_info(private_ctr_tag,
157
+ void *ptr,
158
+ ssize_t itemsize,
159
+ const std::string &format,
160
+ ssize_t ndim,
161
+ detail::any_container<ssize_t> &&shape_in,
162
+ detail::any_container<ssize_t> &&strides_in,
163
+ bool readonly)
164
+ : buffer_info(
165
+ ptr, itemsize, format, ndim, std::move(shape_in), std::move(strides_in), readonly) {}
166
+
167
+ Py_buffer *m_view = nullptr;
168
+ bool ownview = false;
169
+ };
170
+
171
+ PYBIND11_NAMESPACE_BEGIN(detail)
172
+
173
+ template <typename T, typename SFINAE = void>
174
+ struct compare_buffer_info {
175
+ static bool compare(const buffer_info &b) {
176
+ return b.format == format_descriptor<T>::format() && b.itemsize == (ssize_t) sizeof(T);
177
+ }
178
+ };
179
+
180
+ template <typename T>
181
+ struct compare_buffer_info<T, detail::enable_if_t<std::is_integral<T>::value>> {
182
+ static bool compare(const buffer_info &b) {
183
+ return (size_t) b.itemsize == sizeof(T)
184
+ && (b.format == format_descriptor<T>::value
185
+ || ((sizeof(T) == sizeof(long))
186
+ && b.format == (std::is_unsigned<T>::value ? "L" : "l"))
187
+ || ((sizeof(T) == sizeof(size_t))
188
+ && b.format == (std::is_unsigned<T>::value ? "N" : "n")));
189
+ }
190
+ };
191
+
192
+ PYBIND11_NAMESPACE_END(detail)
193
+ PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
third-party/DPVO/DPViewer/pybind11/include/pybind11/cast.h ADDED
@@ -0,0 +1,1665 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ pybind11/cast.h: Partial template specializations to cast between
3
+ C++ and Python types
4
+
5
+ Copyright (c) 2016 Wenzel Jakob <[email protected]>
6
+
7
+ All rights reserved. Use of this source code is governed by a
8
+ BSD-style license that can be found in the LICENSE file.
9
+ */
10
+
11
+ #pragma once
12
+
13
+ #include "detail/common.h"
14
+ #include "detail/descr.h"
15
+ #include "detail/type_caster_base.h"
16
+ #include "detail/typeid.h"
17
+ #include "pytypes.h"
18
+
19
+ #include <array>
20
+ #include <cstring>
21
+ #include <functional>
22
+ #include <iosfwd>
23
+ #include <iterator>
24
+ #include <memory>
25
+ #include <string>
26
+ #include <tuple>
27
+ #include <type_traits>
28
+ #include <utility>
29
+ #include <vector>
30
+
31
+ PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
32
+ PYBIND11_NAMESPACE_BEGIN(detail)
33
+
34
+ template <typename type, typename SFINAE = void>
35
+ class type_caster : public type_caster_base<type> {};
36
+ template <typename type>
37
+ using make_caster = type_caster<intrinsic_t<type>>;
38
+
39
+ // Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T
40
+ template <typename T>
41
+ typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &caster) {
42
+ return caster.operator typename make_caster<T>::template cast_op_type<T>();
43
+ }
44
+ template <typename T>
45
+ typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>
46
+ cast_op(make_caster<T> &&caster) {
47
+ return std::move(caster).operator typename make_caster<T>::
48
+ template cast_op_type<typename std::add_rvalue_reference<T>::type>();
49
+ }
50
+
51
+ template <typename type>
52
+ class type_caster<std::reference_wrapper<type>> {
53
+ private:
54
+ using caster_t = make_caster<type>;
55
+ caster_t subcaster;
56
+ using reference_t = type &;
57
+ using subcaster_cast_op_type = typename caster_t::template cast_op_type<reference_t>;
58
+
59
+ static_assert(
60
+ std::is_same<typename std::remove_const<type>::type &, subcaster_cast_op_type>::value
61
+ || std::is_same<reference_t, subcaster_cast_op_type>::value,
62
+ "std::reference_wrapper<T> caster requires T to have a caster with an "
63
+ "`operator T &()` or `operator const T &()`");
64
+
65
+ public:
66
+ bool load(handle src, bool convert) { return subcaster.load(src, convert); }
67
+ static constexpr auto name = caster_t::name;
68
+ static handle
69
+ cast(const std::reference_wrapper<type> &src, return_value_policy policy, handle parent) {
70
+ // It is definitely wrong to take ownership of this pointer, so mask that rvp
71
+ if (policy == return_value_policy::take_ownership
72
+ || policy == return_value_policy::automatic) {
73
+ policy = return_value_policy::automatic_reference;
74
+ }
75
+ return caster_t::cast(&src.get(), policy, parent);
76
+ }
77
+ template <typename T>
78
+ using cast_op_type = std::reference_wrapper<type>;
79
+ explicit operator std::reference_wrapper<type>() { return cast_op<type &>(subcaster); }
80
+ };
81
+
82
+ #define PYBIND11_TYPE_CASTER(type, py_name) \
83
+ protected: \
84
+ type value; \
85
+ \
86
+ public: \
87
+ static constexpr auto name = py_name; \
88
+ template <typename T_, \
89
+ ::pybind11::detail::enable_if_t< \
90
+ std::is_same<type, ::pybind11::detail::remove_cv_t<T_>>::value, \
91
+ int> = 0> \
92
+ static ::pybind11::handle cast( \
93
+ T_ *src, ::pybind11::return_value_policy policy, ::pybind11::handle parent) { \
94
+ if (!src) \
95
+ return ::pybind11::none().release(); \
96
+ if (policy == ::pybind11::return_value_policy::take_ownership) { \
97
+ auto h = cast(std::move(*src), policy, parent); \
98
+ delete src; \
99
+ return h; \
100
+ } \
101
+ return cast(*src, policy, parent); \
102
+ } \
103
+ operator type *() { return &value; } /* NOLINT(bugprone-macro-parentheses) */ \
104
+ operator type &() { return value; } /* NOLINT(bugprone-macro-parentheses) */ \
105
+ operator type &&() && { return std::move(value); } /* NOLINT(bugprone-macro-parentheses) */ \
106
+ template <typename T_> \
107
+ using cast_op_type = ::pybind11::detail::movable_cast_op_type<T_>
108
+
109
+ template <typename CharT>
110
+ using is_std_char_type = any_of<std::is_same<CharT, char>, /* std::string */
111
+ #if defined(PYBIND11_HAS_U8STRING)
112
+ std::is_same<CharT, char8_t>, /* std::u8string */
113
+ #endif
114
+ std::is_same<CharT, char16_t>, /* std::u16string */
115
+ std::is_same<CharT, char32_t>, /* std::u32string */
116
+ std::is_same<CharT, wchar_t> /* std::wstring */
117
+ >;
118
+
119
+ template <typename T>
120
+ struct type_caster<T, enable_if_t<std::is_arithmetic<T>::value && !is_std_char_type<T>::value>> {
121
+ using _py_type_0 = conditional_t<sizeof(T) <= sizeof(long), long, long long>;
122
+ using _py_type_1 = conditional_t<std::is_signed<T>::value,
123
+ _py_type_0,
124
+ typename std::make_unsigned<_py_type_0>::type>;
125
+ using py_type = conditional_t<std::is_floating_point<T>::value, double, _py_type_1>;
126
+
127
+ public:
128
+ bool load(handle src, bool convert) {
129
+ py_type py_value;
130
+
131
+ if (!src) {
132
+ return false;
133
+ }
134
+
135
+ #if !defined(PYPY_VERSION)
136
+ auto index_check = [](PyObject *o) { return PyIndex_Check(o); };
137
+ #else
138
+ // In PyPy 7.3.3, `PyIndex_Check` is implemented by calling `__index__`,
139
+ // while CPython only considers the existence of `nb_index`/`__index__`.
140
+ auto index_check = [](PyObject *o) { return hasattr(o, "__index__"); };
141
+ #endif
142
+
143
+ if (std::is_floating_point<T>::value) {
144
+ if (convert || PyFloat_Check(src.ptr())) {
145
+ py_value = (py_type) PyFloat_AsDouble(src.ptr());
146
+ } else {
147
+ return false;
148
+ }
149
+ } else if (PyFloat_Check(src.ptr())
150
+ || (!convert && !PYBIND11_LONG_CHECK(src.ptr()) && !index_check(src.ptr()))) {
151
+ return false;
152
+ } else {
153
+ handle src_or_index = src;
154
+ // PyPy: 7.3.7's 3.8 does not implement PyLong_*'s __index__ calls.
155
+ #if PY_VERSION_HEX < 0x03080000 || defined(PYPY_VERSION)
156
+ object index;
157
+ if (!PYBIND11_LONG_CHECK(src.ptr())) { // So: index_check(src.ptr())
158
+ index = reinterpret_steal<object>(PyNumber_Index(src.ptr()));
159
+ if (!index) {
160
+ PyErr_Clear();
161
+ if (!convert)
162
+ return false;
163
+ } else {
164
+ src_or_index = index;
165
+ }
166
+ }
167
+ #endif
168
+ if (std::is_unsigned<py_type>::value) {
169
+ py_value = as_unsigned<py_type>(src_or_index.ptr());
170
+ } else { // signed integer:
171
+ py_value = sizeof(T) <= sizeof(long)
172
+ ? (py_type) PyLong_AsLong(src_or_index.ptr())
173
+ : (py_type) PYBIND11_LONG_AS_LONGLONG(src_or_index.ptr());
174
+ }
175
+ }
176
+
177
+ // Python API reported an error
178
+ bool py_err = py_value == (py_type) -1 && PyErr_Occurred();
179
+
180
+ // Check to see if the conversion is valid (integers should match exactly)
181
+ // Signed/unsigned checks happen elsewhere
182
+ if (py_err
183
+ || (std::is_integral<T>::value && sizeof(py_type) != sizeof(T)
184
+ && py_value != (py_type) (T) py_value)) {
185
+ PyErr_Clear();
186
+ if (py_err && convert && (PyNumber_Check(src.ptr()) != 0)) {
187
+ auto tmp = reinterpret_steal<object>(std::is_floating_point<T>::value
188
+ ? PyNumber_Float(src.ptr())
189
+ : PyNumber_Long(src.ptr()));
190
+ PyErr_Clear();
191
+ return load(tmp, false);
192
+ }
193
+ return false;
194
+ }
195
+
196
+ value = (T) py_value;
197
+ return true;
198
+ }
199
+
200
+ template <typename U = T>
201
+ static typename std::enable_if<std::is_floating_point<U>::value, handle>::type
202
+ cast(U src, return_value_policy /* policy */, handle /* parent */) {
203
+ return PyFloat_FromDouble((double) src);
204
+ }
205
+
206
+ template <typename U = T>
207
+ static typename std::enable_if<!std::is_floating_point<U>::value && std::is_signed<U>::value
208
+ && (sizeof(U) <= sizeof(long)),
209
+ handle>::type
210
+ cast(U src, return_value_policy /* policy */, handle /* parent */) {
211
+ return PYBIND11_LONG_FROM_SIGNED((long) src);
212
+ }
213
+
214
+ template <typename U = T>
215
+ static typename std::enable_if<!std::is_floating_point<U>::value && std::is_unsigned<U>::value
216
+ && (sizeof(U) <= sizeof(unsigned long)),
217
+ handle>::type
218
+ cast(U src, return_value_policy /* policy */, handle /* parent */) {
219
+ return PYBIND11_LONG_FROM_UNSIGNED((unsigned long) src);
220
+ }
221
+
222
+ template <typename U = T>
223
+ static typename std::enable_if<!std::is_floating_point<U>::value && std::is_signed<U>::value
224
+ && (sizeof(U) > sizeof(long)),
225
+ handle>::type
226
+ cast(U src, return_value_policy /* policy */, handle /* parent */) {
227
+ return PyLong_FromLongLong((long long) src);
228
+ }
229
+
230
+ template <typename U = T>
231
+ static typename std::enable_if<!std::is_floating_point<U>::value && std::is_unsigned<U>::value
232
+ && (sizeof(U) > sizeof(unsigned long)),
233
+ handle>::type
234
+ cast(U src, return_value_policy /* policy */, handle /* parent */) {
235
+ return PyLong_FromUnsignedLongLong((unsigned long long) src);
236
+ }
237
+
238
+ PYBIND11_TYPE_CASTER(T, const_name<std::is_integral<T>::value>("int", "float"));
239
+ };
240
+
241
+ template <typename T>
242
+ struct void_caster {
243
+ public:
244
+ bool load(handle src, bool) {
245
+ if (src && src.is_none()) {
246
+ return true;
247
+ }
248
+ return false;
249
+ }
250
+ static handle cast(T, return_value_policy /* policy */, handle /* parent */) {
251
+ return none().inc_ref();
252
+ }
253
+ PYBIND11_TYPE_CASTER(T, const_name("None"));
254
+ };
255
+
256
+ template <>
257
+ class type_caster<void_type> : public void_caster<void_type> {};
258
+
259
+ template <>
260
+ class type_caster<void> : public type_caster<void_type> {
261
+ public:
262
+ using type_caster<void_type>::cast;
263
+
264
+ bool load(handle h, bool) {
265
+ if (!h) {
266
+ return false;
267
+ }
268
+ if (h.is_none()) {
269
+ value = nullptr;
270
+ return true;
271
+ }
272
+
273
+ /* Check if this is a capsule */
274
+ if (isinstance<capsule>(h)) {
275
+ value = reinterpret_borrow<capsule>(h);
276
+ return true;
277
+ }
278
+
279
+ /* Check if this is a C++ type */
280
+ const auto &bases = all_type_info((PyTypeObject *) type::handle_of(h).ptr());
281
+ if (bases.size() == 1) { // Only allowing loading from a single-value type
282
+ value = values_and_holders(reinterpret_cast<instance *>(h.ptr())).begin()->value_ptr();
283
+ return true;
284
+ }
285
+
286
+ /* Fail */
287
+ return false;
288
+ }
289
+
290
+ static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) {
291
+ if (ptr) {
292
+ return capsule(ptr).release();
293
+ }
294
+ return none().inc_ref();
295
+ }
296
+
297
+ template <typename T>
298
+ using cast_op_type = void *&;
299
+ explicit operator void *&() { return value; }
300
+ static constexpr auto name = const_name("capsule");
301
+
302
+ private:
303
+ void *value = nullptr;
304
+ };
305
+
306
+ template <>
307
+ class type_caster<std::nullptr_t> : public void_caster<std::nullptr_t> {};
308
+
309
+ template <>
310
+ class type_caster<bool> {
311
+ public:
312
+ bool load(handle src, bool convert) {
313
+ if (!src) {
314
+ return false;
315
+ }
316
+ if (src.ptr() == Py_True) {
317
+ value = true;
318
+ return true;
319
+ }
320
+ if (src.ptr() == Py_False) {
321
+ value = false;
322
+ return true;
323
+ }
324
+ if (convert || (std::strcmp("numpy.bool_", Py_TYPE(src.ptr())->tp_name) == 0)) {
325
+ // (allow non-implicit conversion for numpy booleans)
326
+
327
+ Py_ssize_t res = -1;
328
+ if (src.is_none()) {
329
+ res = 0; // None is implicitly converted to False
330
+ }
331
+ #if defined(PYPY_VERSION)
332
+ // On PyPy, check that "__bool__" attr exists
333
+ else if (hasattr(src, PYBIND11_BOOL_ATTR)) {
334
+ res = PyObject_IsTrue(src.ptr());
335
+ }
336
+ #else
337
+ // Alternate approach for CPython: this does the same as the above, but optimized
338
+ // using the CPython API so as to avoid an unneeded attribute lookup.
339
+ else if (auto *tp_as_number = src.ptr()->ob_type->tp_as_number) {
340
+ if (PYBIND11_NB_BOOL(tp_as_number)) {
341
+ res = (*PYBIND11_NB_BOOL(tp_as_number))(src.ptr());
342
+ }
343
+ }
344
+ #endif
345
+ if (res == 0 || res == 1) {
346
+ value = (res != 0);
347
+ return true;
348
+ }
349
+ PyErr_Clear();
350
+ }
351
+ return false;
352
+ }
353
+ static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) {
354
+ return handle(src ? Py_True : Py_False).inc_ref();
355
+ }
356
+ PYBIND11_TYPE_CASTER(bool, const_name("bool"));
357
+ };
358
+
359
+ // Helper class for UTF-{8,16,32} C++ stl strings:
360
+ template <typename StringType, bool IsView = false>
361
+ struct string_caster {
362
+ using CharT = typename StringType::value_type;
363
+
364
+ // Simplify life by being able to assume standard char sizes (the standard only guarantees
365
+ // minimums, but Python requires exact sizes)
366
+ static_assert(!std::is_same<CharT, char>::value || sizeof(CharT) == 1,
367
+ "Unsupported char size != 1");
368
+ #if defined(PYBIND11_HAS_U8STRING)
369
+ static_assert(!std::is_same<CharT, char8_t>::value || sizeof(CharT) == 1,
370
+ "Unsupported char8_t size != 1");
371
+ #endif
372
+ static_assert(!std::is_same<CharT, char16_t>::value || sizeof(CharT) == 2,
373
+ "Unsupported char16_t size != 2");
374
+ static_assert(!std::is_same<CharT, char32_t>::value || sizeof(CharT) == 4,
375
+ "Unsupported char32_t size != 4");
376
+ // wchar_t can be either 16 bits (Windows) or 32 (everywhere else)
377
+ static_assert(!std::is_same<CharT, wchar_t>::value || sizeof(CharT) == 2 || sizeof(CharT) == 4,
378
+ "Unsupported wchar_t size != 2/4");
379
+ static constexpr size_t UTF_N = 8 * sizeof(CharT);
380
+
381
+ bool load(handle src, bool) {
382
+ handle load_src = src;
383
+ if (!src) {
384
+ return false;
385
+ }
386
+ if (!PyUnicode_Check(load_src.ptr())) {
387
+ return load_raw(load_src);
388
+ }
389
+
390
+ // For UTF-8 we avoid the need for a temporary `bytes` object by using
391
+ // `PyUnicode_AsUTF8AndSize`.
392
+ if (PYBIND11_SILENCE_MSVC_C4127(UTF_N == 8)) {
393
+ Py_ssize_t size = -1;
394
+ const auto *buffer
395
+ = reinterpret_cast<const CharT *>(PyUnicode_AsUTF8AndSize(load_src.ptr(), &size));
396
+ if (!buffer) {
397
+ PyErr_Clear();
398
+ return false;
399
+ }
400
+ value = StringType(buffer, static_cast<size_t>(size));
401
+ return true;
402
+ }
403
+
404
+ auto utfNbytes
405
+ = reinterpret_steal<object>(PyUnicode_AsEncodedString(load_src.ptr(),
406
+ UTF_N == 8 ? "utf-8"
407
+ : UTF_N == 16 ? "utf-16"
408
+ : "utf-32",
409
+ nullptr));
410
+ if (!utfNbytes) {
411
+ PyErr_Clear();
412
+ return false;
413
+ }
414
+
415
+ const auto *buffer
416
+ = reinterpret_cast<const CharT *>(PYBIND11_BYTES_AS_STRING(utfNbytes.ptr()));
417
+ size_t length = (size_t) PYBIND11_BYTES_SIZE(utfNbytes.ptr()) / sizeof(CharT);
418
+ // Skip BOM for UTF-16/32
419
+ if (PYBIND11_SILENCE_MSVC_C4127(UTF_N > 8)) {
420
+ buffer++;
421
+ length--;
422
+ }
423
+ value = StringType(buffer, length);
424
+
425
+ // If we're loading a string_view we need to keep the encoded Python object alive:
426
+ if (IsView) {
427
+ loader_life_support::add_patient(utfNbytes);
428
+ }
429
+
430
+ return true;
431
+ }
432
+
433
+ static handle
434
+ cast(const StringType &src, return_value_policy /* policy */, handle /* parent */) {
435
+ const char *buffer = reinterpret_cast<const char *>(src.data());
436
+ auto nbytes = ssize_t(src.size() * sizeof(CharT));
437
+ handle s = decode_utfN(buffer, nbytes);
438
+ if (!s) {
439
+ throw error_already_set();
440
+ }
441
+ return s;
442
+ }
443
+
444
+ PYBIND11_TYPE_CASTER(StringType, const_name(PYBIND11_STRING_NAME));
445
+
446
+ private:
447
+ static handle decode_utfN(const char *buffer, ssize_t nbytes) {
448
+ #if !defined(PYPY_VERSION)
449
+ return UTF_N == 8 ? PyUnicode_DecodeUTF8(buffer, nbytes, nullptr)
450
+ : UTF_N == 16 ? PyUnicode_DecodeUTF16(buffer, nbytes, nullptr, nullptr)
451
+ : PyUnicode_DecodeUTF32(buffer, nbytes, nullptr, nullptr);
452
+ #else
453
+ // PyPy segfaults when on PyUnicode_DecodeUTF16 (and possibly on PyUnicode_DecodeUTF32 as
454
+ // well), so bypass the whole thing by just passing the encoding as a string value, which
455
+ // works properly:
456
+ return PyUnicode_Decode(buffer,
457
+ nbytes,
458
+ UTF_N == 8 ? "utf-8"
459
+ : UTF_N == 16 ? "utf-16"
460
+ : "utf-32",
461
+ nullptr);
462
+ #endif
463
+ }
464
+
465
+ // When loading into a std::string or char*, accept a bytes/bytearray object as-is (i.e.
466
+ // without any encoding/decoding attempt). For other C++ char sizes this is a no-op.
467
+ // which supports loading a unicode from a str, doesn't take this path.
468
+ template <typename C = CharT>
469
+ bool load_raw(enable_if_t<std::is_same<C, char>::value, handle> src) {
470
+ if (PYBIND11_BYTES_CHECK(src.ptr())) {
471
+ // We were passed raw bytes; accept it into a std::string or char*
472
+ // without any encoding attempt.
473
+ const char *bytes = PYBIND11_BYTES_AS_STRING(src.ptr());
474
+ if (!bytes) {
475
+ pybind11_fail("Unexpected PYBIND11_BYTES_AS_STRING() failure.");
476
+ }
477
+ value = StringType(bytes, (size_t) PYBIND11_BYTES_SIZE(src.ptr()));
478
+ return true;
479
+ }
480
+ if (PyByteArray_Check(src.ptr())) {
481
+ // We were passed a bytearray; accept it into a std::string or char*
482
+ // without any encoding attempt.
483
+ const char *bytearray = PyByteArray_AsString(src.ptr());
484
+ if (!bytearray) {
485
+ pybind11_fail("Unexpected PyByteArray_AsString() failure.");
486
+ }
487
+ value = StringType(bytearray, (size_t) PyByteArray_Size(src.ptr()));
488
+ return true;
489
+ }
490
+
491
+ return false;
492
+ }
493
+
494
+ template <typename C = CharT>
495
+ bool load_raw(enable_if_t<!std::is_same<C, char>::value, handle>) {
496
+ return false;
497
+ }
498
+ };
499
+
500
+ template <typename CharT, class Traits, class Allocator>
501
+ struct type_caster<std::basic_string<CharT, Traits, Allocator>,
502
+ enable_if_t<is_std_char_type<CharT>::value>>
503
+ : string_caster<std::basic_string<CharT, Traits, Allocator>> {};
504
+
505
+ #ifdef PYBIND11_HAS_STRING_VIEW
506
+ template <typename CharT, class Traits>
507
+ struct type_caster<std::basic_string_view<CharT, Traits>,
508
+ enable_if_t<is_std_char_type<CharT>::value>>
509
+ : string_caster<std::basic_string_view<CharT, Traits>, true> {};
510
+ #endif
511
+
512
+ // Type caster for C-style strings. We basically use a std::string type caster, but also add the
513
+ // ability to use None as a nullptr char* (which the string caster doesn't allow).
514
+ template <typename CharT>
515
+ struct type_caster<CharT, enable_if_t<is_std_char_type<CharT>::value>> {
516
+ using StringType = std::basic_string<CharT>;
517
+ using StringCaster = make_caster<StringType>;
518
+ StringCaster str_caster;
519
+ bool none = false;
520
+ CharT one_char = 0;
521
+
522
+ public:
523
+ bool load(handle src, bool convert) {
524
+ if (!src) {
525
+ return false;
526
+ }
527
+ if (src.is_none()) {
528
+ // Defer accepting None to other overloads (if we aren't in convert mode):
529
+ if (!convert) {
530
+ return false;
531
+ }
532
+ none = true;
533
+ return true;
534
+ }
535
+ return str_caster.load(src, convert);
536
+ }
537
+
538
+ static handle cast(const CharT *src, return_value_policy policy, handle parent) {
539
+ if (src == nullptr) {
540
+ return pybind11::none().inc_ref();
541
+ }
542
+ return StringCaster::cast(StringType(src), policy, parent);
543
+ }
544
+
545
+ static handle cast(CharT src, return_value_policy policy, handle parent) {
546
+ if (std::is_same<char, CharT>::value) {
547
+ handle s = PyUnicode_DecodeLatin1((const char *) &src, 1, nullptr);
548
+ if (!s) {
549
+ throw error_already_set();
550
+ }
551
+ return s;
552
+ }
553
+ return StringCaster::cast(StringType(1, src), policy, parent);
554
+ }
555
+
556
+ explicit operator CharT *() {
557
+ return none ? nullptr : const_cast<CharT *>(static_cast<StringType &>(str_caster).c_str());
558
+ }
559
+ explicit operator CharT &() {
560
+ if (none) {
561
+ throw value_error("Cannot convert None to a character");
562
+ }
563
+
564
+ auto &value = static_cast<StringType &>(str_caster);
565
+ size_t str_len = value.size();
566
+ if (str_len == 0) {
567
+ throw value_error("Cannot convert empty string to a character");
568
+ }
569
+
570
+ // If we're in UTF-8 mode, we have two possible failures: one for a unicode character that
571
+ // is too high, and one for multiple unicode characters (caught later), so we need to
572
+ // figure out how long the first encoded character is in bytes to distinguish between these
573
+ // two errors. We also allow want to allow unicode characters U+0080 through U+00FF, as
574
+ // those can fit into a single char value.
575
+ if (PYBIND11_SILENCE_MSVC_C4127(StringCaster::UTF_N == 8) && str_len > 1 && str_len <= 4) {
576
+ auto v0 = static_cast<unsigned char>(value[0]);
577
+ // low bits only: 0-127
578
+ // 0b110xxxxx - start of 2-byte sequence
579
+ // 0b1110xxxx - start of 3-byte sequence
580
+ // 0b11110xxx - start of 4-byte sequence
581
+ size_t char0_bytes = (v0 & 0x80) == 0 ? 1
582
+ : (v0 & 0xE0) == 0xC0 ? 2
583
+ : (v0 & 0xF0) == 0xE0 ? 3
584
+ : 4;
585
+
586
+ if (char0_bytes == str_len) {
587
+ // If we have a 128-255 value, we can decode it into a single char:
588
+ if (char0_bytes == 2 && (v0 & 0xFC) == 0xC0) { // 0x110000xx 0x10xxxxxx
589
+ one_char = static_cast<CharT>(((v0 & 3) << 6)
590
+ + (static_cast<unsigned char>(value[1]) & 0x3F));
591
+ return one_char;
592
+ }
593
+ // Otherwise we have a single character, but it's > U+00FF
594
+ throw value_error("Character code point not in range(0x100)");
595
+ }
596
+ }
597
+
598
+ // UTF-16 is much easier: we can only have a surrogate pair for values above U+FFFF, thus a
599
+ // surrogate pair with total length 2 instantly indicates a range error (but not a "your
600
+ // string was too long" error).
601
+ else if (PYBIND11_SILENCE_MSVC_C4127(StringCaster::UTF_N == 16) && str_len == 2) {
602
+ one_char = static_cast<CharT>(value[0]);
603
+ if (one_char >= 0xD800 && one_char < 0xE000) {
604
+ throw value_error("Character code point not in range(0x10000)");
605
+ }
606
+ }
607
+
608
+ if (str_len != 1) {
609
+ throw value_error("Expected a character, but multi-character string found");
610
+ }
611
+
612
+ one_char = value[0];
613
+ return one_char;
614
+ }
615
+
616
+ static constexpr auto name = const_name(PYBIND11_STRING_NAME);
617
+ template <typename _T>
618
+ using cast_op_type = pybind11::detail::cast_op_type<_T>;
619
+ };
620
+
621
+ // Base implementation for std::tuple and std::pair
622
+ template <template <typename...> class Tuple, typename... Ts>
623
+ class tuple_caster {
624
+ using type = Tuple<Ts...>;
625
+ static constexpr auto size = sizeof...(Ts);
626
+ using indices = make_index_sequence<size>;
627
+
628
+ public:
629
+ bool load(handle src, bool convert) {
630
+ if (!isinstance<sequence>(src)) {
631
+ return false;
632
+ }
633
+ const auto seq = reinterpret_borrow<sequence>(src);
634
+ if (seq.size() != size) {
635
+ return false;
636
+ }
637
+ return load_impl(seq, convert, indices{});
638
+ }
639
+
640
+ template <typename T>
641
+ static handle cast(T &&src, return_value_policy policy, handle parent) {
642
+ return cast_impl(std::forward<T>(src), policy, parent, indices{});
643
+ }
644
+
645
+ // copied from the PYBIND11_TYPE_CASTER macro
646
+ template <typename T>
647
+ static handle cast(T *src, return_value_policy policy, handle parent) {
648
+ if (!src) {
649
+ return none().release();
650
+ }
651
+ if (policy == return_value_policy::take_ownership) {
652
+ auto h = cast(std::move(*src), policy, parent);
653
+ delete src;
654
+ return h;
655
+ }
656
+ return cast(*src, policy, parent);
657
+ }
658
+
659
+ static constexpr auto name
660
+ = const_name("Tuple[") + concat(make_caster<Ts>::name...) + const_name("]");
661
+
662
+ template <typename T>
663
+ using cast_op_type = type;
664
+
665
+ explicit operator type() & { return implicit_cast(indices{}); }
666
+ explicit operator type() && { return std::move(*this).implicit_cast(indices{}); }
667
+
668
+ protected:
669
+ template <size_t... Is>
670
+ type implicit_cast(index_sequence<Is...>) & {
671
+ return type(cast_op<Ts>(std::get<Is>(subcasters))...);
672
+ }
673
+ template <size_t... Is>
674
+ type implicit_cast(index_sequence<Is...>) && {
675
+ return type(cast_op<Ts>(std::move(std::get<Is>(subcasters)))...);
676
+ }
677
+
678
+ static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; }
679
+
680
+ template <size_t... Is>
681
+ bool load_impl(const sequence &seq, bool convert, index_sequence<Is...>) {
682
+ #ifdef __cpp_fold_expressions
683
+ if ((... || !std::get<Is>(subcasters).load(seq[Is], convert))) {
684
+ return false;
685
+ }
686
+ #else
687
+ for (bool r : {std::get<Is>(subcasters).load(seq[Is], convert)...}) {
688
+ if (!r) {
689
+ return false;
690
+ }
691
+ }
692
+ #endif
693
+ return true;
694
+ }
695
+
696
+ /* Implementation: Convert a C++ tuple into a Python tuple */
697
+ template <typename T, size_t... Is>
698
+ static handle
699
+ cast_impl(T &&src, return_value_policy policy, handle parent, index_sequence<Is...>) {
700
+ PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(src, policy, parent);
701
+ PYBIND11_WORKAROUND_INCORRECT_GCC_UNUSED_BUT_SET_PARAMETER(policy, parent);
702
+ std::array<object, size> entries{{reinterpret_steal<object>(
703
+ make_caster<Ts>::cast(std::get<Is>(std::forward<T>(src)), policy, parent))...}};
704
+ for (const auto &entry : entries) {
705
+ if (!entry) {
706
+ return handle();
707
+ }
708
+ }
709
+ tuple result(size);
710
+ int counter = 0;
711
+ for (auto &entry : entries) {
712
+ PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr());
713
+ }
714
+ return result.release();
715
+ }
716
+
717
+ Tuple<make_caster<Ts>...> subcasters;
718
+ };
719
+
720
+ template <typename T1, typename T2>
721
+ class type_caster<std::pair<T1, T2>> : public tuple_caster<std::pair, T1, T2> {};
722
+
723
+ template <typename... Ts>
724
+ class type_caster<std::tuple<Ts...>> : public tuple_caster<std::tuple, Ts...> {};
725
+
726
+ /// Helper class which abstracts away certain actions. Users can provide specializations for
727
+ /// custom holders, but it's only necessary if the type has a non-standard interface.
728
+ template <typename T>
729
+ struct holder_helper {
730
+ static auto get(const T &p) -> decltype(p.get()) { return p.get(); }
731
+ };
732
+
733
+ /// Type caster for holder types like std::shared_ptr, etc.
734
+ /// The SFINAE hook is provided to help work around the current lack of support
735
+ /// for smart-pointer interoperability. Please consider it an implementation
736
+ /// detail that may change in the future, as formal support for smart-pointer
737
+ /// interoperability is added into pybind11.
738
+ template <typename type, typename holder_type, typename SFINAE = void>
739
+ struct copyable_holder_caster : public type_caster_base<type> {
740
+ public:
741
+ using base = type_caster_base<type>;
742
+ static_assert(std::is_base_of<base, type_caster<type>>::value,
743
+ "Holder classes are only supported for custom types");
744
+ using base::base;
745
+ using base::cast;
746
+ using base::typeinfo;
747
+ using base::value;
748
+
749
+ bool load(handle src, bool convert) {
750
+ return base::template load_impl<copyable_holder_caster<type, holder_type>>(src, convert);
751
+ }
752
+
753
+ explicit operator type *() { return this->value; }
754
+ // static_cast works around compiler error with MSVC 17 and CUDA 10.2
755
+ // see issue #2180
756
+ explicit operator type &() { return *(static_cast<type *>(this->value)); }
757
+ explicit operator holder_type *() { return std::addressof(holder); }
758
+ explicit operator holder_type &() { return holder; }
759
+
760
+ static handle cast(const holder_type &src, return_value_policy, handle) {
761
+ const auto *ptr = holder_helper<holder_type>::get(src);
762
+ return type_caster_base<type>::cast_holder(ptr, &src);
763
+ }
764
+
765
+ protected:
766
+ friend class type_caster_generic;
767
+ void check_holder_compat() {
768
+ if (typeinfo->default_holder) {
769
+ throw cast_error("Unable to load a custom holder type from a default-holder instance");
770
+ }
771
+ }
772
+
773
+ bool load_value(value_and_holder &&v_h) {
774
+ if (v_h.holder_constructed()) {
775
+ value = v_h.value_ptr();
776
+ holder = v_h.template holder<holder_type>();
777
+ return true;
778
+ }
779
+ throw cast_error("Unable to cast from non-held to held instance (T& to Holder<T>) "
780
+ #if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
781
+ "(#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for "
782
+ "type information)");
783
+ #else
784
+ "of type '"
785
+ + type_id<holder_type>() + "''");
786
+ #endif
787
+ }
788
+
789
+ template <typename T = holder_type,
790
+ detail::enable_if_t<!std::is_constructible<T, const T &, type *>::value, int> = 0>
791
+ bool try_implicit_casts(handle, bool) {
792
+ return false;
793
+ }
794
+
795
+ template <typename T = holder_type,
796
+ detail::enable_if_t<std::is_constructible<T, const T &, type *>::value, int> = 0>
797
+ bool try_implicit_casts(handle src, bool convert) {
798
+ for (auto &cast : typeinfo->implicit_casts) {
799
+ copyable_holder_caster sub_caster(*cast.first);
800
+ if (sub_caster.load(src, convert)) {
801
+ value = cast.second(sub_caster.value);
802
+ holder = holder_type(sub_caster.holder, (type *) value);
803
+ return true;
804
+ }
805
+ }
806
+ return false;
807
+ }
808
+
809
+ static bool try_direct_conversions(handle) { return false; }
810
+
811
+ holder_type holder;
812
+ };
813
+
814
+ /// Specialize for the common std::shared_ptr, so users don't need to
815
+ template <typename T>
816
+ class type_caster<std::shared_ptr<T>> : public copyable_holder_caster<T, std::shared_ptr<T>> {};
817
+
818
+ /// Type caster for holder types like std::unique_ptr.
819
+ /// Please consider the SFINAE hook an implementation detail, as explained
820
+ /// in the comment for the copyable_holder_caster.
821
+ template <typename type, typename holder_type, typename SFINAE = void>
822
+ struct move_only_holder_caster {
823
+ static_assert(std::is_base_of<type_caster_base<type>, type_caster<type>>::value,
824
+ "Holder classes are only supported for custom types");
825
+
826
+ static handle cast(holder_type &&src, return_value_policy, handle) {
827
+ auto *ptr = holder_helper<holder_type>::get(src);
828
+ return type_caster_base<type>::cast_holder(ptr, std::addressof(src));
829
+ }
830
+ static constexpr auto name = type_caster_base<type>::name;
831
+ };
832
+
833
+ template <typename type, typename deleter>
834
+ class type_caster<std::unique_ptr<type, deleter>>
835
+ : public move_only_holder_caster<type, std::unique_ptr<type, deleter>> {};
836
+
837
+ template <typename type, typename holder_type>
838
+ using type_caster_holder = conditional_t<is_copy_constructible<holder_type>::value,
839
+ copyable_holder_caster<type, holder_type>,
840
+ move_only_holder_caster<type, holder_type>>;
841
+
842
+ template <typename T, bool Value = false>
843
+ struct always_construct_holder {
844
+ static constexpr bool value = Value;
845
+ };
846
+
847
+ /// Create a specialization for custom holder types (silently ignores std::shared_ptr)
848
+ #define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \
849
+ namespace pybind11 { \
850
+ namespace detail { \
851
+ template <typename type> \
852
+ struct always_construct_holder<holder_type> : always_construct_holder<void, ##__VA_ARGS__> { \
853
+ }; \
854
+ template <typename type> \
855
+ class type_caster<holder_type, enable_if_t<!is_shared_ptr<holder_type>::value>> \
856
+ : public type_caster_holder<type, holder_type> {}; \
857
+ } \
858
+ }
859
+
860
+ // PYBIND11_DECLARE_HOLDER_TYPE holder types:
861
+ template <typename base, typename holder>
862
+ struct is_holder_type
863
+ : std::is_base_of<detail::type_caster_holder<base, holder>, detail::type_caster<holder>> {};
864
+ // Specialization for always-supported unique_ptr holders:
865
+ template <typename base, typename deleter>
866
+ struct is_holder_type<base, std::unique_ptr<base, deleter>> : std::true_type {};
867
+
868
+ template <typename T>
869
+ struct handle_type_name {
870
+ static constexpr auto name = const_name<T>();
871
+ };
872
+ template <>
873
+ struct handle_type_name<bool_> {
874
+ static constexpr auto name = const_name("bool");
875
+ };
876
+ template <>
877
+ struct handle_type_name<bytes> {
878
+ static constexpr auto name = const_name(PYBIND11_BYTES_NAME);
879
+ };
880
+ template <>
881
+ struct handle_type_name<int_> {
882
+ static constexpr auto name = const_name("int");
883
+ };
884
+ template <>
885
+ struct handle_type_name<iterable> {
886
+ static constexpr auto name = const_name("Iterable");
887
+ };
888
+ template <>
889
+ struct handle_type_name<iterator> {
890
+ static constexpr auto name = const_name("Iterator");
891
+ };
892
+ template <>
893
+ struct handle_type_name<float_> {
894
+ static constexpr auto name = const_name("float");
895
+ };
896
+ template <>
897
+ struct handle_type_name<none> {
898
+ static constexpr auto name = const_name("None");
899
+ };
900
+ template <>
901
+ struct handle_type_name<args> {
902
+ static constexpr auto name = const_name("*args");
903
+ };
904
+ template <>
905
+ struct handle_type_name<kwargs> {
906
+ static constexpr auto name = const_name("**kwargs");
907
+ };
908
+
909
+ template <typename type>
910
+ struct pyobject_caster {
911
+ template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0>
912
+ pyobject_caster() : value() {}
913
+
914
+ // `type` may not be default constructible (e.g. frozenset, anyset). Initializing `value`
915
+ // to a nil handle is safe since it will only be accessed if `load` succeeds.
916
+ template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0>
917
+ pyobject_caster() : value(reinterpret_steal<type>(handle())) {}
918
+
919
+ template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0>
920
+ bool load(handle src, bool /* convert */) {
921
+ value = src;
922
+ return static_cast<bool>(value);
923
+ }
924
+
925
+ template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0>
926
+ bool load(handle src, bool /* convert */) {
927
+ if (!isinstance<type>(src)) {
928
+ return false;
929
+ }
930
+ value = reinterpret_borrow<type>(src);
931
+ return true;
932
+ }
933
+
934
+ static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) {
935
+ return src.inc_ref();
936
+ }
937
+ PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name);
938
+ };
939
+
940
+ template <typename T>
941
+ class type_caster<T, enable_if_t<is_pyobject<T>::value>> : public pyobject_caster<T> {};
942
+
943
+ // Our conditions for enabling moving are quite restrictive:
944
+ // At compile time:
945
+ // - T needs to be a non-const, non-pointer, non-reference type
946
+ // - type_caster<T>::operator T&() must exist
947
+ // - the type must be move constructible (obviously)
948
+ // At run-time:
949
+ // - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it
950
+ // must have ref_count() == 1)h
951
+ // If any of the above are not satisfied, we fall back to copying.
952
+ template <typename T>
953
+ using move_is_plain_type
954
+ = satisfies_none_of<T, std::is_void, std::is_pointer, std::is_reference, std::is_const>;
955
+ template <typename T, typename SFINAE = void>
956
+ struct move_always : std::false_type {};
957
+ template <typename T>
958
+ struct move_always<
959
+ T,
960
+ enable_if_t<
961
+ all_of<move_is_plain_type<T>,
962
+ negation<is_copy_constructible<T>>,
963
+ std::is_move_constructible<T>,
964
+ std::is_same<decltype(std::declval<make_caster<T>>().operator T &()), T &>>::value>>
965
+ : std::true_type {};
966
+ template <typename T, typename SFINAE = void>
967
+ struct move_if_unreferenced : std::false_type {};
968
+ template <typename T>
969
+ struct move_if_unreferenced<
970
+ T,
971
+ enable_if_t<
972
+ all_of<move_is_plain_type<T>,
973
+ negation<move_always<T>>,
974
+ std::is_move_constructible<T>,
975
+ std::is_same<decltype(std::declval<make_caster<T>>().operator T &()), T &>>::value>>
976
+ : std::true_type {};
977
+ template <typename T>
978
+ using move_never = none_of<move_always<T>, move_if_unreferenced<T>>;
979
+
980
+ // Detect whether returning a `type` from a cast on type's type_caster is going to result in a
981
+ // reference or pointer to a local variable of the type_caster. Basically, only
982
+ // non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe;
983
+ // everything else returns a reference/pointer to a local variable.
984
+ template <typename type>
985
+ using cast_is_temporary_value_reference
986
+ = bool_constant<(std::is_reference<type>::value || std::is_pointer<type>::value)
987
+ && !std::is_base_of<type_caster_generic, make_caster<type>>::value
988
+ && !std::is_same<intrinsic_t<type>, void>::value>;
989
+
990
+ // When a value returned from a C++ function is being cast back to Python, we almost always want to
991
+ // force `policy = move`, regardless of the return value policy the function/method was declared
992
+ // with.
993
+ template <typename Return, typename SFINAE = void>
994
+ struct return_value_policy_override {
995
+ static return_value_policy policy(return_value_policy p) { return p; }
996
+ };
997
+
998
+ template <typename Return>
999
+ struct return_value_policy_override<
1000
+ Return,
1001
+ detail::enable_if_t<std::is_base_of<type_caster_generic, make_caster<Return>>::value, void>> {
1002
+ static return_value_policy policy(return_value_policy p) {
1003
+ return !std::is_lvalue_reference<Return>::value && !std::is_pointer<Return>::value
1004
+ ? return_value_policy::move
1005
+ : p;
1006
+ }
1007
+ };
1008
+
1009
+ // Basic python -> C++ casting; throws if casting fails
1010
+ template <typename T, typename SFINAE>
1011
+ type_caster<T, SFINAE> &load_type(type_caster<T, SFINAE> &conv, const handle &handle) {
1012
+ static_assert(!detail::is_pyobject<T>::value,
1013
+ "Internal error: type_caster should only be used for C++ types");
1014
+ if (!conv.load(handle, true)) {
1015
+ #if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
1016
+ throw cast_error("Unable to cast Python instance to C++ type (#define "
1017
+ "PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)");
1018
+ #else
1019
+ throw cast_error("Unable to cast Python instance of type "
1020
+ + (std::string) str(type::handle_of(handle)) + " to C++ type '"
1021
+ + type_id<T>() + "'");
1022
+ #endif
1023
+ }
1024
+ return conv;
1025
+ }
1026
+ // Wrapper around the above that also constructs and returns a type_caster
1027
+ template <typename T>
1028
+ make_caster<T> load_type(const handle &handle) {
1029
+ make_caster<T> conv;
1030
+ load_type(conv, handle);
1031
+ return conv;
1032
+ }
1033
+
1034
+ PYBIND11_NAMESPACE_END(detail)
1035
+
1036
+ // pytype -> C++ type
1037
+ template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
1038
+ T cast(const handle &handle) {
1039
+ using namespace detail;
1040
+ static_assert(!cast_is_temporary_value_reference<T>::value,
1041
+ "Unable to cast type to reference: value is local to type caster");
1042
+ return cast_op<T>(load_type<T>(handle));
1043
+ }
1044
+
1045
+ // pytype -> pytype (calls converting constructor)
1046
+ template <typename T, detail::enable_if_t<detail::is_pyobject<T>::value, int> = 0>
1047
+ T cast(const handle &handle) {
1048
+ return T(reinterpret_borrow<object>(handle));
1049
+ }
1050
+
1051
+ // C++ type -> py::object
1052
+ template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
1053
+ object cast(T &&value,
1054
+ return_value_policy policy = return_value_policy::automatic_reference,
1055
+ handle parent = handle()) {
1056
+ using no_ref_T = typename std::remove_reference<T>::type;
1057
+ if (policy == return_value_policy::automatic) {
1058
+ policy = std::is_pointer<no_ref_T>::value ? return_value_policy::take_ownership
1059
+ : std::is_lvalue_reference<T>::value ? return_value_policy::copy
1060
+ : return_value_policy::move;
1061
+ } else if (policy == return_value_policy::automatic_reference) {
1062
+ policy = std::is_pointer<no_ref_T>::value ? return_value_policy::reference
1063
+ : std::is_lvalue_reference<T>::value ? return_value_policy::copy
1064
+ : return_value_policy::move;
1065
+ }
1066
+ return reinterpret_steal<object>(
1067
+ detail::make_caster<T>::cast(std::forward<T>(value), policy, parent));
1068
+ }
1069
+
1070
+ template <typename T>
1071
+ T handle::cast() const {
1072
+ return pybind11::cast<T>(*this);
1073
+ }
1074
+ template <>
1075
+ inline void handle::cast() const {
1076
+ return;
1077
+ }
1078
+
1079
+ template <typename T>
1080
+ detail::enable_if_t<!detail::move_never<T>::value, T> move(object &&obj) {
1081
+ if (obj.ref_count() > 1) {
1082
+ #if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
1083
+ throw cast_error(
1084
+ "Unable to cast Python instance to C++ rvalue: instance has multiple references"
1085
+ " (#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)");
1086
+ #else
1087
+ throw cast_error("Unable to move from Python " + (std::string) str(type::handle_of(obj))
1088
+ + " instance to C++ " + type_id<T>()
1089
+ + " instance: instance has multiple references");
1090
+ #endif
1091
+ }
1092
+
1093
+ // Move into a temporary and return that, because the reference may be a local value of `conv`
1094
+ T ret = std::move(detail::load_type<T>(obj).operator T &());
1095
+ return ret;
1096
+ }
1097
+
1098
+ // Calling cast() on an rvalue calls pybind11::cast with the object rvalue, which does:
1099
+ // - If we have to move (because T has no copy constructor), do it. This will fail if the moved
1100
+ // object has multiple references, but trying to copy will fail to compile.
1101
+ // - If both movable and copyable, check ref count: if 1, move; otherwise copy
1102
+ // - Otherwise (not movable), copy.
1103
+ template <typename T>
1104
+ detail::enable_if_t<!detail::is_pyobject<T>::value && detail::move_always<T>::value, T>
1105
+ cast(object &&object) {
1106
+ return move<T>(std::move(object));
1107
+ }
1108
+ template <typename T>
1109
+ detail::enable_if_t<!detail::is_pyobject<T>::value && detail::move_if_unreferenced<T>::value, T>
1110
+ cast(object &&object) {
1111
+ if (object.ref_count() > 1) {
1112
+ return cast<T>(object);
1113
+ }
1114
+ return move<T>(std::move(object));
1115
+ }
1116
+ template <typename T>
1117
+ detail::enable_if_t<!detail::is_pyobject<T>::value && detail::move_never<T>::value, T>
1118
+ cast(object &&object) {
1119
+ return cast<T>(object);
1120
+ }
1121
+
1122
+ // pytype rvalue -> pytype (calls converting constructor)
1123
+ template <typename T>
1124
+ detail::enable_if_t<detail::is_pyobject<T>::value, T> cast(object &&object) {
1125
+ return T(std::move(object));
1126
+ }
1127
+
1128
+ template <typename T>
1129
+ T object::cast() const & {
1130
+ return pybind11::cast<T>(*this);
1131
+ }
1132
+ template <typename T>
1133
+ T object::cast() && {
1134
+ return pybind11::cast<T>(std::move(*this));
1135
+ }
1136
+ template <>
1137
+ inline void object::cast() const & {
1138
+ return;
1139
+ }
1140
+ template <>
1141
+ inline void object::cast() && {
1142
+ return;
1143
+ }
1144
+
1145
+ PYBIND11_NAMESPACE_BEGIN(detail)
1146
+
1147
+ // Declared in pytypes.h:
1148
+ template <typename T, enable_if_t<!is_pyobject<T>::value, int>>
1149
+ object object_or_cast(T &&o) {
1150
+ return pybind11::cast(std::forward<T>(o));
1151
+ }
1152
+
1153
+ // Placeholder type for the unneeded (and dead code) static variable in the
1154
+ // PYBIND11_OVERRIDE_OVERRIDE macro
1155
+ struct override_unused {};
1156
+ template <typename ret_type>
1157
+ using override_caster_t = conditional_t<cast_is_temporary_value_reference<ret_type>::value,
1158
+ make_caster<ret_type>,
1159
+ override_unused>;
1160
+
1161
+ // Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then
1162
+ // store the result in the given variable. For other types, this is a no-op.
1163
+ template <typename T>
1164
+ enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&o,
1165
+ make_caster<T> &caster) {
1166
+ return cast_op<T>(load_type(caster, o));
1167
+ }
1168
+ template <typename T>
1169
+ enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&,
1170
+ override_unused &) {
1171
+ pybind11_fail("Internal error: cast_ref fallback invoked");
1172
+ }
1173
+
1174
+ // Trampoline use: Having a pybind11::cast with an invalid reference type is going to
1175
+ // static_assert, even though if it's in dead code, so we provide a "trampoline" to pybind11::cast
1176
+ // that only does anything in cases where pybind11::cast is valid.
1177
+ template <typename T>
1178
+ enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&) {
1179
+ pybind11_fail("Internal error: cast_safe fallback invoked");
1180
+ }
1181
+ template <typename T>
1182
+ enable_if_t<std::is_same<void, intrinsic_t<T>>::value, void> cast_safe(object &&) {}
1183
+ template <typename T>
1184
+ enable_if_t<detail::none_of<cast_is_temporary_value_reference<T>,
1185
+ std::is_same<void, intrinsic_t<T>>>::value,
1186
+ T>
1187
+ cast_safe(object &&o) {
1188
+ return pybind11::cast<T>(std::move(o));
1189
+ }
1190
+
1191
+ PYBIND11_NAMESPACE_END(detail)
1192
+
1193
+ // The overloads could coexist, i.e. the #if is not strictly speaking needed,
1194
+ // but it is an easy minor optimization.
1195
+ #if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
1196
+ inline cast_error cast_error_unable_to_convert_call_arg() {
1197
+ return cast_error("Unable to convert call argument to Python object (#define "
1198
+ "PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)");
1199
+ }
1200
+ #else
1201
+ inline cast_error cast_error_unable_to_convert_call_arg(const std::string &name,
1202
+ const std::string &type) {
1203
+ return cast_error("Unable to convert call argument '" + name + "' of type '" + type
1204
+ + "' to Python object");
1205
+ }
1206
+ #endif
1207
+
1208
+ template <return_value_policy policy = return_value_policy::automatic_reference>
1209
+ tuple make_tuple() {
1210
+ return tuple(0);
1211
+ }
1212
+
1213
+ template <return_value_policy policy = return_value_policy::automatic_reference, typename... Args>
1214
+ tuple make_tuple(Args &&...args_) {
1215
+ constexpr size_t size = sizeof...(Args);
1216
+ std::array<object, size> args{{reinterpret_steal<object>(
1217
+ detail::make_caster<Args>::cast(std::forward<Args>(args_), policy, nullptr))...}};
1218
+ for (size_t i = 0; i < args.size(); i++) {
1219
+ if (!args[i]) {
1220
+ #if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
1221
+ throw cast_error_unable_to_convert_call_arg();
1222
+ #else
1223
+ std::array<std::string, size> argtypes{{type_id<Args>()...}};
1224
+ throw cast_error_unable_to_convert_call_arg(std::to_string(i), argtypes[i]);
1225
+ #endif
1226
+ }
1227
+ }
1228
+ tuple result(size);
1229
+ int counter = 0;
1230
+ for (auto &arg_value : args) {
1231
+ PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr());
1232
+ }
1233
+ return result;
1234
+ }
1235
+
1236
+ /// \ingroup annotations
1237
+ /// Annotation for arguments
1238
+ struct arg {
1239
+ /// Constructs an argument with the name of the argument; if null or omitted, this is a
1240
+ /// positional argument.
1241
+ constexpr explicit arg(const char *name = nullptr)
1242
+ : name(name), flag_noconvert(false), flag_none(true) {}
1243
+ /// Assign a value to this argument
1244
+ template <typename T>
1245
+ arg_v operator=(T &&value) const;
1246
+ /// Indicate that the type should not be converted in the type caster
1247
+ arg &noconvert(bool flag = true) {
1248
+ flag_noconvert = flag;
1249
+ return *this;
1250
+ }
1251
+ /// Indicates that the argument should/shouldn't allow None (e.g. for nullable pointer args)
1252
+ arg &none(bool flag = true) {
1253
+ flag_none = flag;
1254
+ return *this;
1255
+ }
1256
+
1257
+ const char *name; ///< If non-null, this is a named kwargs argument
1258
+ bool flag_noconvert : 1; ///< If set, do not allow conversion (requires a supporting type
1259
+ ///< caster!)
1260
+ bool flag_none : 1; ///< If set (the default), allow None to be passed to this argument
1261
+ };
1262
+
1263
+ /// \ingroup annotations
1264
+ /// Annotation for arguments with values
1265
+ struct arg_v : arg {
1266
+ private:
1267
+ template <typename T>
1268
+ arg_v(arg &&base, T &&x, const char *descr = nullptr)
1269
+ : arg(base), value(reinterpret_steal<object>(detail::make_caster<T>::cast(
1270
+ std::forward<T>(x), return_value_policy::automatic, {}))),
1271
+ descr(descr)
1272
+ #if defined(PYBIND11_DETAILED_ERROR_MESSAGES)
1273
+ ,
1274
+ type(type_id<T>())
1275
+ #endif
1276
+ {
1277
+ // Workaround! See:
1278
+ // https://github.com/pybind/pybind11/issues/2336
1279
+ // https://github.com/pybind/pybind11/pull/2685#issuecomment-731286700
1280
+ if (PyErr_Occurred()) {
1281
+ PyErr_Clear();
1282
+ }
1283
+ }
1284
+
1285
+ public:
1286
+ /// Direct construction with name, default, and description
1287
+ template <typename T>
1288
+ arg_v(const char *name, T &&x, const char *descr = nullptr)
1289
+ : arg_v(arg(name), std::forward<T>(x), descr) {}
1290
+
1291
+ /// Called internally when invoking `py::arg("a") = value`
1292
+ template <typename T>
1293
+ arg_v(const arg &base, T &&x, const char *descr = nullptr)
1294
+ : arg_v(arg(base), std::forward<T>(x), descr) {}
1295
+
1296
+ /// Same as `arg::noconvert()`, but returns *this as arg_v&, not arg&
1297
+ arg_v &noconvert(bool flag = true) {
1298
+ arg::noconvert(flag);
1299
+ return *this;
1300
+ }
1301
+
1302
+ /// Same as `arg::nonone()`, but returns *this as arg_v&, not arg&
1303
+ arg_v &none(bool flag = true) {
1304
+ arg::none(flag);
1305
+ return *this;
1306
+ }
1307
+
1308
+ /// The default value
1309
+ object value;
1310
+ /// The (optional) description of the default value
1311
+ const char *descr;
1312
+ #if defined(PYBIND11_DETAILED_ERROR_MESSAGES)
1313
+ /// The C++ type name of the default value (only available when compiled in debug mode)
1314
+ std::string type;
1315
+ #endif
1316
+ };
1317
+
1318
+ /// \ingroup annotations
1319
+ /// Annotation indicating that all following arguments are keyword-only; the is the equivalent of
1320
+ /// an unnamed '*' argument
1321
+ struct kw_only {};
1322
+
1323
+ /// \ingroup annotations
1324
+ /// Annotation indicating that all previous arguments are positional-only; the is the equivalent of
1325
+ /// an unnamed '/' argument (in Python 3.8)
1326
+ struct pos_only {};
1327
+
1328
+ template <typename T>
1329
+ arg_v arg::operator=(T &&value) const {
1330
+ return {*this, std::forward<T>(value)};
1331
+ }
1332
+
1333
+ /// Alias for backward compatibility -- to be removed in version 2.0
1334
+ template <typename /*unused*/>
1335
+ using arg_t = arg_v;
1336
+
1337
+ inline namespace literals {
1338
+ /** \rst
1339
+ String literal version of `arg`
1340
+ \endrst */
1341
+ constexpr arg operator"" _a(const char *name, size_t) { return arg(name); }
1342
+ } // namespace literals
1343
+
1344
+ PYBIND11_NAMESPACE_BEGIN(detail)
1345
+
1346
+ template <typename T>
1347
+ using is_kw_only = std::is_same<intrinsic_t<T>, kw_only>;
1348
+ template <typename T>
1349
+ using is_pos_only = std::is_same<intrinsic_t<T>, pos_only>;
1350
+
1351
+ // forward declaration (definition in attr.h)
1352
+ struct function_record;
1353
+
1354
+ /// Internal data associated with a single function call
1355
+ struct function_call {
1356
+ function_call(const function_record &f, handle p); // Implementation in attr.h
1357
+
1358
+ /// The function data:
1359
+ const function_record &func;
1360
+
1361
+ /// Arguments passed to the function:
1362
+ std::vector<handle> args;
1363
+
1364
+ /// The `convert` value the arguments should be loaded with
1365
+ std::vector<bool> args_convert;
1366
+
1367
+ /// Extra references for the optional `py::args` and/or `py::kwargs` arguments (which, if
1368
+ /// present, are also in `args` but without a reference).
1369
+ object args_ref, kwargs_ref;
1370
+
1371
+ /// The parent, if any
1372
+ handle parent;
1373
+
1374
+ /// If this is a call to an initializer, this argument contains `self`
1375
+ handle init_self;
1376
+ };
1377
+
1378
+ /// Helper class which loads arguments for C++ functions called from Python
1379
+ template <typename... Args>
1380
+ class argument_loader {
1381
+ using indices = make_index_sequence<sizeof...(Args)>;
1382
+
1383
+ template <typename Arg>
1384
+ using argument_is_args = std::is_same<intrinsic_t<Arg>, args>;
1385
+ template <typename Arg>
1386
+ using argument_is_kwargs = std::is_same<intrinsic_t<Arg>, kwargs>;
1387
+ // Get kwargs argument position, or -1 if not present:
1388
+ static constexpr auto kwargs_pos = constexpr_last<argument_is_kwargs, Args...>();
1389
+
1390
+ static_assert(kwargs_pos == -1 || kwargs_pos == (int) sizeof...(Args) - 1,
1391
+ "py::kwargs is only permitted as the last argument of a function");
1392
+
1393
+ public:
1394
+ static constexpr bool has_kwargs = kwargs_pos != -1;
1395
+
1396
+ // py::args argument position; -1 if not present.
1397
+ static constexpr int args_pos = constexpr_last<argument_is_args, Args...>();
1398
+
1399
+ static_assert(args_pos == -1 || args_pos == constexpr_first<argument_is_args, Args...>(),
1400
+ "py::args cannot be specified more than once");
1401
+
1402
+ static constexpr auto arg_names = concat(type_descr(make_caster<Args>::name)...);
1403
+
1404
+ bool load_args(function_call &call) { return load_impl_sequence(call, indices{}); }
1405
+
1406
+ template <typename Return, typename Guard, typename Func>
1407
+ // NOLINTNEXTLINE(readability-const-return-type)
1408
+ enable_if_t<!std::is_void<Return>::value, Return> call(Func &&f) && {
1409
+ return std::move(*this).template call_impl<remove_cv_t<Return>>(
1410
+ std::forward<Func>(f), indices{}, Guard{});
1411
+ }
1412
+
1413
+ template <typename Return, typename Guard, typename Func>
1414
+ enable_if_t<std::is_void<Return>::value, void_type> call(Func &&f) && {
1415
+ std::move(*this).template call_impl<remove_cv_t<Return>>(
1416
+ std::forward<Func>(f), indices{}, Guard{});
1417
+ return void_type();
1418
+ }
1419
+
1420
+ private:
1421
+ static bool load_impl_sequence(function_call &, index_sequence<>) { return true; }
1422
+
1423
+ template <size_t... Is>
1424
+ bool load_impl_sequence(function_call &call, index_sequence<Is...>) {
1425
+ #ifdef __cpp_fold_expressions
1426
+ if ((... || !std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is]))) {
1427
+ return false;
1428
+ }
1429
+ #else
1430
+ for (bool r : {std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is])...}) {
1431
+ if (!r) {
1432
+ return false;
1433
+ }
1434
+ }
1435
+ #endif
1436
+ return true;
1437
+ }
1438
+
1439
+ template <typename Return, typename Func, size_t... Is, typename Guard>
1440
+ Return call_impl(Func &&f, index_sequence<Is...>, Guard &&) && {
1441
+ return std::forward<Func>(f)(cast_op<Args>(std::move(std::get<Is>(argcasters)))...);
1442
+ }
1443
+
1444
+ std::tuple<make_caster<Args>...> argcasters;
1445
+ };
1446
+
1447
+ /// Helper class which collects only positional arguments for a Python function call.
1448
+ /// A fancier version below can collect any argument, but this one is optimal for simple calls.
1449
+ template <return_value_policy policy>
1450
+ class simple_collector {
1451
+ public:
1452
+ template <typename... Ts>
1453
+ explicit simple_collector(Ts &&...values)
1454
+ : m_args(pybind11::make_tuple<policy>(std::forward<Ts>(values)...)) {}
1455
+
1456
+ const tuple &args() const & { return m_args; }
1457
+ dict kwargs() const { return {}; }
1458
+
1459
+ tuple args() && { return std::move(m_args); }
1460
+
1461
+ /// Call a Python function and pass the collected arguments
1462
+ object call(PyObject *ptr) const {
1463
+ PyObject *result = PyObject_CallObject(ptr, m_args.ptr());
1464
+ if (!result) {
1465
+ throw error_already_set();
1466
+ }
1467
+ return reinterpret_steal<object>(result);
1468
+ }
1469
+
1470
+ private:
1471
+ tuple m_args;
1472
+ };
1473
+
1474
+ /// Helper class which collects positional, keyword, * and ** arguments for a Python function call
1475
+ template <return_value_policy policy>
1476
+ class unpacking_collector {
1477
+ public:
1478
+ template <typename... Ts>
1479
+ explicit unpacking_collector(Ts &&...values) {
1480
+ // Tuples aren't (easily) resizable so a list is needed for collection,
1481
+ // but the actual function call strictly requires a tuple.
1482
+ auto args_list = list();
1483
+ using expander = int[];
1484
+ (void) expander{0, (process(args_list, std::forward<Ts>(values)), 0)...};
1485
+
1486
+ m_args = std::move(args_list);
1487
+ }
1488
+
1489
+ const tuple &args() const & { return m_args; }
1490
+ const dict &kwargs() const & { return m_kwargs; }
1491
+
1492
+ tuple args() && { return std::move(m_args); }
1493
+ dict kwargs() && { return std::move(m_kwargs); }
1494
+
1495
+ /// Call a Python function and pass the collected arguments
1496
+ object call(PyObject *ptr) const {
1497
+ PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr());
1498
+ if (!result) {
1499
+ throw error_already_set();
1500
+ }
1501
+ return reinterpret_steal<object>(result);
1502
+ }
1503
+
1504
+ private:
1505
+ template <typename T>
1506
+ void process(list &args_list, T &&x) {
1507
+ auto o = reinterpret_steal<object>(
1508
+ detail::make_caster<T>::cast(std::forward<T>(x), policy, {}));
1509
+ if (!o) {
1510
+ #if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
1511
+ throw cast_error_unable_to_convert_call_arg();
1512
+ #else
1513
+ throw cast_error_unable_to_convert_call_arg(std::to_string(args_list.size()),
1514
+ type_id<T>());
1515
+ #endif
1516
+ }
1517
+ args_list.append(std::move(o));
1518
+ }
1519
+
1520
+ void process(list &args_list, detail::args_proxy ap) {
1521
+ for (auto a : ap) {
1522
+ args_list.append(a);
1523
+ }
1524
+ }
1525
+
1526
+ void process(list & /*args_list*/, arg_v a) {
1527
+ if (!a.name) {
1528
+ #if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
1529
+ nameless_argument_error();
1530
+ #else
1531
+ nameless_argument_error(a.type);
1532
+ #endif
1533
+ }
1534
+ if (m_kwargs.contains(a.name)) {
1535
+ #if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
1536
+ multiple_values_error();
1537
+ #else
1538
+ multiple_values_error(a.name);
1539
+ #endif
1540
+ }
1541
+ if (!a.value) {
1542
+ #if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
1543
+ throw cast_error_unable_to_convert_call_arg();
1544
+ #else
1545
+ throw cast_error_unable_to_convert_call_arg(a.name, a.type);
1546
+ #endif
1547
+ }
1548
+ m_kwargs[a.name] = a.value;
1549
+ }
1550
+
1551
+ void process(list & /*args_list*/, detail::kwargs_proxy kp) {
1552
+ if (!kp) {
1553
+ return;
1554
+ }
1555
+ for (auto k : reinterpret_borrow<dict>(kp)) {
1556
+ if (m_kwargs.contains(k.first)) {
1557
+ #if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
1558
+ multiple_values_error();
1559
+ #else
1560
+ multiple_values_error(str(k.first));
1561
+ #endif
1562
+ }
1563
+ m_kwargs[k.first] = k.second;
1564
+ }
1565
+ }
1566
+
1567
+ [[noreturn]] static void nameless_argument_error() {
1568
+ throw type_error(
1569
+ "Got kwargs without a name; only named arguments "
1570
+ "may be passed via py::arg() to a python function call. "
1571
+ "(#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)");
1572
+ }
1573
+ [[noreturn]] static void nameless_argument_error(const std::string &type) {
1574
+ throw type_error("Got kwargs without a name of type '" + type
1575
+ + "'; only named "
1576
+ "arguments may be passed via py::arg() to a python function call. ");
1577
+ }
1578
+ [[noreturn]] static void multiple_values_error() {
1579
+ throw type_error(
1580
+ "Got multiple values for keyword argument "
1581
+ "(#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)");
1582
+ }
1583
+
1584
+ [[noreturn]] static void multiple_values_error(const std::string &name) {
1585
+ throw type_error("Got multiple values for keyword argument '" + name + "'");
1586
+ }
1587
+
1588
+ private:
1589
+ tuple m_args;
1590
+ dict m_kwargs;
1591
+ };
1592
+
1593
+ // [workaround(intel)] Separate function required here
1594
+ // We need to put this into a separate function because the Intel compiler
1595
+ // fails to compile enable_if_t<!all_of<is_positional<Args>...>::value>
1596
+ // (tested with ICC 2021.1 Beta 20200827).
1597
+ template <typename... Args>
1598
+ constexpr bool args_are_all_positional() {
1599
+ return all_of<is_positional<Args>...>::value;
1600
+ }
1601
+
1602
+ /// Collect only positional arguments for a Python function call
1603
+ template <return_value_policy policy,
1604
+ typename... Args,
1605
+ typename = enable_if_t<args_are_all_positional<Args...>()>>
1606
+ simple_collector<policy> collect_arguments(Args &&...args) {
1607
+ return simple_collector<policy>(std::forward<Args>(args)...);
1608
+ }
1609
+
1610
+ /// Collect all arguments, including keywords and unpacking (only instantiated when needed)
1611
+ template <return_value_policy policy,
1612
+ typename... Args,
1613
+ typename = enable_if_t<!args_are_all_positional<Args...>()>>
1614
+ unpacking_collector<policy> collect_arguments(Args &&...args) {
1615
+ // Following argument order rules for generalized unpacking according to PEP 448
1616
+ static_assert(constexpr_last<is_positional, Args...>()
1617
+ < constexpr_first<is_keyword_or_ds, Args...>()
1618
+ && constexpr_last<is_s_unpacking, Args...>()
1619
+ < constexpr_first<is_ds_unpacking, Args...>(),
1620
+ "Invalid function call: positional args must precede keywords and ** unpacking; "
1621
+ "* unpacking must precede ** unpacking");
1622
+ return unpacking_collector<policy>(std::forward<Args>(args)...);
1623
+ }
1624
+
1625
+ template <typename Derived>
1626
+ template <return_value_policy policy, typename... Args>
1627
+ object object_api<Derived>::operator()(Args &&...args) const {
1628
+ #if defined(PYBIND11_DETAILED_ERROR_MESSAGES)
1629
+ if (!PyGILState_Check()) {
1630
+ pybind11_fail("pybind11::object_api<>::operator() PyGILState_Check() failure.");
1631
+ }
1632
+ #endif
1633
+ return detail::collect_arguments<policy>(std::forward<Args>(args)...).call(derived().ptr());
1634
+ }
1635
+
1636
+ template <typename Derived>
1637
+ template <return_value_policy policy, typename... Args>
1638
+ object object_api<Derived>::call(Args &&...args) const {
1639
+ return operator()<policy>(std::forward<Args>(args)...);
1640
+ }
1641
+
1642
+ PYBIND11_NAMESPACE_END(detail)
1643
+
1644
+ template <typename T>
1645
+ handle type::handle_of() {
1646
+ static_assert(std::is_base_of<detail::type_caster_generic, detail::make_caster<T>>::value,
1647
+ "py::type::of<T> only supports the case where T is a registered C++ types.");
1648
+
1649
+ return detail::get_type_handle(typeid(T), true);
1650
+ }
1651
+
1652
+ #define PYBIND11_MAKE_OPAQUE(...) \
1653
+ namespace pybind11 { \
1654
+ namespace detail { \
1655
+ template <> \
1656
+ class type_caster<__VA_ARGS__> : public type_caster_base<__VA_ARGS__> {}; \
1657
+ } \
1658
+ }
1659
+
1660
+ /// Lets you pass a type containing a `,` through a macro parameter without needing a separate
1661
+ /// typedef, e.g.:
1662
+ /// `PYBIND11_OVERRIDE(PYBIND11_TYPE(ReturnType<A, B>), PYBIND11_TYPE(Parent<C, D>), f, arg)`
1663
+ #define PYBIND11_TYPE(...) __VA_ARGS__
1664
+
1665
+ PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
third-party/DPVO/DPViewer/pybind11/include/pybind11/chrono.h ADDED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ pybind11/chrono.h: Transparent conversion between std::chrono and python's datetime
3
+
4
+ Copyright (c) 2016 Trent Houliston <[email protected]> and
5
+ Wenzel Jakob <[email protected]>
6
+
7
+ All rights reserved. Use of this source code is governed by a
8
+ BSD-style license that can be found in the LICENSE file.
9
+ */
10
+
11
+ #pragma once
12
+
13
+ #include "pybind11.h"
14
+
15
+ #include <chrono>
16
+ #include <cmath>
17
+ #include <ctime>
18
+ #include <datetime.h>
19
+ #include <mutex>
20
+
21
+ PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
22
+ PYBIND11_NAMESPACE_BEGIN(detail)
23
+
24
+ template <typename type>
25
+ class duration_caster {
26
+ public:
27
+ using rep = typename type::rep;
28
+ using period = typename type::period;
29
+
30
+ // signed 25 bits required by the standard.
31
+ using days = std::chrono::duration<int_least32_t, std::ratio<86400>>;
32
+
33
+ bool load(handle src, bool) {
34
+ using namespace std::chrono;
35
+
36
+ // Lazy initialise the PyDateTime import
37
+ if (!PyDateTimeAPI) {
38
+ PyDateTime_IMPORT;
39
+ }
40
+
41
+ if (!src) {
42
+ return false;
43
+ }
44
+ // If invoked with datetime.delta object
45
+ if (PyDelta_Check(src.ptr())) {
46
+ value = type(duration_cast<duration<rep, period>>(
47
+ days(PyDateTime_DELTA_GET_DAYS(src.ptr()))
48
+ + seconds(PyDateTime_DELTA_GET_SECONDS(src.ptr()))
49
+ + microseconds(PyDateTime_DELTA_GET_MICROSECONDS(src.ptr()))));
50
+ return true;
51
+ }
52
+ // If invoked with a float we assume it is seconds and convert
53
+ if (PyFloat_Check(src.ptr())) {
54
+ value = type(duration_cast<duration<rep, period>>(
55
+ duration<double>(PyFloat_AsDouble(src.ptr()))));
56
+ return true;
57
+ }
58
+ return false;
59
+ }
60
+
61
+ // If this is a duration just return it back
62
+ static const std::chrono::duration<rep, period> &
63
+ get_duration(const std::chrono::duration<rep, period> &src) {
64
+ return src;
65
+ }
66
+
67
+ // If this is a time_point get the time_since_epoch
68
+ template <typename Clock>
69
+ static std::chrono::duration<rep, period>
70
+ get_duration(const std::chrono::time_point<Clock, std::chrono::duration<rep, period>> &src) {
71
+ return src.time_since_epoch();
72
+ }
73
+
74
+ static handle cast(const type &src, return_value_policy /* policy */, handle /* parent */) {
75
+ using namespace std::chrono;
76
+
77
+ // Use overloaded function to get our duration from our source
78
+ // Works out if it is a duration or time_point and get the duration
79
+ auto d = get_duration(src);
80
+
81
+ // Lazy initialise the PyDateTime import
82
+ if (!PyDateTimeAPI) {
83
+ PyDateTime_IMPORT;
84
+ }
85
+
86
+ // Declare these special duration types so the conversions happen with the correct
87
+ // primitive types (int)
88
+ using dd_t = duration<int, std::ratio<86400>>;
89
+ using ss_t = duration<int, std::ratio<1>>;
90
+ using us_t = duration<int, std::micro>;
91
+
92
+ auto dd = duration_cast<dd_t>(d);
93
+ auto subd = d - dd;
94
+ auto ss = duration_cast<ss_t>(subd);
95
+ auto us = duration_cast<us_t>(subd - ss);
96
+ return PyDelta_FromDSU(dd.count(), ss.count(), us.count());
97
+ }
98
+
99
+ PYBIND11_TYPE_CASTER(type, const_name("datetime.timedelta"));
100
+ };
101
+
102
+ inline std::tm *localtime_thread_safe(const std::time_t *time, std::tm *buf) {
103
+ #if (defined(__STDC_LIB_EXT1__) && defined(__STDC_WANT_LIB_EXT1__)) || defined(_MSC_VER)
104
+ if (localtime_s(buf, time))
105
+ return nullptr;
106
+ return buf;
107
+ #else
108
+ static std::mutex mtx;
109
+ std::lock_guard<std::mutex> lock(mtx);
110
+ std::tm *tm_ptr = std::localtime(time);
111
+ if (tm_ptr != nullptr) {
112
+ *buf = *tm_ptr;
113
+ }
114
+ return tm_ptr;
115
+ #endif
116
+ }
117
+
118
+ // This is for casting times on the system clock into datetime.datetime instances
119
+ template <typename Duration>
120
+ class type_caster<std::chrono::time_point<std::chrono::system_clock, Duration>> {
121
+ public:
122
+ using type = std::chrono::time_point<std::chrono::system_clock, Duration>;
123
+ bool load(handle src, bool) {
124
+ using namespace std::chrono;
125
+
126
+ // Lazy initialise the PyDateTime import
127
+ if (!PyDateTimeAPI) {
128
+ PyDateTime_IMPORT;
129
+ }
130
+
131
+ if (!src) {
132
+ return false;
133
+ }
134
+
135
+ std::tm cal;
136
+ microseconds msecs;
137
+
138
+ if (PyDateTime_Check(src.ptr())) {
139
+ cal.tm_sec = PyDateTime_DATE_GET_SECOND(src.ptr());
140
+ cal.tm_min = PyDateTime_DATE_GET_MINUTE(src.ptr());
141
+ cal.tm_hour = PyDateTime_DATE_GET_HOUR(src.ptr());
142
+ cal.tm_mday = PyDateTime_GET_DAY(src.ptr());
143
+ cal.tm_mon = PyDateTime_GET_MONTH(src.ptr()) - 1;
144
+ cal.tm_year = PyDateTime_GET_YEAR(src.ptr()) - 1900;
145
+ cal.tm_isdst = -1;
146
+ msecs = microseconds(PyDateTime_DATE_GET_MICROSECOND(src.ptr()));
147
+ } else if (PyDate_Check(src.ptr())) {
148
+ cal.tm_sec = 0;
149
+ cal.tm_min = 0;
150
+ cal.tm_hour = 0;
151
+ cal.tm_mday = PyDateTime_GET_DAY(src.ptr());
152
+ cal.tm_mon = PyDateTime_GET_MONTH(src.ptr()) - 1;
153
+ cal.tm_year = PyDateTime_GET_YEAR(src.ptr()) - 1900;
154
+ cal.tm_isdst = -1;
155
+ msecs = microseconds(0);
156
+ } else if (PyTime_Check(src.ptr())) {
157
+ cal.tm_sec = PyDateTime_TIME_GET_SECOND(src.ptr());
158
+ cal.tm_min = PyDateTime_TIME_GET_MINUTE(src.ptr());
159
+ cal.tm_hour = PyDateTime_TIME_GET_HOUR(src.ptr());
160
+ cal.tm_mday = 1; // This date (day, month, year) = (1, 0, 70)
161
+ cal.tm_mon = 0; // represents 1-Jan-1970, which is the first
162
+ cal.tm_year = 70; // earliest available date for Python's datetime
163
+ cal.tm_isdst = -1;
164
+ msecs = microseconds(PyDateTime_TIME_GET_MICROSECOND(src.ptr()));
165
+ } else {
166
+ return false;
167
+ }
168
+
169
+ value = time_point_cast<Duration>(system_clock::from_time_t(std::mktime(&cal)) + msecs);
170
+ return true;
171
+ }
172
+
173
+ static handle cast(const std::chrono::time_point<std::chrono::system_clock, Duration> &src,
174
+ return_value_policy /* policy */,
175
+ handle /* parent */) {
176
+ using namespace std::chrono;
177
+
178
+ // Lazy initialise the PyDateTime import
179
+ if (!PyDateTimeAPI) {
180
+ PyDateTime_IMPORT;
181
+ }
182
+
183
+ // Get out microseconds, and make sure they are positive, to avoid bug in eastern
184
+ // hemisphere time zones (cfr. https://github.com/pybind/pybind11/issues/2417)
185
+ using us_t = duration<int, std::micro>;
186
+ auto us = duration_cast<us_t>(src.time_since_epoch() % seconds(1));
187
+ if (us.count() < 0) {
188
+ us += seconds(1);
189
+ }
190
+
191
+ // Subtract microseconds BEFORE `system_clock::to_time_t`, because:
192
+ // > If std::time_t has lower precision, it is implementation-defined whether the value is
193
+ // rounded or truncated. (https://en.cppreference.com/w/cpp/chrono/system_clock/to_time_t)
194
+ std::time_t tt
195
+ = system_clock::to_time_t(time_point_cast<system_clock::duration>(src - us));
196
+
197
+ std::tm localtime;
198
+ std::tm *localtime_ptr = localtime_thread_safe(&tt, &localtime);
199
+ if (!localtime_ptr) {
200
+ throw cast_error("Unable to represent system_clock in local time");
201
+ }
202
+ return PyDateTime_FromDateAndTime(localtime.tm_year + 1900,
203
+ localtime.tm_mon + 1,
204
+ localtime.tm_mday,
205
+ localtime.tm_hour,
206
+ localtime.tm_min,
207
+ localtime.tm_sec,
208
+ us.count());
209
+ }
210
+ PYBIND11_TYPE_CASTER(type, const_name("datetime.datetime"));
211
+ };
212
+
213
+ // Other clocks that are not the system clock are not measured as datetime.datetime objects
214
+ // since they are not measured on calendar time. So instead we just make them timedeltas
215
+ // Or if they have passed us a time as a float we convert that
216
+ template <typename Clock, typename Duration>
217
+ class type_caster<std::chrono::time_point<Clock, Duration>>
218
+ : public duration_caster<std::chrono::time_point<Clock, Duration>> {};
219
+
220
+ template <typename Rep, typename Period>
221
+ class type_caster<std::chrono::duration<Rep, Period>>
222
+ : public duration_caster<std::chrono::duration<Rep, Period>> {};
223
+
224
+ PYBIND11_NAMESPACE_END(detail)
225
+ PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
third-party/DPVO/DPViewer/pybind11/include/pybind11/common.h ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ #include "detail/common.h"
2
+ #warning "Including 'common.h' is deprecated. It will be removed in v3.0. Use 'pybind11.h'."
third-party/DPVO/DPViewer/pybind11/include/pybind11/complex.h ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ pybind11/complex.h: Complex number support
3
+
4
+ Copyright (c) 2016 Wenzel Jakob <[email protected]>
5
+
6
+ All rights reserved. Use of this source code is governed by a
7
+ BSD-style license that can be found in the LICENSE file.
8
+ */
9
+
10
+ #pragma once
11
+
12
+ #include "pybind11.h"
13
+
14
+ #include <complex>
15
+
16
+ /// glibc defines I as a macro which breaks things, e.g., boost template names
17
+ #ifdef I
18
+ # undef I
19
+ #endif
20
+
21
+ PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
22
+
23
+ template <typename T>
24
+ struct format_descriptor<std::complex<T>, detail::enable_if_t<std::is_floating_point<T>::value>> {
25
+ static constexpr const char c = format_descriptor<T>::c;
26
+ static constexpr const char value[3] = {'Z', c, '\0'};
27
+ static std::string format() { return std::string(value); }
28
+ };
29
+
30
+ #ifndef PYBIND11_CPP17
31
+
32
+ template <typename T>
33
+ constexpr const char
34
+ format_descriptor<std::complex<T>,
35
+ detail::enable_if_t<std::is_floating_point<T>::value>>::value[3];
36
+
37
+ #endif
38
+
39
+ PYBIND11_NAMESPACE_BEGIN(detail)
40
+
41
+ template <typename T>
42
+ struct is_fmt_numeric<std::complex<T>, detail::enable_if_t<std::is_floating_point<T>::value>> {
43
+ static constexpr bool value = true;
44
+ static constexpr int index = is_fmt_numeric<T>::index + 3;
45
+ };
46
+
47
+ template <typename T>
48
+ class type_caster<std::complex<T>> {
49
+ public:
50
+ bool load(handle src, bool convert) {
51
+ if (!src) {
52
+ return false;
53
+ }
54
+ if (!convert && !PyComplex_Check(src.ptr())) {
55
+ return false;
56
+ }
57
+ Py_complex result = PyComplex_AsCComplex(src.ptr());
58
+ if (result.real == -1.0 && PyErr_Occurred()) {
59
+ PyErr_Clear();
60
+ return false;
61
+ }
62
+ value = std::complex<T>((T) result.real, (T) result.imag);
63
+ return true;
64
+ }
65
+
66
+ static handle
67
+ cast(const std::complex<T> &src, return_value_policy /* policy */, handle /* parent */) {
68
+ return PyComplex_FromDoubles((double) src.real(), (double) src.imag());
69
+ }
70
+
71
+ PYBIND11_TYPE_CASTER(std::complex<T>, const_name("complex"));
72
+ };
73
+ PYBIND11_NAMESPACE_END(detail)
74
+ PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
third-party/DPVO/DPViewer/pybind11/include/pybind11/detail/class.h ADDED
@@ -0,0 +1,734 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ pybind11/detail/class.h: Python C API implementation details for py::class_
3
+
4
+ Copyright (c) 2017 Wenzel Jakob <[email protected]>
5
+
6
+ All rights reserved. Use of this source code is governed by a
7
+ BSD-style license that can be found in the LICENSE file.
8
+ */
9
+
10
+ #pragma once
11
+
12
+ #include "../attr.h"
13
+ #include "../options.h"
14
+
15
+ PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
16
+ PYBIND11_NAMESPACE_BEGIN(detail)
17
+
18
+ #if !defined(PYPY_VERSION)
19
+ # define PYBIND11_BUILTIN_QUALNAME
20
+ # define PYBIND11_SET_OLDPY_QUALNAME(obj, nameobj)
21
+ #else
22
+ // In PyPy, we still set __qualname__ so that we can produce reliable function type
23
+ // signatures; in CPython this macro expands to nothing:
24
+ # define PYBIND11_SET_OLDPY_QUALNAME(obj, nameobj) \
25
+ setattr((PyObject *) obj, "__qualname__", nameobj)
26
+ #endif
27
+
28
+ inline std::string get_fully_qualified_tp_name(PyTypeObject *type) {
29
+ #if !defined(PYPY_VERSION)
30
+ return type->tp_name;
31
+ #else
32
+ auto module_name = handle((PyObject *) type).attr("__module__").cast<std::string>();
33
+ if (module_name == PYBIND11_BUILTINS_MODULE)
34
+ return type->tp_name;
35
+ else
36
+ return std::move(module_name) + "." + type->tp_name;
37
+ #endif
38
+ }
39
+
40
+ inline PyTypeObject *type_incref(PyTypeObject *type) {
41
+ Py_INCREF(type);
42
+ return type;
43
+ }
44
+
45
+ #if !defined(PYPY_VERSION)
46
+
47
+ /// `pybind11_static_property.__get__()`: Always pass the class instead of the instance.
48
+ extern "C" inline PyObject *pybind11_static_get(PyObject *self, PyObject * /*ob*/, PyObject *cls) {
49
+ return PyProperty_Type.tp_descr_get(self, cls, cls);
50
+ }
51
+
52
+ /// `pybind11_static_property.__set__()`: Just like the above `__get__()`.
53
+ extern "C" inline int pybind11_static_set(PyObject *self, PyObject *obj, PyObject *value) {
54
+ PyObject *cls = PyType_Check(obj) ? obj : (PyObject *) Py_TYPE(obj);
55
+ return PyProperty_Type.tp_descr_set(self, cls, value);
56
+ }
57
+
58
+ /** A `static_property` is the same as a `property` but the `__get__()` and `__set__()`
59
+ methods are modified to always use the object type instead of a concrete instance.
60
+ Return value: New reference. */
61
+ inline PyTypeObject *make_static_property_type() {
62
+ constexpr auto *name = "pybind11_static_property";
63
+ auto name_obj = reinterpret_steal<object>(PYBIND11_FROM_STRING(name));
64
+
65
+ /* Danger zone: from now (and until PyType_Ready), make sure to
66
+ issue no Python C API calls which could potentially invoke the
67
+ garbage collector (the GC will call type_traverse(), which will in
68
+ turn find the newly constructed type in an invalid state) */
69
+ auto *heap_type = (PyHeapTypeObject *) PyType_Type.tp_alloc(&PyType_Type, 0);
70
+ if (!heap_type) {
71
+ pybind11_fail("make_static_property_type(): error allocating type!");
72
+ }
73
+
74
+ heap_type->ht_name = name_obj.inc_ref().ptr();
75
+ # ifdef PYBIND11_BUILTIN_QUALNAME
76
+ heap_type->ht_qualname = name_obj.inc_ref().ptr();
77
+ # endif
78
+
79
+ auto *type = &heap_type->ht_type;
80
+ type->tp_name = name;
81
+ type->tp_base = type_incref(&PyProperty_Type);
82
+ type->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
83
+ type->tp_descr_get = pybind11_static_get;
84
+ type->tp_descr_set = pybind11_static_set;
85
+
86
+ if (PyType_Ready(type) < 0) {
87
+ pybind11_fail("make_static_property_type(): failure in PyType_Ready()!");
88
+ }
89
+
90
+ setattr((PyObject *) type, "__module__", str("pybind11_builtins"));
91
+ PYBIND11_SET_OLDPY_QUALNAME(type, name_obj);
92
+
93
+ return type;
94
+ }
95
+
96
+ #else // PYPY
97
+
98
+ /** PyPy has some issues with the above C API, so we evaluate Python code instead.
99
+ This function will only be called once so performance isn't really a concern.
100
+ Return value: New reference. */
101
+ inline PyTypeObject *make_static_property_type() {
102
+ auto d = dict();
103
+ PyObject *result = PyRun_String(R"(\
104
+ class pybind11_static_property(property):
105
+ def __get__(self, obj, cls):
106
+ return property.__get__(self, cls, cls)
107
+
108
+ def __set__(self, obj, value):
109
+ cls = obj if isinstance(obj, type) else type(obj)
110
+ property.__set__(self, cls, value)
111
+ )",
112
+ Py_file_input,
113
+ d.ptr(),
114
+ d.ptr());
115
+ if (result == nullptr)
116
+ throw error_already_set();
117
+ Py_DECREF(result);
118
+ return (PyTypeObject *) d["pybind11_static_property"].cast<object>().release().ptr();
119
+ }
120
+
121
+ #endif // PYPY
122
+
123
+ /** Types with static properties need to handle `Type.static_prop = x` in a specific way.
124
+ By default, Python replaces the `static_property` itself, but for wrapped C++ types
125
+ we need to call `static_property.__set__()` in order to propagate the new value to
126
+ the underlying C++ data structure. */
127
+ extern "C" inline int pybind11_meta_setattro(PyObject *obj, PyObject *name, PyObject *value) {
128
+ // Use `_PyType_Lookup()` instead of `PyObject_GetAttr()` in order to get the raw
129
+ // descriptor (`property`) instead of calling `tp_descr_get` (`property.__get__()`).
130
+ PyObject *descr = _PyType_Lookup((PyTypeObject *) obj, name);
131
+
132
+ // The following assignment combinations are possible:
133
+ // 1. `Type.static_prop = value` --> descr_set: `Type.static_prop.__set__(value)`
134
+ // 2. `Type.static_prop = other_static_prop` --> setattro: replace existing `static_prop`
135
+ // 3. `Type.regular_attribute = value` --> setattro: regular attribute assignment
136
+ auto *const static_prop = (PyObject *) get_internals().static_property_type;
137
+ const auto call_descr_set = (descr != nullptr) && (value != nullptr)
138
+ && (PyObject_IsInstance(descr, static_prop) != 0)
139
+ && (PyObject_IsInstance(value, static_prop) == 0);
140
+ if (call_descr_set) {
141
+ // Call `static_property.__set__()` instead of replacing the `static_property`.
142
+ #if !defined(PYPY_VERSION)
143
+ return Py_TYPE(descr)->tp_descr_set(descr, obj, value);
144
+ #else
145
+ if (PyObject *result = PyObject_CallMethod(descr, "__set__", "OO", obj, value)) {
146
+ Py_DECREF(result);
147
+ return 0;
148
+ } else {
149
+ return -1;
150
+ }
151
+ #endif
152
+ } else {
153
+ // Replace existing attribute.
154
+ return PyType_Type.tp_setattro(obj, name, value);
155
+ }
156
+ }
157
+
158
+ /**
159
+ * Python 3's PyInstanceMethod_Type hides itself via its tp_descr_get, which prevents aliasing
160
+ * methods via cls.attr("m2") = cls.attr("m1"): instead the tp_descr_get returns a plain function,
161
+ * when called on a class, or a PyMethod, when called on an instance. Override that behaviour here
162
+ * to do a special case bypass for PyInstanceMethod_Types.
163
+ */
164
+ extern "C" inline PyObject *pybind11_meta_getattro(PyObject *obj, PyObject *name) {
165
+ PyObject *descr = _PyType_Lookup((PyTypeObject *) obj, name);
166
+ if (descr && PyInstanceMethod_Check(descr)) {
167
+ Py_INCREF(descr);
168
+ return descr;
169
+ }
170
+ return PyType_Type.tp_getattro(obj, name);
171
+ }
172
+
173
+ /// metaclass `__call__` function that is used to create all pybind11 objects.
174
+ extern "C" inline PyObject *pybind11_meta_call(PyObject *type, PyObject *args, PyObject *kwargs) {
175
+
176
+ // use the default metaclass call to create/initialize the object
177
+ PyObject *self = PyType_Type.tp_call(type, args, kwargs);
178
+ if (self == nullptr) {
179
+ return nullptr;
180
+ }
181
+
182
+ // This must be a pybind11 instance
183
+ auto *instance = reinterpret_cast<detail::instance *>(self);
184
+
185
+ // Ensure that the base __init__ function(s) were called
186
+ for (const auto &vh : values_and_holders(instance)) {
187
+ if (!vh.holder_constructed()) {
188
+ PyErr_Format(PyExc_TypeError,
189
+ "%.200s.__init__() must be called when overriding __init__",
190
+ get_fully_qualified_tp_name(vh.type->type).c_str());
191
+ Py_DECREF(self);
192
+ return nullptr;
193
+ }
194
+ }
195
+
196
+ return self;
197
+ }
198
+
199
+ /// Cleanup the type-info for a pybind11-registered type.
200
+ extern "C" inline void pybind11_meta_dealloc(PyObject *obj) {
201
+ auto *type = (PyTypeObject *) obj;
202
+ auto &internals = get_internals();
203
+
204
+ // A pybind11-registered type will:
205
+ // 1) be found in internals.registered_types_py
206
+ // 2) have exactly one associated `detail::type_info`
207
+ auto found_type = internals.registered_types_py.find(type);
208
+ if (found_type != internals.registered_types_py.end() && found_type->second.size() == 1
209
+ && found_type->second[0]->type == type) {
210
+
211
+ auto *tinfo = found_type->second[0];
212
+ auto tindex = std::type_index(*tinfo->cpptype);
213
+ internals.direct_conversions.erase(tindex);
214
+
215
+ if (tinfo->module_local) {
216
+ get_local_internals().registered_types_cpp.erase(tindex);
217
+ } else {
218
+ internals.registered_types_cpp.erase(tindex);
219
+ }
220
+ internals.registered_types_py.erase(tinfo->type);
221
+
222
+ // Actually just `std::erase_if`, but that's only available in C++20
223
+ auto &cache = internals.inactive_override_cache;
224
+ for (auto it = cache.begin(), last = cache.end(); it != last;) {
225
+ if (it->first == (PyObject *) tinfo->type) {
226
+ it = cache.erase(it);
227
+ } else {
228
+ ++it;
229
+ }
230
+ }
231
+
232
+ delete tinfo;
233
+ }
234
+
235
+ PyType_Type.tp_dealloc(obj);
236
+ }
237
+
238
+ /** This metaclass is assigned by default to all pybind11 types and is required in order
239
+ for static properties to function correctly. Users may override this using `py::metaclass`.
240
+ Return value: New reference. */
241
+ inline PyTypeObject *make_default_metaclass() {
242
+ constexpr auto *name = "pybind11_type";
243
+ auto name_obj = reinterpret_steal<object>(PYBIND11_FROM_STRING(name));
244
+
245
+ /* Danger zone: from now (and until PyType_Ready), make sure to
246
+ issue no Python C API calls which could potentially invoke the
247
+ garbage collector (the GC will call type_traverse(), which will in
248
+ turn find the newly constructed type in an invalid state) */
249
+ auto *heap_type = (PyHeapTypeObject *) PyType_Type.tp_alloc(&PyType_Type, 0);
250
+ if (!heap_type) {
251
+ pybind11_fail("make_default_metaclass(): error allocating metaclass!");
252
+ }
253
+
254
+ heap_type->ht_name = name_obj.inc_ref().ptr();
255
+ #ifdef PYBIND11_BUILTIN_QUALNAME
256
+ heap_type->ht_qualname = name_obj.inc_ref().ptr();
257
+ #endif
258
+
259
+ auto *type = &heap_type->ht_type;
260
+ type->tp_name = name;
261
+ type->tp_base = type_incref(&PyType_Type);
262
+ type->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
263
+
264
+ type->tp_call = pybind11_meta_call;
265
+
266
+ type->tp_setattro = pybind11_meta_setattro;
267
+ type->tp_getattro = pybind11_meta_getattro;
268
+
269
+ type->tp_dealloc = pybind11_meta_dealloc;
270
+
271
+ if (PyType_Ready(type) < 0) {
272
+ pybind11_fail("make_default_metaclass(): failure in PyType_Ready()!");
273
+ }
274
+
275
+ setattr((PyObject *) type, "__module__", str("pybind11_builtins"));
276
+ PYBIND11_SET_OLDPY_QUALNAME(type, name_obj);
277
+
278
+ return type;
279
+ }
280
+
281
+ /// For multiple inheritance types we need to recursively register/deregister base pointers for any
282
+ /// base classes with pointers that are difference from the instance value pointer so that we can
283
+ /// correctly recognize an offset base class pointer. This calls a function with any offset base
284
+ /// ptrs.
285
+ inline void traverse_offset_bases(void *valueptr,
286
+ const detail::type_info *tinfo,
287
+ instance *self,
288
+ bool (*f)(void * /*parentptr*/, instance * /*self*/)) {
289
+ for (handle h : reinterpret_borrow<tuple>(tinfo->type->tp_bases)) {
290
+ if (auto *parent_tinfo = get_type_info((PyTypeObject *) h.ptr())) {
291
+ for (auto &c : parent_tinfo->implicit_casts) {
292
+ if (c.first == tinfo->cpptype) {
293
+ auto *parentptr = c.second(valueptr);
294
+ if (parentptr != valueptr) {
295
+ f(parentptr, self);
296
+ }
297
+ traverse_offset_bases(parentptr, parent_tinfo, self, f);
298
+ break;
299
+ }
300
+ }
301
+ }
302
+ }
303
+ }
304
+
305
+ inline bool register_instance_impl(void *ptr, instance *self) {
306
+ get_internals().registered_instances.emplace(ptr, self);
307
+ return true; // unused, but gives the same signature as the deregister func
308
+ }
309
+ inline bool deregister_instance_impl(void *ptr, instance *self) {
310
+ auto &registered_instances = get_internals().registered_instances;
311
+ auto range = registered_instances.equal_range(ptr);
312
+ for (auto it = range.first; it != range.second; ++it) {
313
+ if (self == it->second) {
314
+ registered_instances.erase(it);
315
+ return true;
316
+ }
317
+ }
318
+ return false;
319
+ }
320
+
321
+ inline void register_instance(instance *self, void *valptr, const type_info *tinfo) {
322
+ register_instance_impl(valptr, self);
323
+ if (!tinfo->simple_ancestors) {
324
+ traverse_offset_bases(valptr, tinfo, self, register_instance_impl);
325
+ }
326
+ }
327
+
328
+ inline bool deregister_instance(instance *self, void *valptr, const type_info *tinfo) {
329
+ bool ret = deregister_instance_impl(valptr, self);
330
+ if (!tinfo->simple_ancestors) {
331
+ traverse_offset_bases(valptr, tinfo, self, deregister_instance_impl);
332
+ }
333
+ return ret;
334
+ }
335
+
336
+ /// Instance creation function for all pybind11 types. It allocates the internal instance layout
337
+ /// for holding C++ objects and holders. Allocation is done lazily (the first time the instance is
338
+ /// cast to a reference or pointer), and initialization is done by an `__init__` function.
339
+ inline PyObject *make_new_instance(PyTypeObject *type) {
340
+ #if defined(PYPY_VERSION)
341
+ // PyPy gets tp_basicsize wrong (issue 2482) under multiple inheritance when the first
342
+ // inherited object is a plain Python type (i.e. not derived from an extension type). Fix it.
343
+ ssize_t instance_size = static_cast<ssize_t>(sizeof(instance));
344
+ if (type->tp_basicsize < instance_size) {
345
+ type->tp_basicsize = instance_size;
346
+ }
347
+ #endif
348
+ PyObject *self = type->tp_alloc(type, 0);
349
+ auto *inst = reinterpret_cast<instance *>(self);
350
+ // Allocate the value/holder internals:
351
+ inst->allocate_layout();
352
+
353
+ return self;
354
+ }
355
+
356
+ /// Instance creation function for all pybind11 types. It only allocates space for the
357
+ /// C++ object, but doesn't call the constructor -- an `__init__` function must do that.
358
+ extern "C" inline PyObject *pybind11_object_new(PyTypeObject *type, PyObject *, PyObject *) {
359
+ return make_new_instance(type);
360
+ }
361
+
362
+ /// An `__init__` function constructs the C++ object. Users should provide at least one
363
+ /// of these using `py::init` or directly with `.def(__init__, ...)`. Otherwise, the
364
+ /// following default function will be used which simply throws an exception.
365
+ extern "C" inline int pybind11_object_init(PyObject *self, PyObject *, PyObject *) {
366
+ PyTypeObject *type = Py_TYPE(self);
367
+ std::string msg = get_fully_qualified_tp_name(type) + ": No constructor defined!";
368
+ PyErr_SetString(PyExc_TypeError, msg.c_str());
369
+ return -1;
370
+ }
371
+
372
+ inline void add_patient(PyObject *nurse, PyObject *patient) {
373
+ auto &internals = get_internals();
374
+ auto *instance = reinterpret_cast<detail::instance *>(nurse);
375
+ instance->has_patients = true;
376
+ Py_INCREF(patient);
377
+ internals.patients[nurse].push_back(patient);
378
+ }
379
+
380
+ inline void clear_patients(PyObject *self) {
381
+ auto *instance = reinterpret_cast<detail::instance *>(self);
382
+ auto &internals = get_internals();
383
+ auto pos = internals.patients.find(self);
384
+ assert(pos != internals.patients.end());
385
+ // Clearing the patients can cause more Python code to run, which
386
+ // can invalidate the iterator. Extract the vector of patients
387
+ // from the unordered_map first.
388
+ auto patients = std::move(pos->second);
389
+ internals.patients.erase(pos);
390
+ instance->has_patients = false;
391
+ for (PyObject *&patient : patients) {
392
+ Py_CLEAR(patient);
393
+ }
394
+ }
395
+
396
+ /// Clears all internal data from the instance and removes it from registered instances in
397
+ /// preparation for deallocation.
398
+ inline void clear_instance(PyObject *self) {
399
+ auto *instance = reinterpret_cast<detail::instance *>(self);
400
+
401
+ // Deallocate any values/holders, if present:
402
+ for (auto &v_h : values_and_holders(instance)) {
403
+ if (v_h) {
404
+
405
+ // We have to deregister before we call dealloc because, for virtual MI types, we still
406
+ // need to be able to get the parent pointers.
407
+ if (v_h.instance_registered()
408
+ && !deregister_instance(instance, v_h.value_ptr(), v_h.type)) {
409
+ pybind11_fail(
410
+ "pybind11_object_dealloc(): Tried to deallocate unregistered instance!");
411
+ }
412
+
413
+ if (instance->owned || v_h.holder_constructed()) {
414
+ v_h.type->dealloc(v_h);
415
+ }
416
+ }
417
+ }
418
+ // Deallocate the value/holder layout internals:
419
+ instance->deallocate_layout();
420
+
421
+ if (instance->weakrefs) {
422
+ PyObject_ClearWeakRefs(self);
423
+ }
424
+
425
+ PyObject **dict_ptr = _PyObject_GetDictPtr(self);
426
+ if (dict_ptr) {
427
+ Py_CLEAR(*dict_ptr);
428
+ }
429
+
430
+ if (instance->has_patients) {
431
+ clear_patients(self);
432
+ }
433
+ }
434
+
435
+ /// Instance destructor function for all pybind11 types. It calls `type_info.dealloc`
436
+ /// to destroy the C++ object itself, while the rest is Python bookkeeping.
437
+ extern "C" inline void pybind11_object_dealloc(PyObject *self) {
438
+ clear_instance(self);
439
+
440
+ auto *type = Py_TYPE(self);
441
+ type->tp_free(self);
442
+
443
+ #if PY_VERSION_HEX < 0x03080000
444
+ // `type->tp_dealloc != pybind11_object_dealloc` means that we're being called
445
+ // as part of a derived type's dealloc, in which case we're not allowed to decref
446
+ // the type here. For cross-module compatibility, we shouldn't compare directly
447
+ // with `pybind11_object_dealloc`, but with the common one stashed in internals.
448
+ auto pybind11_object_type = (PyTypeObject *) get_internals().instance_base;
449
+ if (type->tp_dealloc == pybind11_object_type->tp_dealloc)
450
+ Py_DECREF(type);
451
+ #else
452
+ // This was not needed before Python 3.8 (Python issue 35810)
453
+ // https://github.com/pybind/pybind11/issues/1946
454
+ Py_DECREF(type);
455
+ #endif
456
+ }
457
+
458
+ std::string error_string();
459
+
460
+ /** Create the type which can be used as a common base for all classes. This is
461
+ needed in order to satisfy Python's requirements for multiple inheritance.
462
+ Return value: New reference. */
463
+ inline PyObject *make_object_base_type(PyTypeObject *metaclass) {
464
+ constexpr auto *name = "pybind11_object";
465
+ auto name_obj = reinterpret_steal<object>(PYBIND11_FROM_STRING(name));
466
+
467
+ /* Danger zone: from now (and until PyType_Ready), make sure to
468
+ issue no Python C API calls which could potentially invoke the
469
+ garbage collector (the GC will call type_traverse(), which will in
470
+ turn find the newly constructed type in an invalid state) */
471
+ auto *heap_type = (PyHeapTypeObject *) metaclass->tp_alloc(metaclass, 0);
472
+ if (!heap_type) {
473
+ pybind11_fail("make_object_base_type(): error allocating type!");
474
+ }
475
+
476
+ heap_type->ht_name = name_obj.inc_ref().ptr();
477
+ #ifdef PYBIND11_BUILTIN_QUALNAME
478
+ heap_type->ht_qualname = name_obj.inc_ref().ptr();
479
+ #endif
480
+
481
+ auto *type = &heap_type->ht_type;
482
+ type->tp_name = name;
483
+ type->tp_base = type_incref(&PyBaseObject_Type);
484
+ type->tp_basicsize = static_cast<ssize_t>(sizeof(instance));
485
+ type->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
486
+
487
+ type->tp_new = pybind11_object_new;
488
+ type->tp_init = pybind11_object_init;
489
+ type->tp_dealloc = pybind11_object_dealloc;
490
+
491
+ /* Support weak references (needed for the keep_alive feature) */
492
+ type->tp_weaklistoffset = offsetof(instance, weakrefs);
493
+
494
+ if (PyType_Ready(type) < 0) {
495
+ pybind11_fail("PyType_Ready failed in make_object_base_type(): " + error_string());
496
+ }
497
+
498
+ setattr((PyObject *) type, "__module__", str("pybind11_builtins"));
499
+ PYBIND11_SET_OLDPY_QUALNAME(type, name_obj);
500
+
501
+ assert(!PyType_HasFeature(type, Py_TPFLAGS_HAVE_GC));
502
+ return (PyObject *) heap_type;
503
+ }
504
+
505
+ /// dynamic_attr: Support for `d = instance.__dict__`.
506
+ extern "C" inline PyObject *pybind11_get_dict(PyObject *self, void *) {
507
+ PyObject *&dict = *_PyObject_GetDictPtr(self);
508
+ if (!dict) {
509
+ dict = PyDict_New();
510
+ }
511
+ Py_XINCREF(dict);
512
+ return dict;
513
+ }
514
+
515
+ /// dynamic_attr: Support for `instance.__dict__ = dict()`.
516
+ extern "C" inline int pybind11_set_dict(PyObject *self, PyObject *new_dict, void *) {
517
+ if (!PyDict_Check(new_dict)) {
518
+ PyErr_Format(PyExc_TypeError,
519
+ "__dict__ must be set to a dictionary, not a '%.200s'",
520
+ get_fully_qualified_tp_name(Py_TYPE(new_dict)).c_str());
521
+ return -1;
522
+ }
523
+ PyObject *&dict = *_PyObject_GetDictPtr(self);
524
+ Py_INCREF(new_dict);
525
+ Py_CLEAR(dict);
526
+ dict = new_dict;
527
+ return 0;
528
+ }
529
+
530
+ /// dynamic_attr: Allow the garbage collector to traverse the internal instance `__dict__`.
531
+ extern "C" inline int pybind11_traverse(PyObject *self, visitproc visit, void *arg) {
532
+ PyObject *&dict = *_PyObject_GetDictPtr(self);
533
+ Py_VISIT(dict);
534
+ return 0;
535
+ }
536
+
537
+ /// dynamic_attr: Allow the GC to clear the dictionary.
538
+ extern "C" inline int pybind11_clear(PyObject *self) {
539
+ PyObject *&dict = *_PyObject_GetDictPtr(self);
540
+ Py_CLEAR(dict);
541
+ return 0;
542
+ }
543
+
544
+ /// Give instances of this type a `__dict__` and opt into garbage collection.
545
+ inline void enable_dynamic_attributes(PyHeapTypeObject *heap_type) {
546
+ auto *type = &heap_type->ht_type;
547
+ type->tp_flags |= Py_TPFLAGS_HAVE_GC;
548
+ type->tp_dictoffset = type->tp_basicsize; // place dict at the end
549
+ type->tp_basicsize += (ssize_t) sizeof(PyObject *); // and allocate enough space for it
550
+ type->tp_traverse = pybind11_traverse;
551
+ type->tp_clear = pybind11_clear;
552
+
553
+ static PyGetSetDef getset[] = {
554
+ {const_cast<char *>("__dict__"), pybind11_get_dict, pybind11_set_dict, nullptr, nullptr},
555
+ {nullptr, nullptr, nullptr, nullptr, nullptr}};
556
+ type->tp_getset = getset;
557
+ }
558
+
559
+ /// buffer_protocol: Fill in the view as specified by flags.
560
+ extern "C" inline int pybind11_getbuffer(PyObject *obj, Py_buffer *view, int flags) {
561
+ // Look for a `get_buffer` implementation in this type's info or any bases (following MRO).
562
+ type_info *tinfo = nullptr;
563
+ for (auto type : reinterpret_borrow<tuple>(Py_TYPE(obj)->tp_mro)) {
564
+ tinfo = get_type_info((PyTypeObject *) type.ptr());
565
+ if (tinfo && tinfo->get_buffer) {
566
+ break;
567
+ }
568
+ }
569
+ if (view == nullptr || !tinfo || !tinfo->get_buffer) {
570
+ if (view) {
571
+ view->obj = nullptr;
572
+ }
573
+ PyErr_SetString(PyExc_BufferError, "pybind11_getbuffer(): Internal error");
574
+ return -1;
575
+ }
576
+ std::memset(view, 0, sizeof(Py_buffer));
577
+ buffer_info *info = tinfo->get_buffer(obj, tinfo->get_buffer_data);
578
+ if ((flags & PyBUF_WRITABLE) == PyBUF_WRITABLE && info->readonly) {
579
+ delete info;
580
+ // view->obj = nullptr; // Was just memset to 0, so not necessary
581
+ PyErr_SetString(PyExc_BufferError, "Writable buffer requested for readonly storage");
582
+ return -1;
583
+ }
584
+ view->obj = obj;
585
+ view->ndim = 1;
586
+ view->internal = info;
587
+ view->buf = info->ptr;
588
+ view->itemsize = info->itemsize;
589
+ view->len = view->itemsize;
590
+ for (auto s : info->shape) {
591
+ view->len *= s;
592
+ }
593
+ view->readonly = static_cast<int>(info->readonly);
594
+ if ((flags & PyBUF_FORMAT) == PyBUF_FORMAT) {
595
+ view->format = const_cast<char *>(info->format.c_str());
596
+ }
597
+ if ((flags & PyBUF_STRIDES) == PyBUF_STRIDES) {
598
+ view->ndim = (int) info->ndim;
599
+ view->strides = info->strides.data();
600
+ view->shape = info->shape.data();
601
+ }
602
+ Py_INCREF(view->obj);
603
+ return 0;
604
+ }
605
+
606
+ /// buffer_protocol: Release the resources of the buffer.
607
+ extern "C" inline void pybind11_releasebuffer(PyObject *, Py_buffer *view) {
608
+ delete (buffer_info *) view->internal;
609
+ }
610
+
611
+ /// Give this type a buffer interface.
612
+ inline void enable_buffer_protocol(PyHeapTypeObject *heap_type) {
613
+ heap_type->ht_type.tp_as_buffer = &heap_type->as_buffer;
614
+
615
+ heap_type->as_buffer.bf_getbuffer = pybind11_getbuffer;
616
+ heap_type->as_buffer.bf_releasebuffer = pybind11_releasebuffer;
617
+ }
618
+
619
+ /** Create a brand new Python type according to the `type_record` specification.
620
+ Return value: New reference. */
621
+ inline PyObject *make_new_python_type(const type_record &rec) {
622
+ auto name = reinterpret_steal<object>(PYBIND11_FROM_STRING(rec.name));
623
+
624
+ auto qualname = name;
625
+ if (rec.scope && !PyModule_Check(rec.scope.ptr()) && hasattr(rec.scope, "__qualname__")) {
626
+ qualname = reinterpret_steal<object>(
627
+ PyUnicode_FromFormat("%U.%U", rec.scope.attr("__qualname__").ptr(), name.ptr()));
628
+ }
629
+
630
+ object module_;
631
+ if (rec.scope) {
632
+ if (hasattr(rec.scope, "__module__")) {
633
+ module_ = rec.scope.attr("__module__");
634
+ } else if (hasattr(rec.scope, "__name__")) {
635
+ module_ = rec.scope.attr("__name__");
636
+ }
637
+ }
638
+
639
+ const auto *full_name = c_str(
640
+ #if !defined(PYPY_VERSION)
641
+ module_ ? str(module_).cast<std::string>() + "." + rec.name :
642
+ #endif
643
+ rec.name);
644
+
645
+ char *tp_doc = nullptr;
646
+ if (rec.doc && options::show_user_defined_docstrings()) {
647
+ /* Allocate memory for docstring (using PyObject_MALLOC, since
648
+ Python will free this later on) */
649
+ size_t size = std::strlen(rec.doc) + 1;
650
+ tp_doc = (char *) PyObject_MALLOC(size);
651
+ std::memcpy((void *) tp_doc, rec.doc, size);
652
+ }
653
+
654
+ auto &internals = get_internals();
655
+ auto bases = tuple(rec.bases);
656
+ auto *base = (bases.empty()) ? internals.instance_base : bases[0].ptr();
657
+
658
+ /* Danger zone: from now (and until PyType_Ready), make sure to
659
+ issue no Python C API calls which could potentially invoke the
660
+ garbage collector (the GC will call type_traverse(), which will in
661
+ turn find the newly constructed type in an invalid state) */
662
+ auto *metaclass
663
+ = rec.metaclass.ptr() ? (PyTypeObject *) rec.metaclass.ptr() : internals.default_metaclass;
664
+
665
+ auto *heap_type = (PyHeapTypeObject *) metaclass->tp_alloc(metaclass, 0);
666
+ if (!heap_type) {
667
+ pybind11_fail(std::string(rec.name) + ": Unable to create type object!");
668
+ }
669
+
670
+ heap_type->ht_name = name.release().ptr();
671
+ #ifdef PYBIND11_BUILTIN_QUALNAME
672
+ heap_type->ht_qualname = qualname.inc_ref().ptr();
673
+ #endif
674
+
675
+ auto *type = &heap_type->ht_type;
676
+ type->tp_name = full_name;
677
+ type->tp_doc = tp_doc;
678
+ type->tp_base = type_incref((PyTypeObject *) base);
679
+ type->tp_basicsize = static_cast<ssize_t>(sizeof(instance));
680
+ if (!bases.empty()) {
681
+ type->tp_bases = bases.release().ptr();
682
+ }
683
+
684
+ /* Don't inherit base __init__ */
685
+ type->tp_init = pybind11_object_init;
686
+
687
+ /* Supported protocols */
688
+ type->tp_as_number = &heap_type->as_number;
689
+ type->tp_as_sequence = &heap_type->as_sequence;
690
+ type->tp_as_mapping = &heap_type->as_mapping;
691
+ type->tp_as_async = &heap_type->as_async;
692
+
693
+ /* Flags */
694
+ type->tp_flags |= Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HEAPTYPE;
695
+ if (!rec.is_final) {
696
+ type->tp_flags |= Py_TPFLAGS_BASETYPE;
697
+ }
698
+
699
+ if (rec.dynamic_attr) {
700
+ enable_dynamic_attributes(heap_type);
701
+ }
702
+
703
+ if (rec.buffer_protocol) {
704
+ enable_buffer_protocol(heap_type);
705
+ }
706
+
707
+ if (rec.custom_type_setup_callback) {
708
+ rec.custom_type_setup_callback(heap_type);
709
+ }
710
+
711
+ if (PyType_Ready(type) < 0) {
712
+ pybind11_fail(std::string(rec.name) + ": PyType_Ready failed: " + error_string());
713
+ }
714
+
715
+ assert(!rec.dynamic_attr || PyType_HasFeature(type, Py_TPFLAGS_HAVE_GC));
716
+
717
+ /* Register type with the parent scope */
718
+ if (rec.scope) {
719
+ setattr(rec.scope, rec.name, (PyObject *) type);
720
+ } else {
721
+ Py_INCREF(type); // Keep it alive forever (reference leak)
722
+ }
723
+
724
+ if (module_) { // Needed by pydoc
725
+ setattr((PyObject *) type, "__module__", module_);
726
+ }
727
+
728
+ PYBIND11_SET_OLDPY_QUALNAME(type, qualname);
729
+
730
+ return (PyObject *) type;
731
+ }
732
+
733
+ PYBIND11_NAMESPACE_END(detail)
734
+ PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
third-party/DPVO/DPViewer/pybind11/include/pybind11/detail/common.h ADDED
@@ -0,0 +1,1168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ pybind11/detail/common.h -- Basic macros
3
+
4
+ Copyright (c) 2016 Wenzel Jakob <[email protected]>
5
+
6
+ All rights reserved. Use of this source code is governed by a
7
+ BSD-style license that can be found in the LICENSE file.
8
+ */
9
+
10
+ #pragma once
11
+
12
+ #define PYBIND11_VERSION_MAJOR 2
13
+ #define PYBIND11_VERSION_MINOR 10
14
+ #define PYBIND11_VERSION_PATCH 0.dev1
15
+
16
+ // Similar to Python's convention: https://docs.python.org/3/c-api/apiabiversion.html
17
+ // Additional convention: 0xD = dev
18
+ #define PYBIND11_VERSION_HEX 0x020A00D1
19
+
20
+ #define PYBIND11_NAMESPACE_BEGIN(name) namespace name {
21
+ #define PYBIND11_NAMESPACE_END(name) }
22
+
23
+ // Robust support for some features and loading modules compiled against different pybind versions
24
+ // requires forcing hidden visibility on pybind code, so we enforce this by setting the attribute
25
+ // on the main `pybind11` namespace.
26
+ #if !defined(PYBIND11_NAMESPACE)
27
+ # ifdef __GNUG__
28
+ # define PYBIND11_NAMESPACE pybind11 __attribute__((visibility("hidden")))
29
+ # else
30
+ # define PYBIND11_NAMESPACE pybind11
31
+ # endif
32
+ #endif
33
+
34
+ #if !(defined(_MSC_VER) && __cplusplus == 199711L)
35
+ # if __cplusplus >= 201402L
36
+ # define PYBIND11_CPP14
37
+ # if __cplusplus >= 201703L
38
+ # define PYBIND11_CPP17
39
+ # if __cplusplus >= 202002L
40
+ # define PYBIND11_CPP20
41
+ # endif
42
+ # endif
43
+ # endif
44
+ #elif defined(_MSC_VER) && __cplusplus == 199711L
45
+ // MSVC sets _MSVC_LANG rather than __cplusplus (supposedly until the standard is fully
46
+ // implemented). Unless you use the /Zc:__cplusplus flag on Visual Studio 2017 15.7 Preview 3
47
+ // or newer.
48
+ # if _MSVC_LANG >= 201402L
49
+ # define PYBIND11_CPP14
50
+ # if _MSVC_LANG > 201402L
51
+ # define PYBIND11_CPP17
52
+ # if _MSVC_LANG >= 202002L
53
+ # define PYBIND11_CPP20
54
+ # endif
55
+ # endif
56
+ # endif
57
+ #endif
58
+
59
+ // Compiler version assertions
60
+ #if defined(__INTEL_COMPILER)
61
+ # if __INTEL_COMPILER < 1800
62
+ # error pybind11 requires Intel C++ compiler v18 or newer
63
+ # elif __INTEL_COMPILER < 1900 && defined(PYBIND11_CPP14)
64
+ # error pybind11 supports only C++11 with Intel C++ compiler v18. Use v19 or newer for C++14.
65
+ # endif
66
+ /* The following pragma cannot be pop'ed:
67
+ https://community.intel.com/t5/Intel-C-Compiler/Inline-and-no-inline-warning/td-p/1216764 */
68
+ # pragma warning disable 2196 // warning #2196: routine is both "inline" and "noinline"
69
+ #elif defined(__clang__) && !defined(__apple_build_version__)
70
+ # if __clang_major__ < 3 || (__clang_major__ == 3 && __clang_minor__ < 3)
71
+ # error pybind11 requires clang 3.3 or newer
72
+ # endif
73
+ #elif defined(__clang__)
74
+ // Apple changes clang version macros to its Xcode version; the first Xcode release based on
75
+ // (upstream) clang 3.3 was Xcode 5:
76
+ # if __clang_major__ < 5
77
+ # error pybind11 requires Xcode/clang 5.0 or newer
78
+ # endif
79
+ #elif defined(__GNUG__)
80
+ # if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 8)
81
+ # error pybind11 requires gcc 4.8 or newer
82
+ # endif
83
+ #elif defined(_MSC_VER)
84
+ # if _MSC_VER < 1910
85
+ # error pybind11 2.10+ requires MSVC 2017 or newer
86
+ # endif
87
+ #endif
88
+
89
+ #if !defined(PYBIND11_EXPORT)
90
+ # if defined(WIN32) || defined(_WIN32)
91
+ # define PYBIND11_EXPORT __declspec(dllexport)
92
+ # else
93
+ # define PYBIND11_EXPORT __attribute__((visibility("default")))
94
+ # endif
95
+ #endif
96
+
97
+ #if !defined(PYBIND11_EXPORT_EXCEPTION)
98
+ # ifdef __MINGW32__
99
+ // workaround for:
100
+ // error: 'dllexport' implies default visibility, but xxx has already been declared with a
101
+ // different visibility
102
+ # define PYBIND11_EXPORT_EXCEPTION
103
+ # else
104
+ # define PYBIND11_EXPORT_EXCEPTION PYBIND11_EXPORT
105
+ # endif
106
+ #endif
107
+
108
+ // For CUDA, GCC7, GCC8:
109
+ // PYBIND11_NOINLINE_FORCED is incompatible with `-Wattributes -Werror`.
110
+ // When defining PYBIND11_NOINLINE_FORCED, it is best to also use `-Wno-attributes`.
111
+ // However, the measured shared-library size saving when using noinline are only
112
+ // 1.7% for CUDA, -0.2% for GCC7, and 0.0% for GCC8 (using -DCMAKE_BUILD_TYPE=MinSizeRel,
113
+ // the default under pybind11/tests).
114
+ #if !defined(PYBIND11_NOINLINE_FORCED) \
115
+ && (defined(__CUDACC__) || (defined(__GNUC__) && (__GNUC__ == 7 || __GNUC__ == 8)))
116
+ # define PYBIND11_NOINLINE_DISABLED
117
+ #endif
118
+
119
+ // The PYBIND11_NOINLINE macro is for function DEFINITIONS.
120
+ // In contrast, FORWARD DECLARATIONS should never use this macro:
121
+ // https://stackoverflow.com/questions/9317473/forward-declaration-of-inline-functions
122
+ #if defined(PYBIND11_NOINLINE_DISABLED) // Option for maximum portability and experimentation.
123
+ # define PYBIND11_NOINLINE inline
124
+ #elif defined(_MSC_VER)
125
+ # define PYBIND11_NOINLINE __declspec(noinline) inline
126
+ #else
127
+ # define PYBIND11_NOINLINE __attribute__((noinline)) inline
128
+ #endif
129
+
130
+ #if defined(__MINGW32__)
131
+ // For unknown reasons all PYBIND11_DEPRECATED member trigger a warning when declared
132
+ // whether it is used or not
133
+ # define PYBIND11_DEPRECATED(reason)
134
+ #elif defined(PYBIND11_CPP14)
135
+ # define PYBIND11_DEPRECATED(reason) [[deprecated(reason)]]
136
+ #else
137
+ # define PYBIND11_DEPRECATED(reason) __attribute__((deprecated(reason)))
138
+ #endif
139
+
140
+ #if defined(PYBIND11_CPP17)
141
+ # define PYBIND11_MAYBE_UNUSED [[maybe_unused]]
142
+ #elif defined(_MSC_VER) && !defined(__clang__)
143
+ # define PYBIND11_MAYBE_UNUSED
144
+ #else
145
+ # define PYBIND11_MAYBE_UNUSED __attribute__((__unused__))
146
+ #endif
147
+
148
+ /* Don't let Python.h #define (v)snprintf as macro because they are implemented
149
+ properly in Visual Studio since 2015. */
150
+ #if defined(_MSC_VER)
151
+ # define HAVE_SNPRINTF 1
152
+ #endif
153
+
154
+ /// Include Python header, disable linking to pythonX_d.lib on Windows in debug mode
155
+ #if defined(_MSC_VER)
156
+ # pragma warning(push)
157
+ // C4505: 'PySlice_GetIndicesEx': unreferenced local function has been removed (PyPy only)
158
+ # pragma warning(disable : 4505)
159
+ # if defined(_DEBUG) && !defined(Py_DEBUG)
160
+ // Workaround for a VS 2022 issue.
161
+ // NOTE: This workaround knowingly violates the Python.h include order requirement:
162
+ // https://docs.python.org/3/c-api/intro.html#include-files
163
+ // See https://github.com/pybind/pybind11/pull/3497 for full context.
164
+ # include <yvals.h>
165
+ # if _MSVC_STL_VERSION >= 143
166
+ # include <crtdefs.h>
167
+ # endif
168
+ # define PYBIND11_DEBUG_MARKER
169
+ # undef _DEBUG
170
+ # endif
171
+ #endif
172
+
173
+ // https://en.cppreference.com/w/c/chrono/localtime
174
+ #if defined(__STDC_LIB_EXT1__) && !defined(__STDC_WANT_LIB_EXT1__)
175
+ # define __STDC_WANT_LIB_EXT1__
176
+ #endif
177
+
178
+ #ifdef __has_include
179
+ // std::optional (but including it in c++14 mode isn't allowed)
180
+ # if defined(PYBIND11_CPP17) && __has_include(<optional>)
181
+ # define PYBIND11_HAS_OPTIONAL 1
182
+ # endif
183
+ // std::experimental::optional (but not allowed in c++11 mode)
184
+ # if defined(PYBIND11_CPP14) && (__has_include(<experimental/optional>) && \
185
+ !__has_include(<optional>))
186
+ # define PYBIND11_HAS_EXP_OPTIONAL 1
187
+ # endif
188
+ // std::variant
189
+ # if defined(PYBIND11_CPP17) && __has_include(<variant>)
190
+ # define PYBIND11_HAS_VARIANT 1
191
+ # endif
192
+ #elif defined(_MSC_VER) && defined(PYBIND11_CPP17)
193
+ # define PYBIND11_HAS_OPTIONAL 1
194
+ # define PYBIND11_HAS_VARIANT 1
195
+ #endif
196
+
197
+ #if defined(PYBIND11_CPP17)
198
+ # if defined(__has_include)
199
+ # if __has_include(<string_view>)
200
+ # define PYBIND11_HAS_STRING_VIEW
201
+ # endif
202
+ # elif defined(_MSC_VER)
203
+ # define PYBIND11_HAS_STRING_VIEW
204
+ # endif
205
+ #endif
206
+
207
+ #if defined(__cpp_lib_char8_t) && __cpp_lib_char8_t >= 201811L
208
+ # define PYBIND11_HAS_U8STRING
209
+ #endif
210
+
211
+ #include <Python.h>
212
+ #if PY_VERSION_HEX < 0x03060000
213
+ # error "PYTHON < 3.6 IS UNSUPPORTED. pybind11 v2.9 was the last to support Python 2 and 3.5."
214
+ #endif
215
+ #include <frameobject.h>
216
+ #include <pythread.h>
217
+
218
+ /* Python #defines overrides on all sorts of core functions, which
219
+ tends to weak havok in C++ codebases that expect these to work
220
+ like regular functions (potentially with several overloads) */
221
+ #if defined(isalnum)
222
+ # undef isalnum
223
+ # undef isalpha
224
+ # undef islower
225
+ # undef isspace
226
+ # undef isupper
227
+ # undef tolower
228
+ # undef toupper
229
+ #endif
230
+
231
+ #if defined(copysign)
232
+ # undef copysign
233
+ #endif
234
+
235
+ #if defined(_MSC_VER)
236
+ # if defined(PYBIND11_DEBUG_MARKER)
237
+ # define _DEBUG
238
+ # undef PYBIND11_DEBUG_MARKER
239
+ # endif
240
+ # pragma warning(pop)
241
+ #endif
242
+
243
+ #include <cstddef>
244
+ #include <cstring>
245
+ #include <exception>
246
+ #include <forward_list>
247
+ #include <memory>
248
+ #include <stdexcept>
249
+ #include <string>
250
+ #include <type_traits>
251
+ #include <typeindex>
252
+ #include <unordered_map>
253
+ #include <unordered_set>
254
+ #include <vector>
255
+ #if defined(__has_include)
256
+ # if __has_include(<version>)
257
+ # include <version>
258
+ # endif
259
+ #endif
260
+
261
+ // #define PYBIND11_STR_LEGACY_PERMISSIVE
262
+ // If DEFINED, pybind11::str can hold PyUnicodeObject or PyBytesObject
263
+ // (probably surprising and never documented, but this was the
264
+ // legacy behavior until and including v2.6.x). As a side-effect,
265
+ // pybind11::isinstance<str>() is true for both pybind11::str and
266
+ // pybind11::bytes.
267
+ // If UNDEFINED, pybind11::str can only hold PyUnicodeObject, and
268
+ // pybind11::isinstance<str>() is true only for pybind11::str.
269
+ // However, for Python 2 only (!), the pybind11::str caster
270
+ // implicitly decoded bytes to PyUnicodeObject. This was to ease
271
+ // the transition from the legacy behavior to the non-permissive
272
+ // behavior.
273
+
274
+ /// Compatibility macros for Python 2 / Python 3 versions TODO: remove
275
+ #define PYBIND11_INSTANCE_METHOD_NEW(ptr, class_) PyInstanceMethod_New(ptr)
276
+ #define PYBIND11_INSTANCE_METHOD_CHECK PyInstanceMethod_Check
277
+ #define PYBIND11_INSTANCE_METHOD_GET_FUNCTION PyInstanceMethod_GET_FUNCTION
278
+ #define PYBIND11_BYTES_CHECK PyBytes_Check
279
+ #define PYBIND11_BYTES_FROM_STRING PyBytes_FromString
280
+ #define PYBIND11_BYTES_FROM_STRING_AND_SIZE PyBytes_FromStringAndSize
281
+ #define PYBIND11_BYTES_AS_STRING_AND_SIZE PyBytes_AsStringAndSize
282
+ #define PYBIND11_BYTES_AS_STRING PyBytes_AsString
283
+ #define PYBIND11_BYTES_SIZE PyBytes_Size
284
+ #define PYBIND11_LONG_CHECK(o) PyLong_Check(o)
285
+ #define PYBIND11_LONG_AS_LONGLONG(o) PyLong_AsLongLong(o)
286
+ #define PYBIND11_LONG_FROM_SIGNED(o) PyLong_FromSsize_t((ssize_t) (o))
287
+ #define PYBIND11_LONG_FROM_UNSIGNED(o) PyLong_FromSize_t((size_t) (o))
288
+ #define PYBIND11_BYTES_NAME "bytes"
289
+ #define PYBIND11_STRING_NAME "str"
290
+ #define PYBIND11_SLICE_OBJECT PyObject
291
+ #define PYBIND11_FROM_STRING PyUnicode_FromString
292
+ #define PYBIND11_STR_TYPE ::pybind11::str
293
+ #define PYBIND11_BOOL_ATTR "__bool__"
294
+ #define PYBIND11_NB_BOOL(ptr) ((ptr)->nb_bool)
295
+ #define PYBIND11_BUILTINS_MODULE "builtins"
296
+ // Providing a separate declaration to make Clang's -Wmissing-prototypes happy.
297
+ // See comment for PYBIND11_MODULE below for why this is marked "maybe unused".
298
+ #define PYBIND11_PLUGIN_IMPL(name) \
299
+ extern "C" PYBIND11_MAYBE_UNUSED PYBIND11_EXPORT PyObject *PyInit_##name(); \
300
+ extern "C" PYBIND11_EXPORT PyObject *PyInit_##name()
301
+
302
+ #define PYBIND11_TRY_NEXT_OVERLOAD ((PyObject *) 1) // special failure return code
303
+ #define PYBIND11_STRINGIFY(x) #x
304
+ #define PYBIND11_TOSTRING(x) PYBIND11_STRINGIFY(x)
305
+ #define PYBIND11_CONCAT(first, second) first##second
306
+ #define PYBIND11_ENSURE_INTERNALS_READY pybind11::detail::get_internals();
307
+
308
+ #define PYBIND11_CHECK_PYTHON_VERSION \
309
+ { \
310
+ const char *compiled_ver \
311
+ = PYBIND11_TOSTRING(PY_MAJOR_VERSION) "." PYBIND11_TOSTRING(PY_MINOR_VERSION); \
312
+ const char *runtime_ver = Py_GetVersion(); \
313
+ size_t len = std::strlen(compiled_ver); \
314
+ if (std::strncmp(runtime_ver, compiled_ver, len) != 0 \
315
+ || (runtime_ver[len] >= '0' && runtime_ver[len] <= '9')) { \
316
+ PyErr_Format(PyExc_ImportError, \
317
+ "Python version mismatch: module was compiled for Python %s, " \
318
+ "but the interpreter version is incompatible: %s.", \
319
+ compiled_ver, \
320
+ runtime_ver); \
321
+ return nullptr; \
322
+ } \
323
+ }
324
+
325
+ #define PYBIND11_CATCH_INIT_EXCEPTIONS \
326
+ catch (pybind11::error_already_set & e) { \
327
+ pybind11::raise_from(e, PyExc_ImportError, "initialization failed"); \
328
+ return nullptr; \
329
+ } \
330
+ catch (const std::exception &e) { \
331
+ PyErr_SetString(PyExc_ImportError, e.what()); \
332
+ return nullptr; \
333
+ }
334
+
335
+ /** \rst
336
+ ***Deprecated in favor of PYBIND11_MODULE***
337
+
338
+ This macro creates the entry point that will be invoked when the Python interpreter
339
+ imports a plugin library. Please create a `module_` in the function body and return
340
+ the pointer to its underlying Python object at the end.
341
+
342
+ .. code-block:: cpp
343
+
344
+ PYBIND11_PLUGIN(example) {
345
+ pybind11::module_ m("example", "pybind11 example plugin");
346
+ /// Set up bindings here
347
+ return m.ptr();
348
+ }
349
+ \endrst */
350
+ #define PYBIND11_PLUGIN(name) \
351
+ PYBIND11_DEPRECATED("PYBIND11_PLUGIN is deprecated, use PYBIND11_MODULE") \
352
+ static PyObject *pybind11_init(); \
353
+ PYBIND11_PLUGIN_IMPL(name) { \
354
+ PYBIND11_CHECK_PYTHON_VERSION \
355
+ PYBIND11_ENSURE_INTERNALS_READY \
356
+ try { \
357
+ return pybind11_init(); \
358
+ } \
359
+ PYBIND11_CATCH_INIT_EXCEPTIONS \
360
+ } \
361
+ PyObject *pybind11_init()
362
+
363
+ /** \rst
364
+ This macro creates the entry point that will be invoked when the Python interpreter
365
+ imports an extension module. The module name is given as the fist argument and it
366
+ should not be in quotes. The second macro argument defines a variable of type
367
+ `py::module_` which can be used to initialize the module.
368
+
369
+ The entry point is marked as "maybe unused" to aid dead-code detection analysis:
370
+ since the entry point is typically only looked up at runtime and not referenced
371
+ during translation, it would otherwise appear as unused ("dead") code.
372
+
373
+ .. code-block:: cpp
374
+
375
+ PYBIND11_MODULE(example, m) {
376
+ m.doc() = "pybind11 example module";
377
+
378
+ // Add bindings here
379
+ m.def("foo", []() {
380
+ return "Hello, World!";
381
+ });
382
+ }
383
+ \endrst */
384
+ #define PYBIND11_MODULE(name, variable) \
385
+ static ::pybind11::module_::module_def PYBIND11_CONCAT(pybind11_module_def_, name) \
386
+ PYBIND11_MAYBE_UNUSED; \
387
+ PYBIND11_MAYBE_UNUSED \
388
+ static void PYBIND11_CONCAT(pybind11_init_, name)(::pybind11::module_ &); \
389
+ PYBIND11_PLUGIN_IMPL(name) { \
390
+ PYBIND11_CHECK_PYTHON_VERSION \
391
+ PYBIND11_ENSURE_INTERNALS_READY \
392
+ auto m = ::pybind11::module_::create_extension_module( \
393
+ PYBIND11_TOSTRING(name), nullptr, &PYBIND11_CONCAT(pybind11_module_def_, name)); \
394
+ try { \
395
+ PYBIND11_CONCAT(pybind11_init_, name)(m); \
396
+ return m.ptr(); \
397
+ } \
398
+ PYBIND11_CATCH_INIT_EXCEPTIONS \
399
+ } \
400
+ void PYBIND11_CONCAT(pybind11_init_, name)(::pybind11::module_ & (variable))
401
+
402
+ PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
403
+
404
+ using ssize_t = Py_ssize_t;
405
+ using size_t = std::size_t;
406
+
407
+ template <typename IntType>
408
+ inline ssize_t ssize_t_cast(const IntType &val) {
409
+ static_assert(sizeof(IntType) <= sizeof(ssize_t), "Implicit narrowing is not permitted.");
410
+ return static_cast<ssize_t>(val);
411
+ }
412
+
413
+ /// Approach used to cast a previously unknown C++ instance into a Python object
414
+ enum class return_value_policy : uint8_t {
415
+ /** This is the default return value policy, which falls back to the policy
416
+ return_value_policy::take_ownership when the return value is a pointer.
417
+ Otherwise, it uses return_value::move or return_value::copy for rvalue
418
+ and lvalue references, respectively. See below for a description of what
419
+ all of these different policies do. */
420
+ automatic = 0,
421
+
422
+ /** As above, but use policy return_value_policy::reference when the return
423
+ value is a pointer. This is the default conversion policy for function
424
+ arguments when calling Python functions manually from C++ code (i.e. via
425
+ handle::operator()). You probably won't need to use this. */
426
+ automatic_reference,
427
+
428
+ /** Reference an existing object (i.e. do not create a new copy) and take
429
+ ownership. Python will call the destructor and delete operator when the
430
+ object's reference count reaches zero. Undefined behavior ensues when
431
+ the C++ side does the same.. */
432
+ take_ownership,
433
+
434
+ /** Create a new copy of the returned object, which will be owned by
435
+ Python. This policy is comparably safe because the lifetimes of the two
436
+ instances are decoupled. */
437
+ copy,
438
+
439
+ /** Use std::move to move the return value contents into a new instance
440
+ that will be owned by Python. This policy is comparably safe because the
441
+ lifetimes of the two instances (move source and destination) are
442
+ decoupled. */
443
+ move,
444
+
445
+ /** Reference an existing object, but do not take ownership. The C++ side
446
+ is responsible for managing the object's lifetime and deallocating it
447
+ when it is no longer used. Warning: undefined behavior will ensue when
448
+ the C++ side deletes an object that is still referenced and used by
449
+ Python. */
450
+ reference,
451
+
452
+ /** This policy only applies to methods and properties. It references the
453
+ object without taking ownership similar to the above
454
+ return_value_policy::reference policy. In contrast to that policy, the
455
+ function or property's implicit this argument (called the parent) is
456
+ considered to be the the owner of the return value (the child).
457
+ pybind11 then couples the lifetime of the parent to the child via a
458
+ reference relationship that ensures that the parent cannot be garbage
459
+ collected while Python is still using the child. More advanced
460
+ variations of this scheme are also possible using combinations of
461
+ return_value_policy::reference and the keep_alive call policy */
462
+ reference_internal
463
+ };
464
+
465
+ PYBIND11_NAMESPACE_BEGIN(detail)
466
+
467
+ inline static constexpr int log2(size_t n, int k = 0) {
468
+ return (n <= 1) ? k : log2(n >> 1, k + 1);
469
+ }
470
+
471
+ // Returns the size as a multiple of sizeof(void *), rounded up.
472
+ inline static constexpr size_t size_in_ptrs(size_t s) {
473
+ return 1 + ((s - 1) >> log2(sizeof(void *)));
474
+ }
475
+
476
+ /**
477
+ * The space to allocate for simple layout instance holders (see below) in multiple of the size of
478
+ * a pointer (e.g. 2 means 16 bytes on 64-bit architectures). The default is the minimum required
479
+ * to holder either a std::unique_ptr or std::shared_ptr (which is almost always
480
+ * sizeof(std::shared_ptr<T>)).
481
+ */
482
+ constexpr size_t instance_simple_holder_in_ptrs() {
483
+ static_assert(sizeof(std::shared_ptr<int>) >= sizeof(std::unique_ptr<int>),
484
+ "pybind assumes std::shared_ptrs are at least as big as std::unique_ptrs");
485
+ return size_in_ptrs(sizeof(std::shared_ptr<int>));
486
+ }
487
+
488
+ // Forward declarations
489
+ struct type_info;
490
+ struct value_and_holder;
491
+
492
+ struct nonsimple_values_and_holders {
493
+ void **values_and_holders;
494
+ uint8_t *status;
495
+ };
496
+
497
+ /// The 'instance' type which needs to be standard layout (need to be able to use 'offsetof')
498
+ struct instance {
499
+ PyObject_HEAD
500
+ /// Storage for pointers and holder; see simple_layout, below, for a description
501
+ union {
502
+ void *simple_value_holder[1 + instance_simple_holder_in_ptrs()];
503
+ nonsimple_values_and_holders nonsimple;
504
+ };
505
+ /// Weak references
506
+ PyObject *weakrefs;
507
+ /// If true, the pointer is owned which means we're free to manage it with a holder.
508
+ bool owned : 1;
509
+ /**
510
+ * An instance has two possible value/holder layouts.
511
+ *
512
+ * Simple layout (when this flag is true), means the `simple_value_holder` is set with a
513
+ * pointer and the holder object governing that pointer, i.e. [val1*][holder]. This layout is
514
+ * applied whenever there is no python-side multiple inheritance of bound C++ types *and* the
515
+ * type's holder will fit in the default space (which is large enough to hold either a
516
+ * std::unique_ptr or std::shared_ptr).
517
+ *
518
+ * Non-simple layout applies when using custom holders that require more space than
519
+ * `shared_ptr` (which is typically the size of two pointers), or when multiple inheritance is
520
+ * used on the python side. Non-simple layout allocates the required amount of memory to have
521
+ * multiple bound C++ classes as parents. Under this layout, `nonsimple.values_and_holders` is
522
+ * set to a pointer to allocated space of the required space to hold a sequence of value
523
+ * pointers and holders followed `status`, a set of bit flags (1 byte each), i.e.
524
+ * [val1*][holder1][val2*][holder2]...[bb...] where each [block] is rounded up to a multiple
525
+ * of `sizeof(void *)`. `nonsimple.status` is, for convenience, a pointer to the beginning of
526
+ * the [bb...] block (but not independently allocated).
527
+ *
528
+ * Status bits indicate whether the associated holder is constructed (&
529
+ * status_holder_constructed) and whether the value pointer is registered (&
530
+ * status_instance_registered) in `registered_instances`.
531
+ */
532
+ bool simple_layout : 1;
533
+ /// For simple layout, tracks whether the holder has been constructed
534
+ bool simple_holder_constructed : 1;
535
+ /// For simple layout, tracks whether the instance is registered in `registered_instances`
536
+ bool simple_instance_registered : 1;
537
+ /// If true, get_internals().patients has an entry for this object
538
+ bool has_patients : 1;
539
+
540
+ /// Initializes all of the above type/values/holders data (but not the instance values
541
+ /// themselves)
542
+ void allocate_layout();
543
+
544
+ /// Destroys/deallocates all of the above
545
+ void deallocate_layout();
546
+
547
+ /// Returns the value_and_holder wrapper for the given type (or the first, if `find_type`
548
+ /// omitted). Returns a default-constructed (with `.inst = nullptr`) object on failure if
549
+ /// `throw_if_missing` is false.
550
+ value_and_holder get_value_and_holder(const type_info *find_type = nullptr,
551
+ bool throw_if_missing = true);
552
+
553
+ /// Bit values for the non-simple status flags
554
+ static constexpr uint8_t status_holder_constructed = 1;
555
+ static constexpr uint8_t status_instance_registered = 2;
556
+ };
557
+
558
+ static_assert(std::is_standard_layout<instance>::value,
559
+ "Internal error: `pybind11::detail::instance` is not standard layout!");
560
+
561
+ /// from __cpp_future__ import (convenient aliases from C++14/17)
562
+ #if defined(PYBIND11_CPP14)
563
+ using std::conditional_t;
564
+ using std::enable_if_t;
565
+ using std::remove_cv_t;
566
+ using std::remove_reference_t;
567
+ #else
568
+ template <bool B, typename T = void>
569
+ using enable_if_t = typename std::enable_if<B, T>::type;
570
+ template <bool B, typename T, typename F>
571
+ using conditional_t = typename std::conditional<B, T, F>::type;
572
+ template <typename T>
573
+ using remove_cv_t = typename std::remove_cv<T>::type;
574
+ template <typename T>
575
+ using remove_reference_t = typename std::remove_reference<T>::type;
576
+ #endif
577
+
578
+ #if defined(PYBIND11_CPP20)
579
+ using std::remove_cvref;
580
+ using std::remove_cvref_t;
581
+ #else
582
+ template <class T>
583
+ struct remove_cvref {
584
+ using type = remove_cv_t<remove_reference_t<T>>;
585
+ };
586
+ template <class T>
587
+ using remove_cvref_t = typename remove_cvref<T>::type;
588
+ #endif
589
+
590
+ /// Index sequences
591
+ #if defined(PYBIND11_CPP14)
592
+ using std::index_sequence;
593
+ using std::make_index_sequence;
594
+ #else
595
+ template <size_t...>
596
+ struct index_sequence {};
597
+ template <size_t N, size_t... S>
598
+ struct make_index_sequence_impl : make_index_sequence_impl<N - 1, N - 1, S...> {};
599
+ template <size_t... S>
600
+ struct make_index_sequence_impl<0, S...> {
601
+ using type = index_sequence<S...>;
602
+ };
603
+ template <size_t N>
604
+ using make_index_sequence = typename make_index_sequence_impl<N>::type;
605
+ #endif
606
+
607
+ /// Make an index sequence of the indices of true arguments
608
+ template <typename ISeq, size_t, bool...>
609
+ struct select_indices_impl {
610
+ using type = ISeq;
611
+ };
612
+ template <size_t... IPrev, size_t I, bool B, bool... Bs>
613
+ struct select_indices_impl<index_sequence<IPrev...>, I, B, Bs...>
614
+ : select_indices_impl<conditional_t<B, index_sequence<IPrev..., I>, index_sequence<IPrev...>>,
615
+ I + 1,
616
+ Bs...> {};
617
+ template <bool... Bs>
618
+ using select_indices = typename select_indices_impl<index_sequence<>, 0, Bs...>::type;
619
+
620
+ /// Backports of std::bool_constant and std::negation to accommodate older compilers
621
+ template <bool B>
622
+ using bool_constant = std::integral_constant<bool, B>;
623
+ template <typename T>
624
+ struct negation : bool_constant<!T::value> {};
625
+
626
+ // PGI/Intel cannot detect operator delete with the "compatible" void_t impl, so
627
+ // using the new one (C++14 defect, so generally works on newer compilers, even
628
+ // if not in C++17 mode)
629
+ #if defined(__PGIC__) || defined(__INTEL_COMPILER)
630
+ template <typename...>
631
+ using void_t = void;
632
+ #else
633
+ template <typename...>
634
+ struct void_t_impl {
635
+ using type = void;
636
+ };
637
+ template <typename... Ts>
638
+ using void_t = typename void_t_impl<Ts...>::type;
639
+ #endif
640
+
641
+ /// Compile-time all/any/none of that check the boolean value of all template types
642
+ #if defined(__cpp_fold_expressions) && !(defined(_MSC_VER) && (_MSC_VER < 1916))
643
+ template <class... Ts>
644
+ using all_of = bool_constant<(Ts::value && ...)>;
645
+ template <class... Ts>
646
+ using any_of = bool_constant<(Ts::value || ...)>;
647
+ #elif !defined(_MSC_VER)
648
+ template <bool...>
649
+ struct bools {};
650
+ template <class... Ts>
651
+ using all_of = std::is_same<bools<Ts::value..., true>, bools<true, Ts::value...>>;
652
+ template <class... Ts>
653
+ using any_of = negation<all_of<negation<Ts>...>>;
654
+ #else
655
+ // MSVC has trouble with the above, but supports std::conjunction, which we can use instead (albeit
656
+ // at a slight loss of compilation efficiency).
657
+ template <class... Ts>
658
+ using all_of = std::conjunction<Ts...>;
659
+ template <class... Ts>
660
+ using any_of = std::disjunction<Ts...>;
661
+ #endif
662
+ template <class... Ts>
663
+ using none_of = negation<any_of<Ts...>>;
664
+
665
+ template <class T, template <class> class... Predicates>
666
+ using satisfies_all_of = all_of<Predicates<T>...>;
667
+ template <class T, template <class> class... Predicates>
668
+ using satisfies_any_of = any_of<Predicates<T>...>;
669
+ template <class T, template <class> class... Predicates>
670
+ using satisfies_none_of = none_of<Predicates<T>...>;
671
+
672
+ /// Strip the class from a method type
673
+ template <typename T>
674
+ struct remove_class {};
675
+ template <typename C, typename R, typename... A>
676
+ struct remove_class<R (C::*)(A...)> {
677
+ using type = R(A...);
678
+ };
679
+ template <typename C, typename R, typename... A>
680
+ struct remove_class<R (C::*)(A...) const> {
681
+ using type = R(A...);
682
+ };
683
+
684
+ /// Helper template to strip away type modifiers
685
+ template <typename T>
686
+ struct intrinsic_type {
687
+ using type = T;
688
+ };
689
+ template <typename T>
690
+ struct intrinsic_type<const T> {
691
+ using type = typename intrinsic_type<T>::type;
692
+ };
693
+ template <typename T>
694
+ struct intrinsic_type<T *> {
695
+ using type = typename intrinsic_type<T>::type;
696
+ };
697
+ template <typename T>
698
+ struct intrinsic_type<T &> {
699
+ using type = typename intrinsic_type<T>::type;
700
+ };
701
+ template <typename T>
702
+ struct intrinsic_type<T &&> {
703
+ using type = typename intrinsic_type<T>::type;
704
+ };
705
+ template <typename T, size_t N>
706
+ struct intrinsic_type<const T[N]> {
707
+ using type = typename intrinsic_type<T>::type;
708
+ };
709
+ template <typename T, size_t N>
710
+ struct intrinsic_type<T[N]> {
711
+ using type = typename intrinsic_type<T>::type;
712
+ };
713
+ template <typename T>
714
+ using intrinsic_t = typename intrinsic_type<T>::type;
715
+
716
+ /// Helper type to replace 'void' in some expressions
717
+ struct void_type {};
718
+
719
+ /// Helper template which holds a list of types
720
+ template <typename...>
721
+ struct type_list {};
722
+
723
+ /// Compile-time integer sum
724
+ #ifdef __cpp_fold_expressions
725
+ template <typename... Ts>
726
+ constexpr size_t constexpr_sum(Ts... ns) {
727
+ return (0 + ... + size_t{ns});
728
+ }
729
+ #else
730
+ constexpr size_t constexpr_sum() { return 0; }
731
+ template <typename T, typename... Ts>
732
+ constexpr size_t constexpr_sum(T n, Ts... ns) {
733
+ return size_t{n} + constexpr_sum(ns...);
734
+ }
735
+ #endif
736
+
737
+ PYBIND11_NAMESPACE_BEGIN(constexpr_impl)
738
+ /// Implementation details for constexpr functions
739
+ constexpr int first(int i) { return i; }
740
+ template <typename T, typename... Ts>
741
+ constexpr int first(int i, T v, Ts... vs) {
742
+ return v ? i : first(i + 1, vs...);
743
+ }
744
+
745
+ constexpr int last(int /*i*/, int result) { return result; }
746
+ template <typename T, typename... Ts>
747
+ constexpr int last(int i, int result, T v, Ts... vs) {
748
+ return last(i + 1, v ? i : result, vs...);
749
+ }
750
+ PYBIND11_NAMESPACE_END(constexpr_impl)
751
+
752
+ /// Return the index of the first type in Ts which satisfies Predicate<T>.
753
+ /// Returns sizeof...(Ts) if none match.
754
+ template <template <typename> class Predicate, typename... Ts>
755
+ constexpr int constexpr_first() {
756
+ return constexpr_impl::first(0, Predicate<Ts>::value...);
757
+ }
758
+
759
+ /// Return the index of the last type in Ts which satisfies Predicate<T>, or -1 if none match.
760
+ template <template <typename> class Predicate, typename... Ts>
761
+ constexpr int constexpr_last() {
762
+ return constexpr_impl::last(0, -1, Predicate<Ts>::value...);
763
+ }
764
+
765
+ /// Return the Nth element from the parameter pack
766
+ template <size_t N, typename T, typename... Ts>
767
+ struct pack_element {
768
+ using type = typename pack_element<N - 1, Ts...>::type;
769
+ };
770
+ template <typename T, typename... Ts>
771
+ struct pack_element<0, T, Ts...> {
772
+ using type = T;
773
+ };
774
+
775
+ /// Return the one and only type which matches the predicate, or Default if none match.
776
+ /// If more than one type matches the predicate, fail at compile-time.
777
+ template <template <typename> class Predicate, typename Default, typename... Ts>
778
+ struct exactly_one {
779
+ static constexpr auto found = constexpr_sum(Predicate<Ts>::value...);
780
+ static_assert(found <= 1, "Found more than one type matching the predicate");
781
+
782
+ static constexpr auto index = found ? constexpr_first<Predicate, Ts...>() : 0;
783
+ using type = conditional_t<found, typename pack_element<index, Ts...>::type, Default>;
784
+ };
785
+ template <template <typename> class P, typename Default>
786
+ struct exactly_one<P, Default> {
787
+ using type = Default;
788
+ };
789
+
790
+ template <template <typename> class Predicate, typename Default, typename... Ts>
791
+ using exactly_one_t = typename exactly_one<Predicate, Default, Ts...>::type;
792
+
793
+ /// Defer the evaluation of type T until types Us are instantiated
794
+ template <typename T, typename... /*Us*/>
795
+ struct deferred_type {
796
+ using type = T;
797
+ };
798
+ template <typename T, typename... Us>
799
+ using deferred_t = typename deferred_type<T, Us...>::type;
800
+
801
+ /// Like is_base_of, but requires a strict base (i.e. `is_strict_base_of<T, T>::value == false`,
802
+ /// unlike `std::is_base_of`)
803
+ template <typename Base, typename Derived>
804
+ using is_strict_base_of
805
+ = bool_constant<std::is_base_of<Base, Derived>::value && !std::is_same<Base, Derived>::value>;
806
+
807
+ /// Like is_base_of, but also requires that the base type is accessible (i.e. that a Derived
808
+ /// pointer can be converted to a Base pointer) For unions, `is_base_of<T, T>::value` is False, so
809
+ /// we need to check `is_same` as well.
810
+ template <typename Base, typename Derived>
811
+ using is_accessible_base_of
812
+ = bool_constant<(std::is_same<Base, Derived>::value || std::is_base_of<Base, Derived>::value)
813
+ && std::is_convertible<Derived *, Base *>::value>;
814
+
815
+ template <template <typename...> class Base>
816
+ struct is_template_base_of_impl {
817
+ template <typename... Us>
818
+ static std::true_type check(Base<Us...> *);
819
+ static std::false_type check(...);
820
+ };
821
+
822
+ /// Check if a template is the base of a type. For example:
823
+ /// `is_template_base_of<Base, T>` is true if `struct T : Base<U> {}` where U can be anything
824
+ template <template <typename...> class Base, typename T>
825
+ // Sadly, all MSVC versions incl. 2022 need the workaround, even in C++20 mode.
826
+ // See also: https://github.com/pybind/pybind11/pull/3741
827
+ #if !defined(_MSC_VER)
828
+ using is_template_base_of
829
+ = decltype(is_template_base_of_impl<Base>::check((intrinsic_t<T> *) nullptr));
830
+ #else
831
+ struct is_template_base_of
832
+ : decltype(is_template_base_of_impl<Base>::check((intrinsic_t<T> *) nullptr)) {
833
+ };
834
+ #endif
835
+
836
+ /// Check if T is an instantiation of the template `Class`. For example:
837
+ /// `is_instantiation<shared_ptr, T>` is true if `T == shared_ptr<U>` where U can be anything.
838
+ template <template <typename...> class Class, typename T>
839
+ struct is_instantiation : std::false_type {};
840
+ template <template <typename...> class Class, typename... Us>
841
+ struct is_instantiation<Class, Class<Us...>> : std::true_type {};
842
+
843
+ /// Check if T is std::shared_ptr<U> where U can be anything
844
+ template <typename T>
845
+ using is_shared_ptr = is_instantiation<std::shared_ptr, T>;
846
+
847
+ /// Check if T looks like an input iterator
848
+ template <typename T, typename = void>
849
+ struct is_input_iterator : std::false_type {};
850
+ template <typename T>
851
+ struct is_input_iterator<T,
852
+ void_t<decltype(*std::declval<T &>()), decltype(++std::declval<T &>())>>
853
+ : std::true_type {};
854
+
855
+ template <typename T>
856
+ using is_function_pointer
857
+ = bool_constant<std::is_pointer<T>::value
858
+ && std::is_function<typename std::remove_pointer<T>::type>::value>;
859
+
860
+ template <typename F>
861
+ struct strip_function_object {
862
+ // If you are encountering an
863
+ // 'error: name followed by "::" must be a class or namespace name'
864
+ // with the Intel compiler and a noexcept function here,
865
+ // try to use noexcept(true) instead of plain noexcept.
866
+ using type = typename remove_class<decltype(&F::operator())>::type;
867
+ };
868
+
869
+ // Extracts the function signature from a function, function pointer or lambda.
870
+ template <typename Function, typename F = remove_reference_t<Function>>
871
+ using function_signature_t = conditional_t<
872
+ std::is_function<F>::value,
873
+ F,
874
+ typename conditional_t<std::is_pointer<F>::value || std::is_member_pointer<F>::value,
875
+ std::remove_pointer<F>,
876
+ strip_function_object<F>>::type>;
877
+
878
+ /// Returns true if the type looks like a lambda: that is, isn't a function, pointer or member
879
+ /// pointer. Note that this can catch all sorts of other things, too; this is intended to be used
880
+ /// in a place where passing a lambda makes sense.
881
+ template <typename T>
882
+ using is_lambda = satisfies_none_of<remove_reference_t<T>,
883
+ std::is_function,
884
+ std::is_pointer,
885
+ std::is_member_pointer>;
886
+
887
+ // [workaround(intel)] Internal error on fold expression
888
+ /// Apply a function over each element of a parameter pack
889
+ #if defined(__cpp_fold_expressions) && !defined(__INTEL_COMPILER)
890
+ // Intel compiler produces an internal error on this fold expression (tested with ICC 19.0.2)
891
+ # define PYBIND11_EXPAND_SIDE_EFFECTS(PATTERN) (((PATTERN), void()), ...)
892
+ #else
893
+ using expand_side_effects = bool[];
894
+ # define PYBIND11_EXPAND_SIDE_EFFECTS(PATTERN) \
895
+ (void) pybind11::detail::expand_side_effects { ((PATTERN), void(), false)..., false }
896
+ #endif
897
+
898
+ PYBIND11_NAMESPACE_END(detail)
899
+
900
+ #if defined(_MSC_VER)
901
+ # pragma warning(push)
902
+ # pragma warning(disable : 4275)
903
+ // warning C4275: An exported class was derived from a class that wasn't exported.
904
+ // Can be ignored when derived from a STL class.
905
+ #endif
906
+ /// C++ bindings of builtin Python exceptions
907
+ class PYBIND11_EXPORT_EXCEPTION builtin_exception : public std::runtime_error {
908
+ public:
909
+ using std::runtime_error::runtime_error;
910
+ /// Set the error using the Python C API
911
+ virtual void set_error() const = 0;
912
+ };
913
+ #if defined(_MSC_VER)
914
+ # pragma warning(pop)
915
+ #endif
916
+
917
+ #define PYBIND11_RUNTIME_EXCEPTION(name, type) \
918
+ class PYBIND11_EXPORT_EXCEPTION name : public builtin_exception { \
919
+ public: \
920
+ using builtin_exception::builtin_exception; \
921
+ name() : name("") {} \
922
+ void set_error() const override { PyErr_SetString(type, what()); } \
923
+ };
924
+
925
+ PYBIND11_RUNTIME_EXCEPTION(stop_iteration, PyExc_StopIteration)
926
+ PYBIND11_RUNTIME_EXCEPTION(index_error, PyExc_IndexError)
927
+ PYBIND11_RUNTIME_EXCEPTION(key_error, PyExc_KeyError)
928
+ PYBIND11_RUNTIME_EXCEPTION(value_error, PyExc_ValueError)
929
+ PYBIND11_RUNTIME_EXCEPTION(type_error, PyExc_TypeError)
930
+ PYBIND11_RUNTIME_EXCEPTION(buffer_error, PyExc_BufferError)
931
+ PYBIND11_RUNTIME_EXCEPTION(import_error, PyExc_ImportError)
932
+ PYBIND11_RUNTIME_EXCEPTION(attribute_error, PyExc_AttributeError)
933
+ PYBIND11_RUNTIME_EXCEPTION(cast_error, PyExc_RuntimeError) /// Thrown when pybind11::cast or
934
+ /// handle::call fail due to a type
935
+ /// casting error
936
+ PYBIND11_RUNTIME_EXCEPTION(reference_cast_error, PyExc_RuntimeError) /// Used internally
937
+
938
+ [[noreturn]] PYBIND11_NOINLINE void pybind11_fail(const char *reason) {
939
+ assert(!PyErr_Occurred());
940
+ throw std::runtime_error(reason);
941
+ }
942
+ [[noreturn]] PYBIND11_NOINLINE void pybind11_fail(const std::string &reason) {
943
+ assert(!PyErr_Occurred());
944
+ throw std::runtime_error(reason);
945
+ }
946
+
947
+ template <typename T, typename SFINAE = void>
948
+ struct format_descriptor {};
949
+
950
+ PYBIND11_NAMESPACE_BEGIN(detail)
951
+ // Returns the index of the given type in the type char array below, and in the list in numpy.h
952
+ // The order here is: bool; 8 ints ((signed,unsigned)x(8,16,32,64)bits); float,double,long double;
953
+ // complex float,double,long double. Note that the long double types only participate when long
954
+ // double is actually longer than double (it isn't under MSVC).
955
+ // NB: not only the string below but also complex.h and numpy.h rely on this order.
956
+ template <typename T, typename SFINAE = void>
957
+ struct is_fmt_numeric {
958
+ static constexpr bool value = false;
959
+ };
960
+ template <typename T>
961
+ struct is_fmt_numeric<T, enable_if_t<std::is_arithmetic<T>::value>> {
962
+ static constexpr bool value = true;
963
+ static constexpr int index
964
+ = std::is_same<T, bool>::value
965
+ ? 0
966
+ : 1
967
+ + (std::is_integral<T>::value
968
+ ? detail::log2(sizeof(T)) * 2 + std::is_unsigned<T>::value
969
+ : 8
970
+ + (std::is_same<T, double>::value ? 1
971
+ : std::is_same<T, long double>::value ? 2
972
+ : 0));
973
+ };
974
+ PYBIND11_NAMESPACE_END(detail)
975
+
976
+ template <typename T>
977
+ struct format_descriptor<T, detail::enable_if_t<std::is_arithmetic<T>::value>> {
978
+ static constexpr const char c = "?bBhHiIqQfdg"[detail::is_fmt_numeric<T>::index];
979
+ static constexpr const char value[2] = {c, '\0'};
980
+ static std::string format() { return std::string(1, c); }
981
+ };
982
+
983
+ #if !defined(PYBIND11_CPP17)
984
+
985
+ template <typename T>
986
+ constexpr const char
987
+ format_descriptor<T, detail::enable_if_t<std::is_arithmetic<T>::value>>::value[2];
988
+
989
+ #endif
990
+
991
+ /// RAII wrapper that temporarily clears any Python error state
992
+ struct error_scope {
993
+ PyObject *type, *value, *trace;
994
+ error_scope() { PyErr_Fetch(&type, &value, &trace); }
995
+ error_scope(const error_scope &) = delete;
996
+ error_scope &operator=(const error_scope &) = delete;
997
+ ~error_scope() { PyErr_Restore(type, value, trace); }
998
+ };
999
+
1000
+ /// Dummy destructor wrapper that can be used to expose classes with a private destructor
1001
+ struct nodelete {
1002
+ template <typename T>
1003
+ void operator()(T *) {}
1004
+ };
1005
+
1006
+ PYBIND11_NAMESPACE_BEGIN(detail)
1007
+ template <typename... Args>
1008
+ struct overload_cast_impl {
1009
+ template <typename Return>
1010
+ constexpr auto operator()(Return (*pf)(Args...)) const noexcept -> decltype(pf) {
1011
+ return pf;
1012
+ }
1013
+
1014
+ template <typename Return, typename Class>
1015
+ constexpr auto operator()(Return (Class::*pmf)(Args...), std::false_type = {}) const noexcept
1016
+ -> decltype(pmf) {
1017
+ return pmf;
1018
+ }
1019
+
1020
+ template <typename Return, typename Class>
1021
+ constexpr auto operator()(Return (Class::*pmf)(Args...) const, std::true_type) const noexcept
1022
+ -> decltype(pmf) {
1023
+ return pmf;
1024
+ }
1025
+ };
1026
+ PYBIND11_NAMESPACE_END(detail)
1027
+
1028
+ // overload_cast requires variable templates: C++14
1029
+ #if defined(PYBIND11_CPP14)
1030
+ # define PYBIND11_OVERLOAD_CAST 1
1031
+ /// Syntax sugar for resolving overloaded function pointers:
1032
+ /// - regular: static_cast<Return (Class::*)(Arg0, Arg1, Arg2)>(&Class::func)
1033
+ /// - sweet: overload_cast<Arg0, Arg1, Arg2>(&Class::func)
1034
+ template <typename... Args>
1035
+ # if (defined(_MSC_VER) && _MSC_VER < 1920) /* MSVC 2017 */ \
1036
+ || (defined(__clang__) && __clang_major__ == 5)
1037
+ static constexpr detail::overload_cast_impl<Args...> overload_cast = {};
1038
+ # else
1039
+ static constexpr detail::overload_cast_impl<Args...> overload_cast;
1040
+ # endif
1041
+ #endif
1042
+
1043
+ /// Const member function selector for overload_cast
1044
+ /// - regular: static_cast<Return (Class::*)(Arg) const>(&Class::func)
1045
+ /// - sweet: overload_cast<Arg>(&Class::func, const_)
1046
+ static constexpr auto const_ = std::true_type{};
1047
+
1048
+ #if !defined(PYBIND11_CPP14) // no overload_cast: providing something that static_assert-fails:
1049
+ template <typename... Args>
1050
+ struct overload_cast {
1051
+ static_assert(detail::deferred_t<std::false_type, Args...>::value,
1052
+ "pybind11::overload_cast<...> requires compiling in C++14 mode");
1053
+ };
1054
+ #endif // overload_cast
1055
+
1056
+ PYBIND11_NAMESPACE_BEGIN(detail)
1057
+
1058
+ // Adaptor for converting arbitrary container arguments into a vector; implicitly convertible from
1059
+ // any standard container (or C-style array) supporting std::begin/std::end, any singleton
1060
+ // arithmetic type (if T is arithmetic), or explicitly constructible from an iterator pair.
1061
+ template <typename T>
1062
+ class any_container {
1063
+ std::vector<T> v;
1064
+
1065
+ public:
1066
+ any_container() = default;
1067
+
1068
+ // Can construct from a pair of iterators
1069
+ template <typename It, typename = enable_if_t<is_input_iterator<It>::value>>
1070
+ any_container(It first, It last) : v(first, last) {}
1071
+
1072
+ // Implicit conversion constructor from any arbitrary container type
1073
+ // with values convertible to T
1074
+ template <typename Container,
1075
+ typename = enable_if_t<
1076
+ std::is_convertible<decltype(*std::begin(std::declval<const Container &>())),
1077
+ T>::value>>
1078
+ // NOLINTNEXTLINE(google-explicit-constructor)
1079
+ any_container(const Container &c) : any_container(std::begin(c), std::end(c)) {}
1080
+
1081
+ // initializer_list's aren't deducible, so don't get matched by the above template;
1082
+ // we need this to explicitly allow implicit conversion from one:
1083
+ template <typename TIn, typename = enable_if_t<std::is_convertible<TIn, T>::value>>
1084
+ any_container(const std::initializer_list<TIn> &c) : any_container(c.begin(), c.end()) {}
1085
+
1086
+ // Avoid copying if given an rvalue vector of the correct type.
1087
+ // NOLINTNEXTLINE(google-explicit-constructor)
1088
+ any_container(std::vector<T> &&v) : v(std::move(v)) {}
1089
+
1090
+ // Moves the vector out of an rvalue any_container
1091
+ // NOLINTNEXTLINE(google-explicit-constructor)
1092
+ operator std::vector<T> &&() && { return std::move(v); }
1093
+
1094
+ // Dereferencing obtains a reference to the underlying vector
1095
+ std::vector<T> &operator*() { return v; }
1096
+ const std::vector<T> &operator*() const { return v; }
1097
+
1098
+ // -> lets you call methods on the underlying vector
1099
+ std::vector<T> *operator->() { return &v; }
1100
+ const std::vector<T> *operator->() const { return &v; }
1101
+ };
1102
+
1103
+ // Forward-declaration; see detail/class.h
1104
+ std::string get_fully_qualified_tp_name(PyTypeObject *);
1105
+
1106
+ template <typename T>
1107
+ inline static std::shared_ptr<T>
1108
+ try_get_shared_from_this(std::enable_shared_from_this<T> *holder_value_ptr) {
1109
+ // Pre C++17, this code path exploits undefined behavior, but is known to work on many platforms.
1110
+ // Use at your own risk!
1111
+ // See also https://en.cppreference.com/w/cpp/memory/enable_shared_from_this, and in particular
1112
+ // the `std::shared_ptr<Good> gp1 = not_so_good.getptr();` and `try`-`catch` parts of the example.
1113
+ #if defined(__cpp_lib_enable_shared_from_this) && (!defined(_MSC_VER) || _MSC_VER >= 1912)
1114
+ return holder_value_ptr->weak_from_this().lock();
1115
+ #else
1116
+ try {
1117
+ return holder_value_ptr->shared_from_this();
1118
+ } catch (const std::bad_weak_ptr &) {
1119
+ return nullptr;
1120
+ }
1121
+ #endif
1122
+ }
1123
+
1124
+ // For silencing "unused" compiler warnings in special situations.
1125
+ template <typename... Args>
1126
+ #if defined(_MSC_VER) && _MSC_VER < 1920 // MSVC 2017
1127
+ constexpr
1128
+ #endif
1129
+ inline void
1130
+ silence_unused_warnings(Args &&...) {
1131
+ }
1132
+
1133
+ // MSVC warning C4100: Unreferenced formal parameter
1134
+ #if defined(_MSC_VER) && _MSC_VER <= 1916
1135
+ # define PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(...) \
1136
+ detail::silence_unused_warnings(__VA_ARGS__)
1137
+ #else
1138
+ # define PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(...)
1139
+ #endif
1140
+
1141
+ // GCC -Wunused-but-set-parameter All GCC versions (as of July 2021).
1142
+ #if defined(__GNUG__) && !defined(__clang__) && !defined(__INTEL_COMPILER)
1143
+ # define PYBIND11_WORKAROUND_INCORRECT_GCC_UNUSED_BUT_SET_PARAMETER(...) \
1144
+ detail::silence_unused_warnings(__VA_ARGS__)
1145
+ #else
1146
+ # define PYBIND11_WORKAROUND_INCORRECT_GCC_UNUSED_BUT_SET_PARAMETER(...)
1147
+ #endif
1148
+
1149
+ #if defined(_MSC_VER) // All versions (as of July 2021).
1150
+
1151
+ // warning C4127: Conditional expression is constant
1152
+ constexpr inline bool silence_msvc_c4127(bool cond) { return cond; }
1153
+
1154
+ # define PYBIND11_SILENCE_MSVC_C4127(...) ::pybind11::detail::silence_msvc_c4127(__VA_ARGS__)
1155
+
1156
+ #else
1157
+ # define PYBIND11_SILENCE_MSVC_C4127(...) __VA_ARGS__
1158
+ #endif
1159
+
1160
+ // Pybind offers detailed error messages by default for all builts that are debug (through the
1161
+ // negation of ndebug). This can also be manually enabled by users, for any builds, through
1162
+ // defining PYBIND11_DETAILED_ERROR_MESSAGES.
1163
+ #if !defined(PYBIND11_DETAILED_ERROR_MESSAGES) && !defined(NDEBUG)
1164
+ # define PYBIND11_DETAILED_ERROR_MESSAGES
1165
+ #endif
1166
+
1167
+ PYBIND11_NAMESPACE_END(detail)
1168
+ PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
third-party/DPVO/DPViewer/pybind11/include/pybind11/detail/descr.h ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ pybind11/detail/descr.h: Helper type for concatenating type signatures at compile time
3
+
4
+ Copyright (c) 2016 Wenzel Jakob <[email protected]>
5
+
6
+ All rights reserved. Use of this source code is governed by a
7
+ BSD-style license that can be found in the LICENSE file.
8
+ */
9
+
10
+ #pragma once
11
+
12
+ #include "common.h"
13
+
14
+ PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
15
+ PYBIND11_NAMESPACE_BEGIN(detail)
16
+
17
+ #if !defined(_MSC_VER)
18
+ # define PYBIND11_DESCR_CONSTEXPR static constexpr
19
+ #else
20
+ # define PYBIND11_DESCR_CONSTEXPR const
21
+ #endif
22
+
23
+ /* Concatenate type signatures at compile time */
24
+ template <size_t N, typename... Ts>
25
+ struct descr {
26
+ char text[N + 1]{'\0'};
27
+
28
+ constexpr descr() = default;
29
+ // NOLINTNEXTLINE(google-explicit-constructor)
30
+ constexpr descr(char const (&s)[N + 1]) : descr(s, make_index_sequence<N>()) {}
31
+
32
+ template <size_t... Is>
33
+ constexpr descr(char const (&s)[N + 1], index_sequence<Is...>) : text{s[Is]..., '\0'} {}
34
+
35
+ template <typename... Chars>
36
+ // NOLINTNEXTLINE(google-explicit-constructor)
37
+ constexpr descr(char c, Chars... cs) : text{c, static_cast<char>(cs)..., '\0'} {}
38
+
39
+ static constexpr std::array<const std::type_info *, sizeof...(Ts) + 1> types() {
40
+ return {{&typeid(Ts)..., nullptr}};
41
+ }
42
+ };
43
+
44
+ template <size_t N1, size_t N2, typename... Ts1, typename... Ts2, size_t... Is1, size_t... Is2>
45
+ constexpr descr<N1 + N2, Ts1..., Ts2...> plus_impl(const descr<N1, Ts1...> &a,
46
+ const descr<N2, Ts2...> &b,
47
+ index_sequence<Is1...>,
48
+ index_sequence<Is2...>) {
49
+ PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(b);
50
+ return {a.text[Is1]..., b.text[Is2]...};
51
+ }
52
+
53
+ template <size_t N1, size_t N2, typename... Ts1, typename... Ts2>
54
+ constexpr descr<N1 + N2, Ts1..., Ts2...> operator+(const descr<N1, Ts1...> &a,
55
+ const descr<N2, Ts2...> &b) {
56
+ return plus_impl(a, b, make_index_sequence<N1>(), make_index_sequence<N2>());
57
+ }
58
+
59
+ template <size_t N>
60
+ constexpr descr<N - 1> const_name(char const (&text)[N]) {
61
+ return descr<N - 1>(text);
62
+ }
63
+ constexpr descr<0> const_name(char const (&)[1]) { return {}; }
64
+
65
+ template <size_t Rem, size_t... Digits>
66
+ struct int_to_str : int_to_str<Rem / 10, Rem % 10, Digits...> {};
67
+ template <size_t... Digits>
68
+ struct int_to_str<0, Digits...> {
69
+ // WARNING: This only works with C++17 or higher.
70
+ static constexpr auto digits = descr<sizeof...(Digits)>(('0' + Digits)...);
71
+ };
72
+
73
+ // Ternary description (like std::conditional)
74
+ template <bool B, size_t N1, size_t N2>
75
+ constexpr enable_if_t<B, descr<N1 - 1>> const_name(char const (&text1)[N1], char const (&)[N2]) {
76
+ return const_name(text1);
77
+ }
78
+ template <bool B, size_t N1, size_t N2>
79
+ constexpr enable_if_t<!B, descr<N2 - 1>> const_name(char const (&)[N1], char const (&text2)[N2]) {
80
+ return const_name(text2);
81
+ }
82
+
83
+ template <bool B, typename T1, typename T2>
84
+ constexpr enable_if_t<B, T1> const_name(const T1 &d, const T2 &) {
85
+ return d;
86
+ }
87
+ template <bool B, typename T1, typename T2>
88
+ constexpr enable_if_t<!B, T2> const_name(const T1 &, const T2 &d) {
89
+ return d;
90
+ }
91
+
92
+ template <size_t Size>
93
+ auto constexpr const_name() -> remove_cv_t<decltype(int_to_str<Size / 10, Size % 10>::digits)> {
94
+ return int_to_str<Size / 10, Size % 10>::digits;
95
+ }
96
+
97
+ template <typename Type>
98
+ constexpr descr<1, Type> const_name() {
99
+ return {'%'};
100
+ }
101
+
102
+ // If "_" is defined as a macro, py::detail::_ cannot be provided.
103
+ // It is therefore best to use py::detail::const_name universally.
104
+ // This block is for backward compatibility only.
105
+ // (The const_name code is repeated to avoid introducing a "_" #define ourselves.)
106
+ #ifndef _
107
+ # define PYBIND11_DETAIL_UNDERSCORE_BACKWARD_COMPATIBILITY
108
+ template <size_t N>
109
+ constexpr descr<N - 1> _(char const (&text)[N]) {
110
+ return const_name<N>(text);
111
+ }
112
+ template <bool B, size_t N1, size_t N2>
113
+ constexpr enable_if_t<B, descr<N1 - 1>> _(char const (&text1)[N1], char const (&text2)[N2]) {
114
+ return const_name<B, N1, N2>(text1, text2);
115
+ }
116
+ template <bool B, size_t N1, size_t N2>
117
+ constexpr enable_if_t<!B, descr<N2 - 1>> _(char const (&text1)[N1], char const (&text2)[N2]) {
118
+ return const_name<B, N1, N2>(text1, text2);
119
+ }
120
+ template <bool B, typename T1, typename T2>
121
+ constexpr enable_if_t<B, T1> _(const T1 &d1, const T2 &d2) {
122
+ return const_name<B, T1, T2>(d1, d2);
123
+ }
124
+ template <bool B, typename T1, typename T2>
125
+ constexpr enable_if_t<!B, T2> _(const T1 &d1, const T2 &d2) {
126
+ return const_name<B, T1, T2>(d1, d2);
127
+ }
128
+
129
+ template <size_t Size>
130
+ auto constexpr _() -> remove_cv_t<decltype(int_to_str<Size / 10, Size % 10>::digits)> {
131
+ return const_name<Size>();
132
+ }
133
+ template <typename Type>
134
+ constexpr descr<1, Type> _() {
135
+ return const_name<Type>();
136
+ }
137
+ #endif // #ifndef _
138
+
139
+ constexpr descr<0> concat() { return {}; }
140
+
141
+ template <size_t N, typename... Ts>
142
+ constexpr descr<N, Ts...> concat(const descr<N, Ts...> &descr) {
143
+ return descr;
144
+ }
145
+
146
+ template <size_t N, typename... Ts, typename... Args>
147
+ constexpr auto concat(const descr<N, Ts...> &d, const Args &...args)
148
+ -> decltype(std::declval<descr<N + 2, Ts...>>() + concat(args...)) {
149
+ return d + const_name(", ") + concat(args...);
150
+ }
151
+
152
+ template <size_t N, typename... Ts>
153
+ constexpr descr<N + 2, Ts...> type_descr(const descr<N, Ts...> &descr) {
154
+ return const_name("{") + descr + const_name("}");
155
+ }
156
+
157
+ PYBIND11_NAMESPACE_END(detail)
158
+ PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
third-party/DPVO/DPViewer/pybind11/include/pybind11/detail/init.h ADDED
@@ -0,0 +1,428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ pybind11/detail/init.h: init factory function implementation and support code.
3
+
4
+ Copyright (c) 2017 Jason Rhinelander <[email protected]>
5
+
6
+ All rights reserved. Use of this source code is governed by a
7
+ BSD-style license that can be found in the LICENSE file.
8
+ */
9
+
10
+ #pragma once
11
+
12
+ #include "class.h"
13
+
14
+ PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
15
+ PYBIND11_NAMESPACE_BEGIN(detail)
16
+
17
+ template <>
18
+ class type_caster<value_and_holder> {
19
+ public:
20
+ bool load(handle h, bool) {
21
+ value = reinterpret_cast<value_and_holder *>(h.ptr());
22
+ return true;
23
+ }
24
+
25
+ template <typename>
26
+ using cast_op_type = value_and_holder &;
27
+ explicit operator value_and_holder &() { return *value; }
28
+ static constexpr auto name = const_name<value_and_holder>();
29
+
30
+ private:
31
+ value_and_holder *value = nullptr;
32
+ };
33
+
34
+ PYBIND11_NAMESPACE_BEGIN(initimpl)
35
+
36
+ inline void no_nullptr(void *ptr) {
37
+ if (!ptr) {
38
+ throw type_error("pybind11::init(): factory function returned nullptr");
39
+ }
40
+ }
41
+
42
+ // Implementing functions for all forms of py::init<...> and py::init(...)
43
+ template <typename Class>
44
+ using Cpp = typename Class::type;
45
+ template <typename Class>
46
+ using Alias = typename Class::type_alias;
47
+ template <typename Class>
48
+ using Holder = typename Class::holder_type;
49
+
50
+ template <typename Class>
51
+ using is_alias_constructible = std::is_constructible<Alias<Class>, Cpp<Class> &&>;
52
+
53
+ // Takes a Cpp pointer and returns true if it actually is a polymorphic Alias instance.
54
+ template <typename Class, enable_if_t<Class::has_alias, int> = 0>
55
+ bool is_alias(Cpp<Class> *ptr) {
56
+ return dynamic_cast<Alias<Class> *>(ptr) != nullptr;
57
+ }
58
+ // Failing fallback version of the above for a no-alias class (always returns false)
59
+ template <typename /*Class*/>
60
+ constexpr bool is_alias(void *) {
61
+ return false;
62
+ }
63
+
64
+ // Constructs and returns a new object; if the given arguments don't map to a constructor, we fall
65
+ // back to brace aggregate initiailization so that for aggregate initialization can be used with
66
+ // py::init, e.g. `py::init<int, int>` to initialize a `struct T { int a; int b; }`. For
67
+ // non-aggregate types, we need to use an ordinary T(...) constructor (invoking as `T{...}` usually
68
+ // works, but will not do the expected thing when `T` has an `initializer_list<T>` constructor).
69
+ template <typename Class,
70
+ typename... Args,
71
+ detail::enable_if_t<std::is_constructible<Class, Args...>::value, int> = 0>
72
+ inline Class *construct_or_initialize(Args &&...args) {
73
+ return new Class(std::forward<Args>(args)...);
74
+ }
75
+ template <typename Class,
76
+ typename... Args,
77
+ detail::enable_if_t<!std::is_constructible<Class, Args...>::value, int> = 0>
78
+ inline Class *construct_or_initialize(Args &&...args) {
79
+ return new Class{std::forward<Args>(args)...};
80
+ }
81
+
82
+ // Attempts to constructs an alias using a `Alias(Cpp &&)` constructor. This allows types with
83
+ // an alias to provide only a single Cpp factory function as long as the Alias can be
84
+ // constructed from an rvalue reference of the base Cpp type. This means that Alias classes
85
+ // can, when appropriate, simply define a `Alias(Cpp &&)` constructor rather than needing to
86
+ // inherit all the base class constructors.
87
+ template <typename Class>
88
+ void construct_alias_from_cpp(std::true_type /*is_alias_constructible*/,
89
+ value_and_holder &v_h,
90
+ Cpp<Class> &&base) {
91
+ v_h.value_ptr() = new Alias<Class>(std::move(base));
92
+ }
93
+ template <typename Class>
94
+ [[noreturn]] void construct_alias_from_cpp(std::false_type /*!is_alias_constructible*/,
95
+ value_and_holder &,
96
+ Cpp<Class> &&) {
97
+ throw type_error("pybind11::init(): unable to convert returned instance to required "
98
+ "alias class: no `Alias<Class>(Class &&)` constructor available");
99
+ }
100
+
101
+ // Error-generating fallback for factories that don't match one of the below construction
102
+ // mechanisms.
103
+ template <typename Class>
104
+ void construct(...) {
105
+ static_assert(!std::is_same<Class, Class>::value /* always false */,
106
+ "pybind11::init(): init function must return a compatible pointer, "
107
+ "holder, or value");
108
+ }
109
+
110
+ // Pointer return v1: the factory function returns a class pointer for a registered class.
111
+ // If we don't need an alias (because this class doesn't have one, or because the final type is
112
+ // inherited on the Python side) we can simply take over ownership. Otherwise we need to try to
113
+ // construct an Alias from the returned base instance.
114
+ template <typename Class>
115
+ void construct(value_and_holder &v_h, Cpp<Class> *ptr, bool need_alias) {
116
+ PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(need_alias);
117
+ no_nullptr(ptr);
118
+ if (PYBIND11_SILENCE_MSVC_C4127(Class::has_alias) && need_alias && !is_alias<Class>(ptr)) {
119
+ // We're going to try to construct an alias by moving the cpp type. Whether or not
120
+ // that succeeds, we still need to destroy the original cpp pointer (either the
121
+ // moved away leftover, if the alias construction works, or the value itself if we
122
+ // throw an error), but we can't just call `delete ptr`: it might have a special
123
+ // deleter, or might be shared_from_this. So we construct a holder around it as if
124
+ // it was a normal instance, then steal the holder away into a local variable; thus
125
+ // the holder and destruction happens when we leave the C++ scope, and the holder
126
+ // class gets to handle the destruction however it likes.
127
+ v_h.value_ptr() = ptr;
128
+ v_h.set_instance_registered(true); // To prevent init_instance from registering it
129
+ v_h.type->init_instance(v_h.inst, nullptr); // Set up the holder
130
+ Holder<Class> temp_holder(std::move(v_h.holder<Holder<Class>>())); // Steal the holder
131
+ v_h.type->dealloc(v_h); // Destroys the moved-out holder remains, resets value ptr to null
132
+ v_h.set_instance_registered(false);
133
+
134
+ construct_alias_from_cpp<Class>(is_alias_constructible<Class>{}, v_h, std::move(*ptr));
135
+ } else {
136
+ // Otherwise the type isn't inherited, so we don't need an Alias
137
+ v_h.value_ptr() = ptr;
138
+ }
139
+ }
140
+
141
+ // Pointer return v2: a factory that always returns an alias instance ptr. We simply take over
142
+ // ownership of the pointer.
143
+ template <typename Class, enable_if_t<Class::has_alias, int> = 0>
144
+ void construct(value_and_holder &v_h, Alias<Class> *alias_ptr, bool) {
145
+ no_nullptr(alias_ptr);
146
+ v_h.value_ptr() = static_cast<Cpp<Class> *>(alias_ptr);
147
+ }
148
+
149
+ // Holder return: copy its pointer, and move or copy the returned holder into the new instance's
150
+ // holder. This also handles types like std::shared_ptr<T> and std::unique_ptr<T> where T is a
151
+ // derived type (through those holder's implicit conversion from derived class holder
152
+ // constructors).
153
+ template <typename Class>
154
+ void construct(value_and_holder &v_h, Holder<Class> holder, bool need_alias) {
155
+ PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(need_alias);
156
+ auto *ptr = holder_helper<Holder<Class>>::get(holder);
157
+ no_nullptr(ptr);
158
+ // If we need an alias, check that the held pointer is actually an alias instance
159
+ if (PYBIND11_SILENCE_MSVC_C4127(Class::has_alias) && need_alias && !is_alias<Class>(ptr)) {
160
+ throw type_error("pybind11::init(): construction failed: returned holder-wrapped instance "
161
+ "is not an alias instance");
162
+ }
163
+
164
+ v_h.value_ptr() = ptr;
165
+ v_h.type->init_instance(v_h.inst, &holder);
166
+ }
167
+
168
+ // return-by-value version 1: returning a cpp class by value. If the class has an alias and an
169
+ // alias is required the alias must have an `Alias(Cpp &&)` constructor so that we can construct
170
+ // the alias from the base when needed (i.e. because of Python-side inheritance). When we don't
171
+ // need it, we simply move-construct the cpp value into a new instance.
172
+ template <typename Class>
173
+ void construct(value_and_holder &v_h, Cpp<Class> &&result, bool need_alias) {
174
+ PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(need_alias);
175
+ static_assert(std::is_move_constructible<Cpp<Class>>::value,
176
+ "pybind11::init() return-by-value factory function requires a movable class");
177
+ if (PYBIND11_SILENCE_MSVC_C4127(Class::has_alias) && need_alias) {
178
+ construct_alias_from_cpp<Class>(is_alias_constructible<Class>{}, v_h, std::move(result));
179
+ } else {
180
+ v_h.value_ptr() = new Cpp<Class>(std::move(result));
181
+ }
182
+ }
183
+
184
+ // return-by-value version 2: returning a value of the alias type itself. We move-construct an
185
+ // Alias instance (even if no the python-side inheritance is involved). The is intended for
186
+ // cases where Alias initialization is always desired.
187
+ template <typename Class>
188
+ void construct(value_and_holder &v_h, Alias<Class> &&result, bool) {
189
+ static_assert(
190
+ std::is_move_constructible<Alias<Class>>::value,
191
+ "pybind11::init() return-by-alias-value factory function requires a movable alias class");
192
+ v_h.value_ptr() = new Alias<Class>(std::move(result));
193
+ }
194
+
195
+ // Implementing class for py::init<...>()
196
+ template <typename... Args>
197
+ struct constructor {
198
+ template <typename Class, typename... Extra, enable_if_t<!Class::has_alias, int> = 0>
199
+ static void execute(Class &cl, const Extra &...extra) {
200
+ cl.def(
201
+ "__init__",
202
+ [](value_and_holder &v_h, Args... args) {
203
+ v_h.value_ptr() = construct_or_initialize<Cpp<Class>>(std::forward<Args>(args)...);
204
+ },
205
+ is_new_style_constructor(),
206
+ extra...);
207
+ }
208
+
209
+ template <typename Class,
210
+ typename... Extra,
211
+ enable_if_t<Class::has_alias && std::is_constructible<Cpp<Class>, Args...>::value,
212
+ int> = 0>
213
+ static void execute(Class &cl, const Extra &...extra) {
214
+ cl.def(
215
+ "__init__",
216
+ [](value_and_holder &v_h, Args... args) {
217
+ if (Py_TYPE(v_h.inst) == v_h.type->type) {
218
+ v_h.value_ptr()
219
+ = construct_or_initialize<Cpp<Class>>(std::forward<Args>(args)...);
220
+ } else {
221
+ v_h.value_ptr()
222
+ = construct_or_initialize<Alias<Class>>(std::forward<Args>(args)...);
223
+ }
224
+ },
225
+ is_new_style_constructor(),
226
+ extra...);
227
+ }
228
+
229
+ template <typename Class,
230
+ typename... Extra,
231
+ enable_if_t<Class::has_alias && !std::is_constructible<Cpp<Class>, Args...>::value,
232
+ int> = 0>
233
+ static void execute(Class &cl, const Extra &...extra) {
234
+ cl.def(
235
+ "__init__",
236
+ [](value_and_holder &v_h, Args... args) {
237
+ v_h.value_ptr()
238
+ = construct_or_initialize<Alias<Class>>(std::forward<Args>(args)...);
239
+ },
240
+ is_new_style_constructor(),
241
+ extra...);
242
+ }
243
+ };
244
+
245
+ // Implementing class for py::init_alias<...>()
246
+ template <typename... Args>
247
+ struct alias_constructor {
248
+ template <typename Class,
249
+ typename... Extra,
250
+ enable_if_t<Class::has_alias && std::is_constructible<Alias<Class>, Args...>::value,
251
+ int> = 0>
252
+ static void execute(Class &cl, const Extra &...extra) {
253
+ cl.def(
254
+ "__init__",
255
+ [](value_and_holder &v_h, Args... args) {
256
+ v_h.value_ptr()
257
+ = construct_or_initialize<Alias<Class>>(std::forward<Args>(args)...);
258
+ },
259
+ is_new_style_constructor(),
260
+ extra...);
261
+ }
262
+ };
263
+
264
+ // Implementation class for py::init(Func) and py::init(Func, AliasFunc)
265
+ template <typename CFunc,
266
+ typename AFunc = void_type (*)(),
267
+ typename = function_signature_t<CFunc>,
268
+ typename = function_signature_t<AFunc>>
269
+ struct factory;
270
+
271
+ // Specialization for py::init(Func)
272
+ template <typename Func, typename Return, typename... Args>
273
+ struct factory<Func, void_type (*)(), Return(Args...)> {
274
+ remove_reference_t<Func> class_factory;
275
+
276
+ // NOLINTNEXTLINE(google-explicit-constructor)
277
+ factory(Func &&f) : class_factory(std::forward<Func>(f)) {}
278
+
279
+ // The given class either has no alias or has no separate alias factory;
280
+ // this always constructs the class itself. If the class is registered with an alias
281
+ // type and an alias instance is needed (i.e. because the final type is a Python class
282
+ // inheriting from the C++ type) the returned value needs to either already be an alias
283
+ // instance, or the alias needs to be constructible from a `Class &&` argument.
284
+ template <typename Class, typename... Extra>
285
+ void execute(Class &cl, const Extra &...extra) && {
286
+ #if defined(PYBIND11_CPP14)
287
+ cl.def(
288
+ "__init__",
289
+ [func = std::move(class_factory)]
290
+ #else
291
+ auto &func = class_factory;
292
+ cl.def(
293
+ "__init__",
294
+ [func]
295
+ #endif
296
+ (value_and_holder &v_h, Args... args) {
297
+ construct<Class>(
298
+ v_h, func(std::forward<Args>(args)...), Py_TYPE(v_h.inst) != v_h.type->type);
299
+ },
300
+ is_new_style_constructor(),
301
+ extra...);
302
+ }
303
+ };
304
+
305
+ // Specialization for py::init(Func, AliasFunc)
306
+ template <typename CFunc,
307
+ typename AFunc,
308
+ typename CReturn,
309
+ typename... CArgs,
310
+ typename AReturn,
311
+ typename... AArgs>
312
+ struct factory<CFunc, AFunc, CReturn(CArgs...), AReturn(AArgs...)> {
313
+ static_assert(sizeof...(CArgs) == sizeof...(AArgs),
314
+ "pybind11::init(class_factory, alias_factory): class and alias factories "
315
+ "must have identical argument signatures");
316
+ static_assert(all_of<std::is_same<CArgs, AArgs>...>::value,
317
+ "pybind11::init(class_factory, alias_factory): class and alias factories "
318
+ "must have identical argument signatures");
319
+
320
+ remove_reference_t<CFunc> class_factory;
321
+ remove_reference_t<AFunc> alias_factory;
322
+
323
+ factory(CFunc &&c, AFunc &&a)
324
+ : class_factory(std::forward<CFunc>(c)), alias_factory(std::forward<AFunc>(a)) {}
325
+
326
+ // The class factory is called when the `self` type passed to `__init__` is the direct
327
+ // class (i.e. not inherited), the alias factory when `self` is a Python-side subtype.
328
+ template <typename Class, typename... Extra>
329
+ void execute(Class &cl, const Extra &...extra) && {
330
+ static_assert(Class::has_alias,
331
+ "The two-argument version of `py::init()` can "
332
+ "only be used if the class has an alias");
333
+ #if defined(PYBIND11_CPP14)
334
+ cl.def(
335
+ "__init__",
336
+ [class_func = std::move(class_factory), alias_func = std::move(alias_factory)]
337
+ #else
338
+ auto &class_func = class_factory;
339
+ auto &alias_func = alias_factory;
340
+ cl.def(
341
+ "__init__",
342
+ [class_func, alias_func]
343
+ #endif
344
+ (value_and_holder &v_h, CArgs... args) {
345
+ if (Py_TYPE(v_h.inst) == v_h.type->type) {
346
+ // If the instance type equals the registered type we don't have inheritance,
347
+ // so don't need the alias and can construct using the class function:
348
+ construct<Class>(v_h, class_func(std::forward<CArgs>(args)...), false);
349
+ } else {
350
+ construct<Class>(v_h, alias_func(std::forward<CArgs>(args)...), true);
351
+ }
352
+ },
353
+ is_new_style_constructor(),
354
+ extra...);
355
+ }
356
+ };
357
+
358
+ /// Set just the C++ state. Same as `__init__`.
359
+ template <typename Class, typename T>
360
+ void setstate(value_and_holder &v_h, T &&result, bool need_alias) {
361
+ construct<Class>(v_h, std::forward<T>(result), need_alias);
362
+ }
363
+
364
+ /// Set both the C++ and Python states
365
+ template <typename Class,
366
+ typename T,
367
+ typename O,
368
+ enable_if_t<std::is_convertible<O, handle>::value, int> = 0>
369
+ void setstate(value_and_holder &v_h, std::pair<T, O> &&result, bool need_alias) {
370
+ construct<Class>(v_h, std::move(result.first), need_alias);
371
+ auto d = handle(result.second);
372
+ if (PyDict_Check(d.ptr()) && PyDict_Size(d.ptr()) == 0) {
373
+ // Skipping setattr below, to not force use of py::dynamic_attr() for Class unnecessarily.
374
+ // See PR #2972 for details.
375
+ return;
376
+ }
377
+ setattr((PyObject *) v_h.inst, "__dict__", d);
378
+ }
379
+
380
+ /// Implementation for py::pickle(GetState, SetState)
381
+ template <typename Get,
382
+ typename Set,
383
+ typename = function_signature_t<Get>,
384
+ typename = function_signature_t<Set>>
385
+ struct pickle_factory;
386
+
387
+ template <typename Get,
388
+ typename Set,
389
+ typename RetState,
390
+ typename Self,
391
+ typename NewInstance,
392
+ typename ArgState>
393
+ struct pickle_factory<Get, Set, RetState(Self), NewInstance(ArgState)> {
394
+ static_assert(std::is_same<intrinsic_t<RetState>, intrinsic_t<ArgState>>::value,
395
+ "The type returned by `__getstate__` must be the same "
396
+ "as the argument accepted by `__setstate__`");
397
+
398
+ remove_reference_t<Get> get;
399
+ remove_reference_t<Set> set;
400
+
401
+ pickle_factory(Get get, Set set) : get(std::forward<Get>(get)), set(std::forward<Set>(set)) {}
402
+
403
+ template <typename Class, typename... Extra>
404
+ void execute(Class &cl, const Extra &...extra) && {
405
+ cl.def("__getstate__", std::move(get));
406
+
407
+ #if defined(PYBIND11_CPP14)
408
+ cl.def(
409
+ "__setstate__",
410
+ [func = std::move(set)]
411
+ #else
412
+ auto &func = set;
413
+ cl.def(
414
+ "__setstate__",
415
+ [func]
416
+ #endif
417
+ (value_and_holder &v_h, ArgState state) {
418
+ setstate<Class>(
419
+ v_h, func(std::forward<ArgState>(state)), Py_TYPE(v_h.inst) != v_h.type->type);
420
+ },
421
+ is_new_style_constructor(),
422
+ extra...);
423
+ }
424
+ };
425
+
426
+ PYBIND11_NAMESPACE_END(initimpl)
427
+ PYBIND11_NAMESPACE_END(detail)
428
+ PYBIND11_NAMESPACE_END(pybind11)
third-party/DPVO/DPViewer/pybind11/include/pybind11/detail/internals.h ADDED
@@ -0,0 +1,562 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ pybind11/detail/internals.h: Internal data structure and related functions
3
+
4
+ Copyright (c) 2017 Wenzel Jakob <[email protected]>
5
+
6
+ All rights reserved. Use of this source code is governed by a
7
+ BSD-style license that can be found in the LICENSE file.
8
+ */
9
+
10
+ #pragma once
11
+
12
+ #include "../pytypes.h"
13
+
14
+ #include <exception>
15
+
16
+ /// Tracks the `internals` and `type_info` ABI version independent of the main library version.
17
+ ///
18
+ /// Some portions of the code use an ABI that is conditional depending on this
19
+ /// version number. That allows ABI-breaking changes to be "pre-implemented".
20
+ /// Once the default version number is incremented, the conditional logic that
21
+ /// no longer applies can be removed. Additionally, users that need not
22
+ /// maintain ABI compatibility can increase the version number in order to take
23
+ /// advantage of any functionality/efficiency improvements that depend on the
24
+ /// newer ABI.
25
+ ///
26
+ /// WARNING: If you choose to manually increase the ABI version, note that
27
+ /// pybind11 may not be tested as thoroughly with a non-default ABI version, and
28
+ /// further ABI-incompatible changes may be made before the ABI is officially
29
+ /// changed to the new version.
30
+ #ifndef PYBIND11_INTERNALS_VERSION
31
+ # define PYBIND11_INTERNALS_VERSION 4
32
+ #endif
33
+
34
+ PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
35
+
36
+ using ExceptionTranslator = void (*)(std::exception_ptr);
37
+
38
+ PYBIND11_NAMESPACE_BEGIN(detail)
39
+
40
+ // Forward declarations
41
+ inline PyTypeObject *make_static_property_type();
42
+ inline PyTypeObject *make_default_metaclass();
43
+ inline PyObject *make_object_base_type(PyTypeObject *metaclass);
44
+
45
+ // The old Python Thread Local Storage (TLS) API is deprecated in Python 3.7 in favor of the new
46
+ // Thread Specific Storage (TSS) API.
47
+ #if PY_VERSION_HEX >= 0x03070000
48
+ // Avoid unnecessary allocation of `Py_tss_t`, since we cannot use
49
+ // `Py_LIMITED_API` anyway.
50
+ # if PYBIND11_INTERNALS_VERSION > 4
51
+ # define PYBIND11_TLS_KEY_REF Py_tss_t &
52
+ # ifdef __GNUC__
53
+ // Clang on macOS warns due to `Py_tss_NEEDS_INIT` not specifying an initializer
54
+ // for every field.
55
+ # define PYBIND11_TLS_KEY_INIT(var) \
56
+ _Pragma("GCC diagnostic push") /**/ \
57
+ _Pragma("GCC diagnostic ignored \"-Wmissing-field-initializers\"") /**/ \
58
+ Py_tss_t var \
59
+ = Py_tss_NEEDS_INIT; \
60
+ _Pragma("GCC diagnostic pop")
61
+ # else
62
+ # define PYBIND11_TLS_KEY_INIT(var) Py_tss_t var = Py_tss_NEEDS_INIT;
63
+ # endif
64
+ # define PYBIND11_TLS_KEY_CREATE(var) (PyThread_tss_create(&(var)) == 0)
65
+ # define PYBIND11_TLS_GET_VALUE(key) PyThread_tss_get(&(key))
66
+ # define PYBIND11_TLS_REPLACE_VALUE(key, value) PyThread_tss_set(&(key), (value))
67
+ # define PYBIND11_TLS_DELETE_VALUE(key) PyThread_tss_set(&(key), nullptr)
68
+ # define PYBIND11_TLS_FREE(key) PyThread_tss_delete(&(key))
69
+ # else
70
+ # define PYBIND11_TLS_KEY_REF Py_tss_t *
71
+ # define PYBIND11_TLS_KEY_INIT(var) Py_tss_t *var = nullptr;
72
+ # define PYBIND11_TLS_KEY_CREATE(var) \
73
+ (((var) = PyThread_tss_alloc()) != nullptr && (PyThread_tss_create((var)) == 0))
74
+ # define PYBIND11_TLS_GET_VALUE(key) PyThread_tss_get((key))
75
+ # define PYBIND11_TLS_REPLACE_VALUE(key, value) PyThread_tss_set((key), (value))
76
+ # define PYBIND11_TLS_DELETE_VALUE(key) PyThread_tss_set((key), nullptr)
77
+ # define PYBIND11_TLS_FREE(key) PyThread_tss_free(key)
78
+ # endif
79
+ #else
80
+ // Usually an int but a long on Cygwin64 with Python 3.x
81
+ # define PYBIND11_TLS_KEY_REF decltype(PyThread_create_key())
82
+ # define PYBIND11_TLS_KEY_INIT(var) PYBIND11_TLS_KEY_REF var = 0;
83
+ # define PYBIND11_TLS_KEY_CREATE(var) (((var) = PyThread_create_key()) != -1)
84
+ # define PYBIND11_TLS_GET_VALUE(key) PyThread_get_key_value((key))
85
+ # if defined(PYPY_VERSION)
86
+ // On CPython < 3.4 and on PyPy, `PyThread_set_key_value` strangely does not set
87
+ // the value if it has already been set. Instead, it must first be deleted and
88
+ // then set again.
89
+ inline void tls_replace_value(PYBIND11_TLS_KEY_REF key, void *value) {
90
+ PyThread_delete_key_value(key);
91
+ PyThread_set_key_value(key, value);
92
+ }
93
+ # define PYBIND11_TLS_DELETE_VALUE(key) PyThread_delete_key_value(key)
94
+ # define PYBIND11_TLS_REPLACE_VALUE(key, value) \
95
+ ::pybind11::detail::tls_replace_value((key), (value))
96
+ # else
97
+ # define PYBIND11_TLS_DELETE_VALUE(key) PyThread_set_key_value((key), nullptr)
98
+ # define PYBIND11_TLS_REPLACE_VALUE(key, value) PyThread_set_key_value((key), (value))
99
+ # endif
100
+ # define PYBIND11_TLS_FREE(key) (void) key
101
+ #endif
102
+
103
+ // Python loads modules by default with dlopen with the RTLD_LOCAL flag; under libc++ and possibly
104
+ // other STLs, this means `typeid(A)` from one module won't equal `typeid(A)` from another module
105
+ // even when `A` is the same, non-hidden-visibility type (e.g. from a common include). Under
106
+ // libstdc++, this doesn't happen: equality and the type_index hash are based on the type name,
107
+ // which works. If not under a known-good stl, provide our own name-based hash and equality
108
+ // functions that use the type name.
109
+ #if defined(__GLIBCXX__)
110
+ inline bool same_type(const std::type_info &lhs, const std::type_info &rhs) { return lhs == rhs; }
111
+ using type_hash = std::hash<std::type_index>;
112
+ using type_equal_to = std::equal_to<std::type_index>;
113
+ #else
114
+ inline bool same_type(const std::type_info &lhs, const std::type_info &rhs) {
115
+ return lhs.name() == rhs.name() || std::strcmp(lhs.name(), rhs.name()) == 0;
116
+ }
117
+
118
+ struct type_hash {
119
+ size_t operator()(const std::type_index &t) const {
120
+ size_t hash = 5381;
121
+ const char *ptr = t.name();
122
+ while (auto c = static_cast<unsigned char>(*ptr++)) {
123
+ hash = (hash * 33) ^ c;
124
+ }
125
+ return hash;
126
+ }
127
+ };
128
+
129
+ struct type_equal_to {
130
+ bool operator()(const std::type_index &lhs, const std::type_index &rhs) const {
131
+ return lhs.name() == rhs.name() || std::strcmp(lhs.name(), rhs.name()) == 0;
132
+ }
133
+ };
134
+ #endif
135
+
136
+ template <typename value_type>
137
+ using type_map = std::unordered_map<std::type_index, value_type, type_hash, type_equal_to>;
138
+
139
+ struct override_hash {
140
+ inline size_t operator()(const std::pair<const PyObject *, const char *> &v) const {
141
+ size_t value = std::hash<const void *>()(v.first);
142
+ value ^= std::hash<const void *>()(v.second) + 0x9e3779b9 + (value << 6) + (value >> 2);
143
+ return value;
144
+ }
145
+ };
146
+
147
+ /// Internal data structure used to track registered instances and types.
148
+ /// Whenever binary incompatible changes are made to this structure,
149
+ /// `PYBIND11_INTERNALS_VERSION` must be incremented.
150
+ struct internals {
151
+ // std::type_index -> pybind11's type information
152
+ type_map<type_info *> registered_types_cpp;
153
+ // PyTypeObject* -> base type_info(s)
154
+ std::unordered_map<PyTypeObject *, std::vector<type_info *>> registered_types_py;
155
+ std::unordered_multimap<const void *, instance *> registered_instances; // void * -> instance*
156
+ std::unordered_set<std::pair<const PyObject *, const char *>, override_hash>
157
+ inactive_override_cache;
158
+ type_map<std::vector<bool (*)(PyObject *, void *&)>> direct_conversions;
159
+ std::unordered_map<const PyObject *, std::vector<PyObject *>> patients;
160
+ std::forward_list<ExceptionTranslator> registered_exception_translators;
161
+ std::unordered_map<std::string, void *> shared_data; // Custom data to be shared across
162
+ // extensions
163
+ #if PYBIND11_INTERNALS_VERSION == 4
164
+ std::vector<PyObject *> unused_loader_patient_stack_remove_at_v5;
165
+ #endif
166
+ std::forward_list<std::string> static_strings; // Stores the std::strings backing
167
+ // detail::c_str()
168
+ PyTypeObject *static_property_type;
169
+ PyTypeObject *default_metaclass;
170
+ PyObject *instance_base;
171
+ #if defined(WITH_THREAD)
172
+ PYBIND11_TLS_KEY_INIT(tstate)
173
+ # if PYBIND11_INTERNALS_VERSION > 4
174
+ PYBIND11_TLS_KEY_INIT(loader_life_support_tls_key)
175
+ # endif // PYBIND11_INTERNALS_VERSION > 4
176
+ PyInterpreterState *istate = nullptr;
177
+ ~internals() {
178
+ # if PYBIND11_INTERNALS_VERSION > 4
179
+ PYBIND11_TLS_FREE(loader_life_support_tls_key);
180
+ # endif // PYBIND11_INTERNALS_VERSION > 4
181
+
182
+ // This destructor is called *after* Py_Finalize() in finalize_interpreter().
183
+ // That *SHOULD BE* fine. The following details what happens when PyThread_tss_free is
184
+ // called. PYBIND11_TLS_FREE is PyThread_tss_free on python 3.7+. On older python, it does
185
+ // nothing. PyThread_tss_free calls PyThread_tss_delete and PyMem_RawFree.
186
+ // PyThread_tss_delete just calls TlsFree (on Windows) or pthread_key_delete (on *NIX).
187
+ // Neither of those have anything to do with CPython internals. PyMem_RawFree *requires*
188
+ // that the `tstate` be allocated with the CPython allocator.
189
+ PYBIND11_TLS_FREE(tstate);
190
+ }
191
+ #endif
192
+ };
193
+
194
+ /// Additional type information which does not fit into the PyTypeObject.
195
+ /// Changes to this struct also require bumping `PYBIND11_INTERNALS_VERSION`.
196
+ struct type_info {
197
+ PyTypeObject *type;
198
+ const std::type_info *cpptype;
199
+ size_t type_size, type_align, holder_size_in_ptrs;
200
+ void *(*operator_new)(size_t);
201
+ void (*init_instance)(instance *, const void *);
202
+ void (*dealloc)(value_and_holder &v_h);
203
+ std::vector<PyObject *(*) (PyObject *, PyTypeObject *)> implicit_conversions;
204
+ std::vector<std::pair<const std::type_info *, void *(*) (void *)>> implicit_casts;
205
+ std::vector<bool (*)(PyObject *, void *&)> *direct_conversions;
206
+ buffer_info *(*get_buffer)(PyObject *, void *) = nullptr;
207
+ void *get_buffer_data = nullptr;
208
+ void *(*module_local_load)(PyObject *, const type_info *) = nullptr;
209
+ /* A simple type never occurs as a (direct or indirect) parent
210
+ * of a class that makes use of multiple inheritance.
211
+ * A type can be simple even if it has non-simple ancestors as long as it has no descendants.
212
+ */
213
+ bool simple_type : 1;
214
+ /* True if there is no multiple inheritance in this type's inheritance tree */
215
+ bool simple_ancestors : 1;
216
+ /* for base vs derived holder_type checks */
217
+ bool default_holder : 1;
218
+ /* true if this is a type registered with py::module_local */
219
+ bool module_local : 1;
220
+ };
221
+
222
+ /// On MSVC, debug and release builds are not ABI-compatible!
223
+ #if defined(_MSC_VER) && defined(_DEBUG)
224
+ # define PYBIND11_BUILD_TYPE "_debug"
225
+ #else
226
+ # define PYBIND11_BUILD_TYPE ""
227
+ #endif
228
+
229
+ /// Let's assume that different compilers are ABI-incompatible.
230
+ /// A user can manually set this string if they know their
231
+ /// compiler is compatible.
232
+ #ifndef PYBIND11_COMPILER_TYPE
233
+ # if defined(_MSC_VER)
234
+ # define PYBIND11_COMPILER_TYPE "_msvc"
235
+ # elif defined(__INTEL_COMPILER)
236
+ # define PYBIND11_COMPILER_TYPE "_icc"
237
+ # elif defined(__clang__)
238
+ # define PYBIND11_COMPILER_TYPE "_clang"
239
+ # elif defined(__PGI)
240
+ # define PYBIND11_COMPILER_TYPE "_pgi"
241
+ # elif defined(__MINGW32__)
242
+ # define PYBIND11_COMPILER_TYPE "_mingw"
243
+ # elif defined(__CYGWIN__)
244
+ # define PYBIND11_COMPILER_TYPE "_gcc_cygwin"
245
+ # elif defined(__GNUC__)
246
+ # define PYBIND11_COMPILER_TYPE "_gcc"
247
+ # else
248
+ # define PYBIND11_COMPILER_TYPE "_unknown"
249
+ # endif
250
+ #endif
251
+
252
+ /// Also standard libs
253
+ #ifndef PYBIND11_STDLIB
254
+ # if defined(_LIBCPP_VERSION)
255
+ # define PYBIND11_STDLIB "_libcpp"
256
+ # elif defined(__GLIBCXX__) || defined(__GLIBCPP__)
257
+ # define PYBIND11_STDLIB "_libstdcpp"
258
+ # else
259
+ # define PYBIND11_STDLIB ""
260
+ # endif
261
+ #endif
262
+
263
+ /// On Linux/OSX, changes in __GXX_ABI_VERSION__ indicate ABI incompatibility.
264
+ #ifndef PYBIND11_BUILD_ABI
265
+ # if defined(__GXX_ABI_VERSION)
266
+ # define PYBIND11_BUILD_ABI "_cxxabi" PYBIND11_TOSTRING(__GXX_ABI_VERSION)
267
+ # else
268
+ # define PYBIND11_BUILD_ABI ""
269
+ # endif
270
+ #endif
271
+
272
+ #ifndef PYBIND11_INTERNALS_KIND
273
+ # if defined(WITH_THREAD)
274
+ # define PYBIND11_INTERNALS_KIND ""
275
+ # else
276
+ # define PYBIND11_INTERNALS_KIND "_without_thread"
277
+ # endif
278
+ #endif
279
+
280
+ #define PYBIND11_INTERNALS_ID \
281
+ "__pybind11_internals_v" PYBIND11_TOSTRING(PYBIND11_INTERNALS_VERSION) \
282
+ PYBIND11_INTERNALS_KIND PYBIND11_COMPILER_TYPE PYBIND11_STDLIB PYBIND11_BUILD_ABI \
283
+ PYBIND11_BUILD_TYPE "__"
284
+
285
+ #define PYBIND11_MODULE_LOCAL_ID \
286
+ "__pybind11_module_local_v" PYBIND11_TOSTRING(PYBIND11_INTERNALS_VERSION) \
287
+ PYBIND11_INTERNALS_KIND PYBIND11_COMPILER_TYPE PYBIND11_STDLIB PYBIND11_BUILD_ABI \
288
+ PYBIND11_BUILD_TYPE "__"
289
+
290
+ /// Each module locally stores a pointer to the `internals` data. The data
291
+ /// itself is shared among modules with the same `PYBIND11_INTERNALS_ID`.
292
+ inline internals **&get_internals_pp() {
293
+ static internals **internals_pp = nullptr;
294
+ return internals_pp;
295
+ }
296
+
297
+ // forward decl
298
+ inline void translate_exception(std::exception_ptr);
299
+
300
+ template <class T,
301
+ enable_if_t<std::is_same<std::nested_exception, remove_cvref_t<T>>::value, int> = 0>
302
+ bool handle_nested_exception(const T &exc, const std::exception_ptr &p) {
303
+ std::exception_ptr nested = exc.nested_ptr();
304
+ if (nested != nullptr && nested != p) {
305
+ translate_exception(nested);
306
+ return true;
307
+ }
308
+ return false;
309
+ }
310
+
311
+ template <class T,
312
+ enable_if_t<!std::is_same<std::nested_exception, remove_cvref_t<T>>::value, int> = 0>
313
+ bool handle_nested_exception(const T &exc, const std::exception_ptr &p) {
314
+ if (const auto *nep = dynamic_cast<const std::nested_exception *>(std::addressof(exc))) {
315
+ return handle_nested_exception(*nep, p);
316
+ }
317
+ return false;
318
+ }
319
+
320
+ inline bool raise_err(PyObject *exc_type, const char *msg) {
321
+ if (PyErr_Occurred()) {
322
+ raise_from(exc_type, msg);
323
+ return true;
324
+ }
325
+ PyErr_SetString(exc_type, msg);
326
+ return false;
327
+ }
328
+
329
+ inline void translate_exception(std::exception_ptr p) {
330
+ if (!p) {
331
+ return;
332
+ }
333
+ try {
334
+ std::rethrow_exception(p);
335
+ } catch (error_already_set &e) {
336
+ handle_nested_exception(e, p);
337
+ e.restore();
338
+ return;
339
+ } catch (const builtin_exception &e) {
340
+ // Could not use template since it's an abstract class.
341
+ if (const auto *nep = dynamic_cast<const std::nested_exception *>(std::addressof(e))) {
342
+ handle_nested_exception(*nep, p);
343
+ }
344
+ e.set_error();
345
+ return;
346
+ } catch (const std::bad_alloc &e) {
347
+ handle_nested_exception(e, p);
348
+ raise_err(PyExc_MemoryError, e.what());
349
+ return;
350
+ } catch (const std::domain_error &e) {
351
+ handle_nested_exception(e, p);
352
+ raise_err(PyExc_ValueError, e.what());
353
+ return;
354
+ } catch (const std::invalid_argument &e) {
355
+ handle_nested_exception(e, p);
356
+ raise_err(PyExc_ValueError, e.what());
357
+ return;
358
+ } catch (const std::length_error &e) {
359
+ handle_nested_exception(e, p);
360
+ raise_err(PyExc_ValueError, e.what());
361
+ return;
362
+ } catch (const std::out_of_range &e) {
363
+ handle_nested_exception(e, p);
364
+ raise_err(PyExc_IndexError, e.what());
365
+ return;
366
+ } catch (const std::range_error &e) {
367
+ handle_nested_exception(e, p);
368
+ raise_err(PyExc_ValueError, e.what());
369
+ return;
370
+ } catch (const std::overflow_error &e) {
371
+ handle_nested_exception(e, p);
372
+ raise_err(PyExc_OverflowError, e.what());
373
+ return;
374
+ } catch (const std::exception &e) {
375
+ handle_nested_exception(e, p);
376
+ raise_err(PyExc_RuntimeError, e.what());
377
+ return;
378
+ } catch (const std::nested_exception &e) {
379
+ handle_nested_exception(e, p);
380
+ raise_err(PyExc_RuntimeError, "Caught an unknown nested exception!");
381
+ return;
382
+ } catch (...) {
383
+ raise_err(PyExc_RuntimeError, "Caught an unknown exception!");
384
+ return;
385
+ }
386
+ }
387
+
388
+ #if !defined(__GLIBCXX__)
389
+ inline void translate_local_exception(std::exception_ptr p) {
390
+ try {
391
+ if (p) {
392
+ std::rethrow_exception(p);
393
+ }
394
+ } catch (error_already_set &e) {
395
+ e.restore();
396
+ return;
397
+ } catch (const builtin_exception &e) {
398
+ e.set_error();
399
+ return;
400
+ }
401
+ }
402
+ #endif
403
+
404
+ /// Return a reference to the current `internals` data
405
+ PYBIND11_NOINLINE internals &get_internals() {
406
+ auto **&internals_pp = get_internals_pp();
407
+ if (internals_pp && *internals_pp) {
408
+ return **internals_pp;
409
+ }
410
+
411
+ // Ensure that the GIL is held since we will need to make Python calls.
412
+ // Cannot use py::gil_scoped_acquire here since that constructor calls get_internals.
413
+ struct gil_scoped_acquire_local {
414
+ gil_scoped_acquire_local() : state(PyGILState_Ensure()) {}
415
+ ~gil_scoped_acquire_local() { PyGILState_Release(state); }
416
+ const PyGILState_STATE state;
417
+ } gil;
418
+ error_scope err_scope;
419
+
420
+ PYBIND11_STR_TYPE id(PYBIND11_INTERNALS_ID);
421
+ auto builtins = handle(PyEval_GetBuiltins());
422
+ if (builtins.contains(id) && isinstance<capsule>(builtins[id])) {
423
+ internals_pp = static_cast<internals **>(capsule(builtins[id]));
424
+
425
+ // We loaded builtins through python's builtins, which means that our `error_already_set`
426
+ // and `builtin_exception` may be different local classes than the ones set up in the
427
+ // initial exception translator, below, so add another for our local exception classes.
428
+ //
429
+ // libstdc++ doesn't require this (types there are identified only by name)
430
+ // libc++ with CPython doesn't require this (types are explicitly exported)
431
+ // libc++ with PyPy still need it, awaiting further investigation
432
+ #if !defined(__GLIBCXX__)
433
+ (*internals_pp)->registered_exception_translators.push_front(&translate_local_exception);
434
+ #endif
435
+ } else {
436
+ if (!internals_pp) {
437
+ internals_pp = new internals *();
438
+ }
439
+ auto *&internals_ptr = *internals_pp;
440
+ internals_ptr = new internals();
441
+ #if defined(WITH_THREAD)
442
+
443
+ # if PY_VERSION_HEX < 0x03090000
444
+ PyEval_InitThreads();
445
+ # endif
446
+ PyThreadState *tstate = PyThreadState_Get();
447
+ if (!PYBIND11_TLS_KEY_CREATE(internals_ptr->tstate)) {
448
+ pybind11_fail("get_internals: could not successfully initialize the tstate TSS key!");
449
+ }
450
+ PYBIND11_TLS_REPLACE_VALUE(internals_ptr->tstate, tstate);
451
+
452
+ # if PYBIND11_INTERNALS_VERSION > 4
453
+ if (!PYBIND11_TLS_KEY_CREATE(internals_ptr->loader_life_support_tls_key)) {
454
+ pybind11_fail("get_internals: could not successfully initialize the "
455
+ "loader_life_support TSS key!");
456
+ }
457
+ # endif
458
+ internals_ptr->istate = tstate->interp;
459
+ #endif
460
+ builtins[id] = capsule(internals_pp);
461
+ internals_ptr->registered_exception_translators.push_front(&translate_exception);
462
+ internals_ptr->static_property_type = make_static_property_type();
463
+ internals_ptr->default_metaclass = make_default_metaclass();
464
+ internals_ptr->instance_base = make_object_base_type(internals_ptr->default_metaclass);
465
+ }
466
+ return **internals_pp;
467
+ }
468
+
469
+ // the internals struct (above) is shared between all the modules. local_internals are only
470
+ // for a single module. Any changes made to internals may require an update to
471
+ // PYBIND11_INTERNALS_VERSION, breaking backwards compatibility. local_internals is, by design,
472
+ // restricted to a single module. Whether a module has local internals or not should not
473
+ // impact any other modules, because the only things accessing the local internals is the
474
+ // module that contains them.
475
+ struct local_internals {
476
+ type_map<type_info *> registered_types_cpp;
477
+ std::forward_list<ExceptionTranslator> registered_exception_translators;
478
+ #if defined(WITH_THREAD) && PYBIND11_INTERNALS_VERSION == 4
479
+
480
+ // For ABI compatibility, we can't store the loader_life_support TLS key in
481
+ // the `internals` struct directly. Instead, we store it in `shared_data` and
482
+ // cache a copy in `local_internals`. If we allocated a separate TLS key for
483
+ // each instance of `local_internals`, we could end up allocating hundreds of
484
+ // TLS keys if hundreds of different pybind11 modules are loaded (which is a
485
+ // plausible number).
486
+ PYBIND11_TLS_KEY_INIT(loader_life_support_tls_key)
487
+
488
+ // Holds the shared TLS key for the loader_life_support stack.
489
+ struct shared_loader_life_support_data {
490
+ PYBIND11_TLS_KEY_INIT(loader_life_support_tls_key)
491
+ shared_loader_life_support_data() {
492
+ if (!PYBIND11_TLS_KEY_CREATE(loader_life_support_tls_key)) {
493
+ pybind11_fail("local_internals: could not successfully initialize the "
494
+ "loader_life_support TLS key!");
495
+ }
496
+ }
497
+ // We can't help but leak the TLS key, because Python never unloads extension modules.
498
+ };
499
+
500
+ local_internals() {
501
+ auto &internals = get_internals();
502
+ // Get or create the `loader_life_support_stack_key`.
503
+ auto &ptr = internals.shared_data["_life_support"];
504
+ if (!ptr) {
505
+ ptr = new shared_loader_life_support_data;
506
+ }
507
+ loader_life_support_tls_key
508
+ = static_cast<shared_loader_life_support_data *>(ptr)->loader_life_support_tls_key;
509
+ }
510
+ #endif // defined(WITH_THREAD) && PYBIND11_INTERNALS_VERSION == 4
511
+ };
512
+
513
+ /// Works like `get_internals`, but for things which are locally registered.
514
+ inline local_internals &get_local_internals() {
515
+ static local_internals locals;
516
+ return locals;
517
+ }
518
+
519
+ /// Constructs a std::string with the given arguments, stores it in `internals`, and returns its
520
+ /// `c_str()`. Such strings objects have a long storage duration -- the internal strings are only
521
+ /// cleared when the program exits or after interpreter shutdown (when embedding), and so are
522
+ /// suitable for c-style strings needed by Python internals (such as PyTypeObject's tp_name).
523
+ template <typename... Args>
524
+ const char *c_str(Args &&...args) {
525
+ auto &strings = get_internals().static_strings;
526
+ strings.emplace_front(std::forward<Args>(args)...);
527
+ return strings.front().c_str();
528
+ }
529
+
530
+ PYBIND11_NAMESPACE_END(detail)
531
+
532
+ /// Returns a named pointer that is shared among all extension modules (using the same
533
+ /// pybind11 version) running in the current interpreter. Names starting with underscores
534
+ /// are reserved for internal usage. Returns `nullptr` if no matching entry was found.
535
+ PYBIND11_NOINLINE void *get_shared_data(const std::string &name) {
536
+ auto &internals = detail::get_internals();
537
+ auto it = internals.shared_data.find(name);
538
+ return it != internals.shared_data.end() ? it->second : nullptr;
539
+ }
540
+
541
+ /// Set the shared data that can be later recovered by `get_shared_data()`.
542
+ PYBIND11_NOINLINE void *set_shared_data(const std::string &name, void *data) {
543
+ detail::get_internals().shared_data[name] = data;
544
+ return data;
545
+ }
546
+
547
+ /// Returns a typed reference to a shared data entry (by using `get_shared_data()`) if
548
+ /// such entry exists. Otherwise, a new object of default-constructible type `T` is
549
+ /// added to the shared data under the given name and a reference to it is returned.
550
+ template <typename T>
551
+ T &get_or_create_shared_data(const std::string &name) {
552
+ auto &internals = detail::get_internals();
553
+ auto it = internals.shared_data.find(name);
554
+ T *ptr = (T *) (it != internals.shared_data.end() ? it->second : nullptr);
555
+ if (!ptr) {
556
+ ptr = new T();
557
+ internals.shared_data[name] = ptr;
558
+ }
559
+ return *ptr;
560
+ }
561
+
562
+ PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
third-party/DPVO/DPViewer/pybind11/include/pybind11/detail/type_caster_base.h ADDED
@@ -0,0 +1,1010 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ pybind11/detail/type_caster_base.h (originally first part of pybind11/cast.h)
3
+
4
+ Copyright (c) 2016 Wenzel Jakob <[email protected]>
5
+
6
+ All rights reserved. Use of this source code is governed by a
7
+ BSD-style license that can be found in the LICENSE file.
8
+ */
9
+
10
+ #pragma once
11
+
12
+ #include "../pytypes.h"
13
+ #include "common.h"
14
+ #include "descr.h"
15
+ #include "internals.h"
16
+ #include "typeid.h"
17
+
18
+ #include <cstdint>
19
+ #include <iterator>
20
+ #include <new>
21
+ #include <string>
22
+ #include <type_traits>
23
+ #include <typeindex>
24
+ #include <typeinfo>
25
+ #include <unordered_map>
26
+ #include <utility>
27
+ #include <vector>
28
+
29
+ PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
30
+ PYBIND11_NAMESPACE_BEGIN(detail)
31
+
32
+ /// A life support system for temporary objects created by `type_caster::load()`.
33
+ /// Adding a patient will keep it alive up until the enclosing function returns.
34
+ class loader_life_support {
35
+ private:
36
+ loader_life_support *parent = nullptr;
37
+ std::unordered_set<PyObject *> keep_alive;
38
+
39
+ #if defined(WITH_THREAD)
40
+ // Store stack pointer in thread-local storage.
41
+ static PYBIND11_TLS_KEY_REF get_stack_tls_key() {
42
+ # if PYBIND11_INTERNALS_VERSION == 4
43
+ return get_local_internals().loader_life_support_tls_key;
44
+ # else
45
+ return get_internals().loader_life_support_tls_key;
46
+ # endif
47
+ }
48
+ static loader_life_support *get_stack_top() {
49
+ return static_cast<loader_life_support *>(PYBIND11_TLS_GET_VALUE(get_stack_tls_key()));
50
+ }
51
+ static void set_stack_top(loader_life_support *value) {
52
+ PYBIND11_TLS_REPLACE_VALUE(get_stack_tls_key(), value);
53
+ }
54
+ #else
55
+ // Use single global variable for stack.
56
+ static loader_life_support **get_stack_pp() {
57
+ static loader_life_support *global_stack = nullptr;
58
+ return global_stack;
59
+ }
60
+ static loader_life_support *get_stack_top() { return *get_stack_pp(); }
61
+ static void set_stack_top(loader_life_support *value) { *get_stack_pp() = value; }
62
+ #endif
63
+
64
+ public:
65
+ /// A new patient frame is created when a function is entered
66
+ loader_life_support() : parent{get_stack_top()} { set_stack_top(this); }
67
+
68
+ /// ... and destroyed after it returns
69
+ ~loader_life_support() {
70
+ if (get_stack_top() != this) {
71
+ pybind11_fail("loader_life_support: internal error");
72
+ }
73
+ set_stack_top(parent);
74
+ for (auto *item : keep_alive) {
75
+ Py_DECREF(item);
76
+ }
77
+ }
78
+
79
+ /// This can only be used inside a pybind11-bound function, either by `argument_loader`
80
+ /// at argument preparation time or by `py::cast()` at execution time.
81
+ PYBIND11_NOINLINE static void add_patient(handle h) {
82
+ loader_life_support *frame = get_stack_top();
83
+ if (!frame) {
84
+ // NOTE: It would be nice to include the stack frames here, as this indicates
85
+ // use of pybind11::cast<> outside the normal call framework, finding such
86
+ // a location is challenging. Developers could consider printing out
87
+ // stack frame addresses here using something like __builtin_frame_address(0)
88
+ throw cast_error("When called outside a bound function, py::cast() cannot "
89
+ "do Python -> C++ conversions which require the creation "
90
+ "of temporary values");
91
+ }
92
+
93
+ if (frame->keep_alive.insert(h.ptr()).second) {
94
+ Py_INCREF(h.ptr());
95
+ }
96
+ }
97
+ };
98
+
99
+ // Gets the cache entry for the given type, creating it if necessary. The return value is the pair
100
+ // returned by emplace, i.e. an iterator for the entry and a bool set to `true` if the entry was
101
+ // just created.
102
+ inline std::pair<decltype(internals::registered_types_py)::iterator, bool>
103
+ all_type_info_get_cache(PyTypeObject *type);
104
+
105
+ // Populates a just-created cache entry.
106
+ PYBIND11_NOINLINE void all_type_info_populate(PyTypeObject *t, std::vector<type_info *> &bases) {
107
+ std::vector<PyTypeObject *> check;
108
+ for (handle parent : reinterpret_borrow<tuple>(t->tp_bases)) {
109
+ check.push_back((PyTypeObject *) parent.ptr());
110
+ }
111
+
112
+ auto const &type_dict = get_internals().registered_types_py;
113
+ for (size_t i = 0; i < check.size(); i++) {
114
+ auto *type = check[i];
115
+ // Ignore Python2 old-style class super type:
116
+ if (!PyType_Check((PyObject *) type)) {
117
+ continue;
118
+ }
119
+
120
+ // Check `type` in the current set of registered python types:
121
+ auto it = type_dict.find(type);
122
+ if (it != type_dict.end()) {
123
+ // We found a cache entry for it, so it's either pybind-registered or has pre-computed
124
+ // pybind bases, but we have to make sure we haven't already seen the type(s) before:
125
+ // we want to follow Python/virtual C++ rules that there should only be one instance of
126
+ // a common base.
127
+ for (auto *tinfo : it->second) {
128
+ // NB: Could use a second set here, rather than doing a linear search, but since
129
+ // having a large number of immediate pybind11-registered types seems fairly
130
+ // unlikely, that probably isn't worthwhile.
131
+ bool found = false;
132
+ for (auto *known : bases) {
133
+ if (known == tinfo) {
134
+ found = true;
135
+ break;
136
+ }
137
+ }
138
+ if (!found) {
139
+ bases.push_back(tinfo);
140
+ }
141
+ }
142
+ } else if (type->tp_bases) {
143
+ // It's some python type, so keep follow its bases classes to look for one or more
144
+ // registered types
145
+ if (i + 1 == check.size()) {
146
+ // When we're at the end, we can pop off the current element to avoid growing
147
+ // `check` when adding just one base (which is typical--i.e. when there is no
148
+ // multiple inheritance)
149
+ check.pop_back();
150
+ i--;
151
+ }
152
+ for (handle parent : reinterpret_borrow<tuple>(type->tp_bases)) {
153
+ check.push_back((PyTypeObject *) parent.ptr());
154
+ }
155
+ }
156
+ }
157
+ }
158
+
159
+ /**
160
+ * Extracts vector of type_info pointers of pybind-registered roots of the given Python type. Will
161
+ * be just 1 pybind type for the Python type of a pybind-registered class, or for any Python-side
162
+ * derived class that uses single inheritance. Will contain as many types as required for a Python
163
+ * class that uses multiple inheritance to inherit (directly or indirectly) from multiple
164
+ * pybind-registered classes. Will be empty if neither the type nor any base classes are
165
+ * pybind-registered.
166
+ *
167
+ * The value is cached for the lifetime of the Python type.
168
+ */
169
+ inline const std::vector<detail::type_info *> &all_type_info(PyTypeObject *type) {
170
+ auto ins = all_type_info_get_cache(type);
171
+ if (ins.second) {
172
+ // New cache entry: populate it
173
+ all_type_info_populate(type, ins.first->second);
174
+ }
175
+
176
+ return ins.first->second;
177
+ }
178
+
179
+ /**
180
+ * Gets a single pybind11 type info for a python type. Returns nullptr if neither the type nor any
181
+ * ancestors are pybind11-registered. Throws an exception if there are multiple bases--use
182
+ * `all_type_info` instead if you want to support multiple bases.
183
+ */
184
+ PYBIND11_NOINLINE detail::type_info *get_type_info(PyTypeObject *type) {
185
+ const auto &bases = all_type_info(type);
186
+ if (bases.empty()) {
187
+ return nullptr;
188
+ }
189
+ if (bases.size() > 1) {
190
+ pybind11_fail(
191
+ "pybind11::detail::get_type_info: type has multiple pybind11-registered bases");
192
+ }
193
+ return bases.front();
194
+ }
195
+
196
+ inline detail::type_info *get_local_type_info(const std::type_index &tp) {
197
+ auto &locals = get_local_internals().registered_types_cpp;
198
+ auto it = locals.find(tp);
199
+ if (it != locals.end()) {
200
+ return it->second;
201
+ }
202
+ return nullptr;
203
+ }
204
+
205
+ inline detail::type_info *get_global_type_info(const std::type_index &tp) {
206
+ auto &types = get_internals().registered_types_cpp;
207
+ auto it = types.find(tp);
208
+ if (it != types.end()) {
209
+ return it->second;
210
+ }
211
+ return nullptr;
212
+ }
213
+
214
+ /// Return the type info for a given C++ type; on lookup failure can either throw or return
215
+ /// nullptr.
216
+ PYBIND11_NOINLINE detail::type_info *get_type_info(const std::type_index &tp,
217
+ bool throw_if_missing = false) {
218
+ if (auto *ltype = get_local_type_info(tp)) {
219
+ return ltype;
220
+ }
221
+ if (auto *gtype = get_global_type_info(tp)) {
222
+ return gtype;
223
+ }
224
+
225
+ if (throw_if_missing) {
226
+ std::string tname = tp.name();
227
+ detail::clean_type_id(tname);
228
+ pybind11_fail("pybind11::detail::get_type_info: unable to find type info for \""
229
+ + std::move(tname) + '"');
230
+ }
231
+ return nullptr;
232
+ }
233
+
234
+ PYBIND11_NOINLINE handle get_type_handle(const std::type_info &tp, bool throw_if_missing) {
235
+ detail::type_info *type_info = get_type_info(tp, throw_if_missing);
236
+ return handle(type_info ? ((PyObject *) type_info->type) : nullptr);
237
+ }
238
+
239
+ // Searches the inheritance graph for a registered Python instance, using all_type_info().
240
+ PYBIND11_NOINLINE handle find_registered_python_instance(void *src,
241
+ const detail::type_info *tinfo) {
242
+ auto it_instances = get_internals().registered_instances.equal_range(src);
243
+ for (auto it_i = it_instances.first; it_i != it_instances.second; ++it_i) {
244
+ for (auto *instance_type : detail::all_type_info(Py_TYPE(it_i->second))) {
245
+ if (instance_type && same_type(*instance_type->cpptype, *tinfo->cpptype)) {
246
+ return handle((PyObject *) it_i->second).inc_ref();
247
+ }
248
+ }
249
+ }
250
+ return handle();
251
+ }
252
+
253
+ struct value_and_holder {
254
+ instance *inst = nullptr;
255
+ size_t index = 0u;
256
+ const detail::type_info *type = nullptr;
257
+ void **vh = nullptr;
258
+
259
+ // Main constructor for a found value/holder:
260
+ value_and_holder(instance *i, const detail::type_info *type, size_t vpos, size_t index)
261
+ : inst{i}, index{index}, type{type}, vh{inst->simple_layout
262
+ ? inst->simple_value_holder
263
+ : &inst->nonsimple.values_and_holders[vpos]} {}
264
+
265
+ // Default constructor (used to signal a value-and-holder not found by get_value_and_holder())
266
+ value_and_holder() = default;
267
+
268
+ // Used for past-the-end iterator
269
+ explicit value_and_holder(size_t index) : index{index} {}
270
+
271
+ template <typename V = void>
272
+ V *&value_ptr() const {
273
+ return reinterpret_cast<V *&>(vh[0]);
274
+ }
275
+ // True if this `value_and_holder` has a non-null value pointer
276
+ explicit operator bool() const { return value_ptr() != nullptr; }
277
+
278
+ template <typename H>
279
+ H &holder() const {
280
+ return reinterpret_cast<H &>(vh[1]);
281
+ }
282
+ bool holder_constructed() const {
283
+ return inst->simple_layout
284
+ ? inst->simple_holder_constructed
285
+ : (inst->nonsimple.status[index] & instance::status_holder_constructed) != 0u;
286
+ }
287
+ // NOLINTNEXTLINE(readability-make-member-function-const)
288
+ void set_holder_constructed(bool v = true) {
289
+ if (inst->simple_layout) {
290
+ inst->simple_holder_constructed = v;
291
+ } else if (v) {
292
+ inst->nonsimple.status[index] |= instance::status_holder_constructed;
293
+ } else {
294
+ inst->nonsimple.status[index] &= (std::uint8_t) ~instance::status_holder_constructed;
295
+ }
296
+ }
297
+ bool instance_registered() const {
298
+ return inst->simple_layout
299
+ ? inst->simple_instance_registered
300
+ : ((inst->nonsimple.status[index] & instance::status_instance_registered) != 0);
301
+ }
302
+ // NOLINTNEXTLINE(readability-make-member-function-const)
303
+ void set_instance_registered(bool v = true) {
304
+ if (inst->simple_layout) {
305
+ inst->simple_instance_registered = v;
306
+ } else if (v) {
307
+ inst->nonsimple.status[index] |= instance::status_instance_registered;
308
+ } else {
309
+ inst->nonsimple.status[index] &= (std::uint8_t) ~instance::status_instance_registered;
310
+ }
311
+ }
312
+ };
313
+
314
+ // Container for accessing and iterating over an instance's values/holders
315
+ struct values_and_holders {
316
+ private:
317
+ instance *inst;
318
+ using type_vec = std::vector<detail::type_info *>;
319
+ const type_vec &tinfo;
320
+
321
+ public:
322
+ explicit values_and_holders(instance *inst)
323
+ : inst{inst}, tinfo(all_type_info(Py_TYPE(inst))) {}
324
+
325
+ struct iterator {
326
+ private:
327
+ instance *inst = nullptr;
328
+ const type_vec *types = nullptr;
329
+ value_and_holder curr;
330
+ friend struct values_and_holders;
331
+ iterator(instance *inst, const type_vec *tinfo)
332
+ : inst{inst}, types{tinfo},
333
+ curr(inst /* instance */,
334
+ types->empty() ? nullptr : (*types)[0] /* type info */,
335
+ 0, /* vpos: (non-simple types only): the first vptr comes first */
336
+ 0 /* index */) {}
337
+ // Past-the-end iterator:
338
+ explicit iterator(size_t end) : curr(end) {}
339
+
340
+ public:
341
+ bool operator==(const iterator &other) const { return curr.index == other.curr.index; }
342
+ bool operator!=(const iterator &other) const { return curr.index != other.curr.index; }
343
+ iterator &operator++() {
344
+ if (!inst->simple_layout) {
345
+ curr.vh += 1 + (*types)[curr.index]->holder_size_in_ptrs;
346
+ }
347
+ ++curr.index;
348
+ curr.type = curr.index < types->size() ? (*types)[curr.index] : nullptr;
349
+ return *this;
350
+ }
351
+ value_and_holder &operator*() { return curr; }
352
+ value_and_holder *operator->() { return &curr; }
353
+ };
354
+
355
+ iterator begin() { return iterator(inst, &tinfo); }
356
+ iterator end() { return iterator(tinfo.size()); }
357
+
358
+ iterator find(const type_info *find_type) {
359
+ auto it = begin(), endit = end();
360
+ while (it != endit && it->type != find_type) {
361
+ ++it;
362
+ }
363
+ return it;
364
+ }
365
+
366
+ size_t size() { return tinfo.size(); }
367
+ };
368
+
369
+ /**
370
+ * Extracts C++ value and holder pointer references from an instance (which may contain multiple
371
+ * values/holders for python-side multiple inheritance) that match the given type. Throws an error
372
+ * if the given type (or ValueType, if omitted) is not a pybind11 base of the given instance. If
373
+ * `find_type` is omitted (or explicitly specified as nullptr) the first value/holder are returned,
374
+ * regardless of type (and the resulting .type will be nullptr).
375
+ *
376
+ * The returned object should be short-lived: in particular, it must not outlive the called-upon
377
+ * instance.
378
+ */
379
+ PYBIND11_NOINLINE value_and_holder
380
+ instance::get_value_and_holder(const type_info *find_type /*= nullptr default in common.h*/,
381
+ bool throw_if_missing /*= true in common.h*/) {
382
+ // Optimize common case:
383
+ if (!find_type || Py_TYPE(this) == find_type->type) {
384
+ return value_and_holder(this, find_type, 0, 0);
385
+ }
386
+
387
+ detail::values_and_holders vhs(this);
388
+ auto it = vhs.find(find_type);
389
+ if (it != vhs.end()) {
390
+ return *it;
391
+ }
392
+
393
+ if (!throw_if_missing) {
394
+ return value_and_holder();
395
+ }
396
+
397
+ #if defined(PYBIND11_DETAILED_ERROR_MESSAGES)
398
+ pybind11_fail("pybind11::detail::instance::get_value_and_holder: `"
399
+ + get_fully_qualified_tp_name(find_type->type)
400
+ + "' is not a pybind11 base of the given `"
401
+ + get_fully_qualified_tp_name(Py_TYPE(this)) + "' instance");
402
+ #else
403
+ pybind11_fail(
404
+ "pybind11::detail::instance::get_value_and_holder: "
405
+ "type is not a pybind11 base of the given instance "
406
+ "(#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for type details)");
407
+ #endif
408
+ }
409
+
410
+ PYBIND11_NOINLINE void instance::allocate_layout() {
411
+ const auto &tinfo = all_type_info(Py_TYPE(this));
412
+
413
+ const size_t n_types = tinfo.size();
414
+
415
+ if (n_types == 0) {
416
+ pybind11_fail(
417
+ "instance allocation failed: new instance has no pybind11-registered base types");
418
+ }
419
+
420
+ simple_layout
421
+ = n_types == 1 && tinfo.front()->holder_size_in_ptrs <= instance_simple_holder_in_ptrs();
422
+
423
+ // Simple path: no python-side multiple inheritance, and a small-enough holder
424
+ if (simple_layout) {
425
+ simple_value_holder[0] = nullptr;
426
+ simple_holder_constructed = false;
427
+ simple_instance_registered = false;
428
+ } else { // multiple base types or a too-large holder
429
+ // Allocate space to hold: [v1*][h1][v2*][h2]...[bb...] where [vN*] is a value pointer,
430
+ // [hN] is the (uninitialized) holder instance for value N, and [bb...] is a set of bool
431
+ // values that tracks whether each associated holder has been initialized. Each [block] is
432
+ // padded, if necessary, to an integer multiple of sizeof(void *).
433
+ size_t space = 0;
434
+ for (auto *t : tinfo) {
435
+ space += 1; // value pointer
436
+ space += t->holder_size_in_ptrs; // holder instance
437
+ }
438
+ size_t flags_at = space;
439
+ space += size_in_ptrs(n_types); // status bytes (holder_constructed and
440
+ // instance_registered)
441
+
442
+ // Allocate space for flags, values, and holders, and initialize it to 0 (flags and values,
443
+ // in particular, need to be 0). Use Python's memory allocation
444
+ // functions: Python is using pymalloc, which is designed to be
445
+ // efficient for small allocations like the one we're doing here;
446
+ // for larger allocations they are just wrappers around malloc.
447
+ // TODO: is this still true for pure Python 3.6?
448
+ nonsimple.values_and_holders = (void **) PyMem_Calloc(space, sizeof(void *));
449
+ if (!nonsimple.values_and_holders) {
450
+ throw std::bad_alloc();
451
+ }
452
+ nonsimple.status
453
+ = reinterpret_cast<std::uint8_t *>(&nonsimple.values_and_holders[flags_at]);
454
+ }
455
+ owned = true;
456
+ }
457
+
458
+ // NOLINTNEXTLINE(readability-make-member-function-const)
459
+ PYBIND11_NOINLINE void instance::deallocate_layout() {
460
+ if (!simple_layout) {
461
+ PyMem_Free(nonsimple.values_and_holders);
462
+ }
463
+ }
464
+
465
+ PYBIND11_NOINLINE bool isinstance_generic(handle obj, const std::type_info &tp) {
466
+ handle type = detail::get_type_handle(tp, false);
467
+ if (!type) {
468
+ return false;
469
+ }
470
+ return isinstance(obj, type);
471
+ }
472
+
473
+ PYBIND11_NOINLINE handle get_object_handle(const void *ptr, const detail::type_info *type) {
474
+ auto &instances = get_internals().registered_instances;
475
+ auto range = instances.equal_range(ptr);
476
+ for (auto it = range.first; it != range.second; ++it) {
477
+ for (const auto &vh : values_and_holders(it->second)) {
478
+ if (vh.type == type) {
479
+ return handle((PyObject *) it->second);
480
+ }
481
+ }
482
+ }
483
+ return handle();
484
+ }
485
+
486
+ inline PyThreadState *get_thread_state_unchecked() {
487
+ #if defined(PYPY_VERSION)
488
+ return PyThreadState_GET();
489
+ #else
490
+ return _PyThreadState_UncheckedGet();
491
+ #endif
492
+ }
493
+
494
+ // Forward declarations
495
+ void keep_alive_impl(handle nurse, handle patient);
496
+ inline PyObject *make_new_instance(PyTypeObject *type);
497
+
498
+ class type_caster_generic {
499
+ public:
500
+ PYBIND11_NOINLINE explicit type_caster_generic(const std::type_info &type_info)
501
+ : typeinfo(get_type_info(type_info)), cpptype(&type_info) {}
502
+
503
+ explicit type_caster_generic(const type_info *typeinfo)
504
+ : typeinfo(typeinfo), cpptype(typeinfo ? typeinfo->cpptype : nullptr) {}
505
+
506
+ bool load(handle src, bool convert) { return load_impl<type_caster_generic>(src, convert); }
507
+
508
+ PYBIND11_NOINLINE static handle cast(const void *_src,
509
+ return_value_policy policy,
510
+ handle parent,
511
+ const detail::type_info *tinfo,
512
+ void *(*copy_constructor)(const void *),
513
+ void *(*move_constructor)(const void *),
514
+ const void *existing_holder = nullptr) {
515
+ if (!tinfo) { // no type info: error will be set already
516
+ return handle();
517
+ }
518
+
519
+ void *src = const_cast<void *>(_src);
520
+ if (src == nullptr) {
521
+ return none().release();
522
+ }
523
+
524
+ if (handle registered_inst = find_registered_python_instance(src, tinfo)) {
525
+ return registered_inst;
526
+ }
527
+
528
+ auto inst = reinterpret_steal<object>(make_new_instance(tinfo->type));
529
+ auto *wrapper = reinterpret_cast<instance *>(inst.ptr());
530
+ wrapper->owned = false;
531
+ void *&valueptr = values_and_holders(wrapper).begin()->value_ptr();
532
+
533
+ switch (policy) {
534
+ case return_value_policy::automatic:
535
+ case return_value_policy::take_ownership:
536
+ valueptr = src;
537
+ wrapper->owned = true;
538
+ break;
539
+
540
+ case return_value_policy::automatic_reference:
541
+ case return_value_policy::reference:
542
+ valueptr = src;
543
+ wrapper->owned = false;
544
+ break;
545
+
546
+ case return_value_policy::copy:
547
+ if (copy_constructor) {
548
+ valueptr = copy_constructor(src);
549
+ } else {
550
+ #if defined(PYBIND11_DETAILED_ERROR_MESSAGES)
551
+ std::string type_name(tinfo->cpptype->name());
552
+ detail::clean_type_id(type_name);
553
+ throw cast_error("return_value_policy = copy, but type " + type_name
554
+ + " is non-copyable!");
555
+ #else
556
+ throw cast_error("return_value_policy = copy, but type is "
557
+ "non-copyable! (#define PYBIND11_DETAILED_ERROR_MESSAGES or "
558
+ "compile in debug mode for details)");
559
+ #endif
560
+ }
561
+ wrapper->owned = true;
562
+ break;
563
+
564
+ case return_value_policy::move:
565
+ if (move_constructor) {
566
+ valueptr = move_constructor(src);
567
+ } else if (copy_constructor) {
568
+ valueptr = copy_constructor(src);
569
+ } else {
570
+ #if defined(PYBIND11_DETAILED_ERROR_MESSAGES)
571
+ std::string type_name(tinfo->cpptype->name());
572
+ detail::clean_type_id(type_name);
573
+ throw cast_error("return_value_policy = move, but type " + type_name
574
+ + " is neither movable nor copyable!");
575
+ #else
576
+ throw cast_error("return_value_policy = move, but type is neither "
577
+ "movable nor copyable! "
578
+ "(#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in "
579
+ "debug mode for details)");
580
+ #endif
581
+ }
582
+ wrapper->owned = true;
583
+ break;
584
+
585
+ case return_value_policy::reference_internal:
586
+ valueptr = src;
587
+ wrapper->owned = false;
588
+ keep_alive_impl(inst, parent);
589
+ break;
590
+
591
+ default:
592
+ throw cast_error("unhandled return_value_policy: should not happen!");
593
+ }
594
+
595
+ tinfo->init_instance(wrapper, existing_holder);
596
+
597
+ return inst.release();
598
+ }
599
+
600
+ // Base methods for generic caster; there are overridden in copyable_holder_caster
601
+ void load_value(value_and_holder &&v_h) {
602
+ auto *&vptr = v_h.value_ptr();
603
+ // Lazy allocation for unallocated values:
604
+ if (vptr == nullptr) {
605
+ const auto *type = v_h.type ? v_h.type : typeinfo;
606
+ if (type->operator_new) {
607
+ vptr = type->operator_new(type->type_size);
608
+ } else {
609
+ #if defined(__cpp_aligned_new) && (!defined(_MSC_VER) || _MSC_VER >= 1912)
610
+ if (type->type_align > __STDCPP_DEFAULT_NEW_ALIGNMENT__) {
611
+ vptr = ::operator new(type->type_size, std::align_val_t(type->type_align));
612
+ } else {
613
+ vptr = ::operator new(type->type_size);
614
+ }
615
+ #else
616
+ vptr = ::operator new(type->type_size);
617
+ #endif
618
+ }
619
+ }
620
+ value = vptr;
621
+ }
622
+ bool try_implicit_casts(handle src, bool convert) {
623
+ for (const auto &cast : typeinfo->implicit_casts) {
624
+ type_caster_generic sub_caster(*cast.first);
625
+ if (sub_caster.load(src, convert)) {
626
+ value = cast.second(sub_caster.value);
627
+ return true;
628
+ }
629
+ }
630
+ return false;
631
+ }
632
+ bool try_direct_conversions(handle src) {
633
+ for (auto &converter : *typeinfo->direct_conversions) {
634
+ if (converter(src.ptr(), value)) {
635
+ return true;
636
+ }
637
+ }
638
+ return false;
639
+ }
640
+ void check_holder_compat() {}
641
+
642
+ PYBIND11_NOINLINE static void *local_load(PyObject *src, const type_info *ti) {
643
+ auto caster = type_caster_generic(ti);
644
+ if (caster.load(src, false)) {
645
+ return caster.value;
646
+ }
647
+ return nullptr;
648
+ }
649
+
650
+ /// Try to load with foreign typeinfo, if available. Used when there is no
651
+ /// native typeinfo, or when the native one wasn't able to produce a value.
652
+ PYBIND11_NOINLINE bool try_load_foreign_module_local(handle src) {
653
+ constexpr auto *local_key = PYBIND11_MODULE_LOCAL_ID;
654
+ const auto pytype = type::handle_of(src);
655
+ if (!hasattr(pytype, local_key)) {
656
+ return false;
657
+ }
658
+
659
+ type_info *foreign_typeinfo = reinterpret_borrow<capsule>(getattr(pytype, local_key));
660
+ // Only consider this foreign loader if actually foreign and is a loader of the correct cpp
661
+ // type
662
+ if (foreign_typeinfo->module_local_load == &local_load
663
+ || (cpptype && !same_type(*cpptype, *foreign_typeinfo->cpptype))) {
664
+ return false;
665
+ }
666
+
667
+ if (auto *result = foreign_typeinfo->module_local_load(src.ptr(), foreign_typeinfo)) {
668
+ value = result;
669
+ return true;
670
+ }
671
+ return false;
672
+ }
673
+
674
+ // Implementation of `load`; this takes the type of `this` so that it can dispatch the relevant
675
+ // bits of code between here and copyable_holder_caster where the two classes need different
676
+ // logic (without having to resort to virtual inheritance).
677
+ template <typename ThisT>
678
+ PYBIND11_NOINLINE bool load_impl(handle src, bool convert) {
679
+ if (!src) {
680
+ return false;
681
+ }
682
+ if (!typeinfo) {
683
+ return try_load_foreign_module_local(src);
684
+ }
685
+
686
+ auto &this_ = static_cast<ThisT &>(*this);
687
+ this_.check_holder_compat();
688
+
689
+ PyTypeObject *srctype = Py_TYPE(src.ptr());
690
+
691
+ // Case 1: If src is an exact type match for the target type then we can reinterpret_cast
692
+ // the instance's value pointer to the target type:
693
+ if (srctype == typeinfo->type) {
694
+ this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder());
695
+ return true;
696
+ }
697
+ // Case 2: We have a derived class
698
+ if (PyType_IsSubtype(srctype, typeinfo->type)) {
699
+ const auto &bases = all_type_info(srctype);
700
+ bool no_cpp_mi = typeinfo->simple_type;
701
+
702
+ // Case 2a: the python type is a Python-inherited derived class that inherits from just
703
+ // one simple (no MI) pybind11 class, or is an exact match, so the C++ instance is of
704
+ // the right type and we can use reinterpret_cast.
705
+ // (This is essentially the same as case 2b, but because not using multiple inheritance
706
+ // is extremely common, we handle it specially to avoid the loop iterator and type
707
+ // pointer lookup overhead)
708
+ if (bases.size() == 1 && (no_cpp_mi || bases.front()->type == typeinfo->type)) {
709
+ this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder());
710
+ return true;
711
+ }
712
+ // Case 2b: the python type inherits from multiple C++ bases. Check the bases to see
713
+ // if we can find an exact match (or, for a simple C++ type, an inherited match); if
714
+ // so, we can safely reinterpret_cast to the relevant pointer.
715
+ if (bases.size() > 1) {
716
+ for (auto *base : bases) {
717
+ if (no_cpp_mi ? PyType_IsSubtype(base->type, typeinfo->type)
718
+ : base->type == typeinfo->type) {
719
+ this_.load_value(
720
+ reinterpret_cast<instance *>(src.ptr())->get_value_and_holder(base));
721
+ return true;
722
+ }
723
+ }
724
+ }
725
+
726
+ // Case 2c: C++ multiple inheritance is involved and we couldn't find an exact type
727
+ // match in the registered bases, above, so try implicit casting (needed for proper C++
728
+ // casting when MI is involved).
729
+ if (this_.try_implicit_casts(src, convert)) {
730
+ return true;
731
+ }
732
+ }
733
+
734
+ // Perform an implicit conversion
735
+ if (convert) {
736
+ for (const auto &converter : typeinfo->implicit_conversions) {
737
+ auto temp = reinterpret_steal<object>(converter(src.ptr(), typeinfo->type));
738
+ if (load_impl<ThisT>(temp, false)) {
739
+ loader_life_support::add_patient(temp);
740
+ return true;
741
+ }
742
+ }
743
+ if (this_.try_direct_conversions(src)) {
744
+ return true;
745
+ }
746
+ }
747
+
748
+ // Failed to match local typeinfo. Try again with global.
749
+ if (typeinfo->module_local) {
750
+ if (auto *gtype = get_global_type_info(*typeinfo->cpptype)) {
751
+ typeinfo = gtype;
752
+ return load(src, false);
753
+ }
754
+ }
755
+
756
+ // Global typeinfo has precedence over foreign module_local
757
+ if (try_load_foreign_module_local(src)) {
758
+ return true;
759
+ }
760
+
761
+ // Custom converters didn't take None, now we convert None to nullptr.
762
+ if (src.is_none()) {
763
+ // Defer accepting None to other overloads (if we aren't in convert mode):
764
+ if (!convert) {
765
+ return false;
766
+ }
767
+ value = nullptr;
768
+ return true;
769
+ }
770
+
771
+ return false;
772
+ }
773
+
774
+ // Called to do type lookup and wrap the pointer and type in a pair when a dynamic_cast
775
+ // isn't needed or can't be used. If the type is unknown, sets the error and returns a pair
776
+ // with .second = nullptr. (p.first = nullptr is not an error: it becomes None).
777
+ PYBIND11_NOINLINE static std::pair<const void *, const type_info *>
778
+ src_and_type(const void *src,
779
+ const std::type_info &cast_type,
780
+ const std::type_info *rtti_type = nullptr) {
781
+ if (auto *tpi = get_type_info(cast_type)) {
782
+ return {src, const_cast<const type_info *>(tpi)};
783
+ }
784
+
785
+ // Not found, set error:
786
+ std::string tname = rtti_type ? rtti_type->name() : cast_type.name();
787
+ detail::clean_type_id(tname);
788
+ std::string msg = "Unregistered type : " + tname;
789
+ PyErr_SetString(PyExc_TypeError, msg.c_str());
790
+ return {nullptr, nullptr};
791
+ }
792
+
793
+ const type_info *typeinfo = nullptr;
794
+ const std::type_info *cpptype = nullptr;
795
+ void *value = nullptr;
796
+ };
797
+
798
+ /**
799
+ * Determine suitable casting operator for pointer-or-lvalue-casting type casters. The type caster
800
+ * needs to provide `operator T*()` and `operator T&()` operators.
801
+ *
802
+ * If the type supports moving the value away via an `operator T&&() &&` method, it should use
803
+ * `movable_cast_op_type` instead.
804
+ */
805
+ template <typename T>
806
+ using cast_op_type = conditional_t<std::is_pointer<remove_reference_t<T>>::value,
807
+ typename std::add_pointer<intrinsic_t<T>>::type,
808
+ typename std::add_lvalue_reference<intrinsic_t<T>>::type>;
809
+
810
+ /**
811
+ * Determine suitable casting operator for a type caster with a movable value. Such a type caster
812
+ * needs to provide `operator T*()`, `operator T&()`, and `operator T&&() &&`. The latter will be
813
+ * called in appropriate contexts where the value can be moved rather than copied.
814
+ *
815
+ * These operator are automatically provided when using the PYBIND11_TYPE_CASTER macro.
816
+ */
817
+ template <typename T>
818
+ using movable_cast_op_type
819
+ = conditional_t<std::is_pointer<typename std::remove_reference<T>::type>::value,
820
+ typename std::add_pointer<intrinsic_t<T>>::type,
821
+ conditional_t<std::is_rvalue_reference<T>::value,
822
+ typename std::add_rvalue_reference<intrinsic_t<T>>::type,
823
+ typename std::add_lvalue_reference<intrinsic_t<T>>::type>>;
824
+
825
+ // std::is_copy_constructible isn't quite enough: it lets std::vector<T> (and similar) through when
826
+ // T is non-copyable, but code containing such a copy constructor fails to actually compile.
827
+ template <typename T, typename SFINAE = void>
828
+ struct is_copy_constructible : std::is_copy_constructible<T> {};
829
+
830
+ // Specialization for types that appear to be copy constructible but also look like stl containers
831
+ // (we specifically check for: has `value_type` and `reference` with `reference = value_type&`): if
832
+ // so, copy constructability depends on whether the value_type is copy constructible.
833
+ template <typename Container>
834
+ struct is_copy_constructible<
835
+ Container,
836
+ enable_if_t<
837
+ all_of<std::is_copy_constructible<Container>,
838
+ std::is_same<typename Container::value_type &, typename Container::reference>,
839
+ // Avoid infinite recursion
840
+ negation<std::is_same<Container, typename Container::value_type>>>::value>>
841
+ : is_copy_constructible<typename Container::value_type> {};
842
+
843
+ // Likewise for std::pair
844
+ // (after C++17 it is mandatory that the copy constructor not exist when the two types aren't
845
+ // themselves copy constructible, but this can not be relied upon when T1 or T2 are themselves
846
+ // containers).
847
+ template <typename T1, typename T2>
848
+ struct is_copy_constructible<std::pair<T1, T2>>
849
+ : all_of<is_copy_constructible<T1>, is_copy_constructible<T2>> {};
850
+
851
+ // The same problems arise with std::is_copy_assignable, so we use the same workaround.
852
+ template <typename T, typename SFINAE = void>
853
+ struct is_copy_assignable : std::is_copy_assignable<T> {};
854
+ template <typename Container>
855
+ struct is_copy_assignable<Container,
856
+ enable_if_t<all_of<std::is_copy_assignable<Container>,
857
+ std::is_same<typename Container::value_type &,
858
+ typename Container::reference>>::value>>
859
+ : is_copy_assignable<typename Container::value_type> {};
860
+ template <typename T1, typename T2>
861
+ struct is_copy_assignable<std::pair<T1, T2>>
862
+ : all_of<is_copy_assignable<T1>, is_copy_assignable<T2>> {};
863
+
864
+ PYBIND11_NAMESPACE_END(detail)
865
+
866
+ // polymorphic_type_hook<itype>::get(src, tinfo) determines whether the object pointed
867
+ // to by `src` actually is an instance of some class derived from `itype`.
868
+ // If so, it sets `tinfo` to point to the std::type_info representing that derived
869
+ // type, and returns a pointer to the start of the most-derived object of that type
870
+ // (in which `src` is a subobject; this will be the same address as `src` in most
871
+ // single inheritance cases). If not, or if `src` is nullptr, it simply returns `src`
872
+ // and leaves `tinfo` at its default value of nullptr.
873
+ //
874
+ // The default polymorphic_type_hook just returns src. A specialization for polymorphic
875
+ // types determines the runtime type of the passed object and adjusts the this-pointer
876
+ // appropriately via dynamic_cast<void*>. This is what enables a C++ Animal* to appear
877
+ // to Python as a Dog (if Dog inherits from Animal, Animal is polymorphic, Dog is
878
+ // registered with pybind11, and this Animal is in fact a Dog).
879
+ //
880
+ // You may specialize polymorphic_type_hook yourself for types that want to appear
881
+ // polymorphic to Python but do not use C++ RTTI. (This is a not uncommon pattern
882
+ // in performance-sensitive applications, used most notably in LLVM.)
883
+ //
884
+ // polymorphic_type_hook_base allows users to specialize polymorphic_type_hook with
885
+ // std::enable_if. User provided specializations will always have higher priority than
886
+ // the default implementation and specialization provided in polymorphic_type_hook_base.
887
+ template <typename itype, typename SFINAE = void>
888
+ struct polymorphic_type_hook_base {
889
+ static const void *get(const itype *src, const std::type_info *&) { return src; }
890
+ };
891
+ template <typename itype>
892
+ struct polymorphic_type_hook_base<itype, detail::enable_if_t<std::is_polymorphic<itype>::value>> {
893
+ static const void *get(const itype *src, const std::type_info *&type) {
894
+ type = src ? &typeid(*src) : nullptr;
895
+ return dynamic_cast<const void *>(src);
896
+ }
897
+ };
898
+ template <typename itype, typename SFINAE = void>
899
+ struct polymorphic_type_hook : public polymorphic_type_hook_base<itype> {};
900
+
901
+ PYBIND11_NAMESPACE_BEGIN(detail)
902
+
903
+ /// Generic type caster for objects stored on the heap
904
+ template <typename type>
905
+ class type_caster_base : public type_caster_generic {
906
+ using itype = intrinsic_t<type>;
907
+
908
+ public:
909
+ static constexpr auto name = const_name<type>();
910
+
911
+ type_caster_base() : type_caster_base(typeid(type)) {}
912
+ explicit type_caster_base(const std::type_info &info) : type_caster_generic(info) {}
913
+
914
+ static handle cast(const itype &src, return_value_policy policy, handle parent) {
915
+ if (policy == return_value_policy::automatic
916
+ || policy == return_value_policy::automatic_reference) {
917
+ policy = return_value_policy::copy;
918
+ }
919
+ return cast(&src, policy, parent);
920
+ }
921
+
922
+ static handle cast(itype &&src, return_value_policy, handle parent) {
923
+ return cast(&src, return_value_policy::move, parent);
924
+ }
925
+
926
+ // Returns a (pointer, type_info) pair taking care of necessary type lookup for a
927
+ // polymorphic type (using RTTI by default, but can be overridden by specializing
928
+ // polymorphic_type_hook). If the instance isn't derived, returns the base version.
929
+ static std::pair<const void *, const type_info *> src_and_type(const itype *src) {
930
+ const auto &cast_type = typeid(itype);
931
+ const std::type_info *instance_type = nullptr;
932
+ const void *vsrc = polymorphic_type_hook<itype>::get(src, instance_type);
933
+ if (instance_type && !same_type(cast_type, *instance_type)) {
934
+ // This is a base pointer to a derived type. If the derived type is registered
935
+ // with pybind11, we want to make the full derived object available.
936
+ // In the typical case where itype is polymorphic, we get the correct
937
+ // derived pointer (which may be != base pointer) by a dynamic_cast to
938
+ // most derived type. If itype is not polymorphic, we won't get here
939
+ // except via a user-provided specialization of polymorphic_type_hook,
940
+ // and the user has promised that no this-pointer adjustment is
941
+ // required in that case, so it's OK to use static_cast.
942
+ if (const auto *tpi = get_type_info(*instance_type)) {
943
+ return {vsrc, tpi};
944
+ }
945
+ }
946
+ // Otherwise we have either a nullptr, an `itype` pointer, or an unknown derived pointer,
947
+ // so don't do a cast
948
+ return type_caster_generic::src_and_type(src, cast_type, instance_type);
949
+ }
950
+
951
+ static handle cast(const itype *src, return_value_policy policy, handle parent) {
952
+ auto st = src_and_type(src);
953
+ return type_caster_generic::cast(st.first,
954
+ policy,
955
+ parent,
956
+ st.second,
957
+ make_copy_constructor(src),
958
+ make_move_constructor(src));
959
+ }
960
+
961
+ static handle cast_holder(const itype *src, const void *holder) {
962
+ auto st = src_and_type(src);
963
+ return type_caster_generic::cast(st.first,
964
+ return_value_policy::take_ownership,
965
+ {},
966
+ st.second,
967
+ nullptr,
968
+ nullptr,
969
+ holder);
970
+ }
971
+
972
+ template <typename T>
973
+ using cast_op_type = detail::cast_op_type<T>;
974
+
975
+ // NOLINTNEXTLINE(google-explicit-constructor)
976
+ operator itype *() { return (type *) value; }
977
+ // NOLINTNEXTLINE(google-explicit-constructor)
978
+ operator itype &() {
979
+ if (!value) {
980
+ throw reference_cast_error();
981
+ }
982
+ return *((itype *) value);
983
+ }
984
+
985
+ protected:
986
+ using Constructor = void *(*) (const void *);
987
+
988
+ /* Only enabled when the types are {copy,move}-constructible *and* when the type
989
+ does not have a private operator new implementation. A comma operator is used in the
990
+ decltype argument to apply SFINAE to the public copy/move constructors.*/
991
+ template <typename T, typename = enable_if_t<is_copy_constructible<T>::value>>
992
+ static auto make_copy_constructor(const T *)
993
+ -> decltype(new T(std::declval<const T>()), Constructor{}) {
994
+ return [](const void *arg) -> void * { return new T(*reinterpret_cast<const T *>(arg)); };
995
+ }
996
+
997
+ template <typename T, typename = enable_if_t<std::is_move_constructible<T>::value>>
998
+ static auto make_move_constructor(const T *)
999
+ -> decltype(new T(std::declval<T &&>()), Constructor{}) {
1000
+ return [](const void *arg) -> void * {
1001
+ return new T(std::move(*const_cast<T *>(reinterpret_cast<const T *>(arg))));
1002
+ };
1003
+ }
1004
+
1005
+ static Constructor make_copy_constructor(...) { return nullptr; }
1006
+ static Constructor make_move_constructor(...) { return nullptr; }
1007
+ };
1008
+
1009
+ PYBIND11_NAMESPACE_END(detail)
1010
+ PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
third-party/DPVO/DPViewer/pybind11/include/pybind11/detail/typeid.h ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ pybind11/detail/typeid.h: Compiler-independent access to type identifiers
3
+
4
+ Copyright (c) 2016 Wenzel Jakob <[email protected]>
5
+
6
+ All rights reserved. Use of this source code is governed by a
7
+ BSD-style license that can be found in the LICENSE file.
8
+ */
9
+
10
+ #pragma once
11
+
12
+ #include <cstdio>
13
+ #include <cstdlib>
14
+
15
+ #if defined(__GNUG__)
16
+ # include <cxxabi.h>
17
+ #endif
18
+
19
+ #include "common.h"
20
+
21
+ PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
22
+ PYBIND11_NAMESPACE_BEGIN(detail)
23
+ /// Erase all occurrences of a substring
24
+ inline void erase_all(std::string &string, const std::string &search) {
25
+ for (size_t pos = 0;;) {
26
+ pos = string.find(search, pos);
27
+ if (pos == std::string::npos) {
28
+ break;
29
+ }
30
+ string.erase(pos, search.length());
31
+ }
32
+ }
33
+
34
+ PYBIND11_NOINLINE void clean_type_id(std::string &name) {
35
+ #if defined(__GNUG__)
36
+ int status = 0;
37
+ std::unique_ptr<char, void (*)(void *)> res{
38
+ abi::__cxa_demangle(name.c_str(), nullptr, nullptr, &status), std::free};
39
+ if (status == 0) {
40
+ name = res.get();
41
+ }
42
+ #else
43
+ detail::erase_all(name, "class ");
44
+ detail::erase_all(name, "struct ");
45
+ detail::erase_all(name, "enum ");
46
+ #endif
47
+ detail::erase_all(name, "pybind11::");
48
+ }
49
+ PYBIND11_NAMESPACE_END(detail)
50
+
51
+ /// Return a string representation of a C++ type
52
+ template <typename T>
53
+ static std::string type_id() {
54
+ std::string name(typeid(T).name());
55
+ detail::clean_type_id(name);
56
+ return name;
57
+ }
58
+
59
+ PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
third-party/DPVO/DPViewer/pybind11/include/pybind11/eigen.h ADDED
@@ -0,0 +1,702 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ pybind11/eigen.h: Transparent conversion for dense and sparse Eigen matrices
3
+
4
+ Copyright (c) 2016 Wenzel Jakob <[email protected]>
5
+
6
+ All rights reserved. Use of this source code is governed by a
7
+ BSD-style license that can be found in the LICENSE file.
8
+ */
9
+
10
+ #pragma once
11
+
12
+ /* HINT: To suppress warnings originating from the Eigen headers, use -isystem.
13
+ See also:
14
+ https://stackoverflow.com/questions/2579576/i-dir-vs-isystem-dir
15
+ https://stackoverflow.com/questions/1741816/isystem-for-ms-visual-studio-c-compiler
16
+ */
17
+
18
+ #include "numpy.h"
19
+
20
+ // The C4127 suppression was introduced for Eigen 3.4.0. In theory we could
21
+ // make it version specific, or even remove it later, but considering that
22
+ // 1. C4127 is generally far more distracting than useful for modern template code, and
23
+ // 2. we definitely want to ignore any MSVC warnings originating from Eigen code,
24
+ // it is probably best to keep this around indefinitely.
25
+ #if defined(_MSC_VER)
26
+ # pragma warning(push)
27
+ # pragma warning(disable : 4127) // C4127: conditional expression is constant
28
+ # pragma warning(disable : 5054) // https://github.com/pybind/pybind11/pull/3741
29
+ // C5054: operator '&': deprecated between enumerations of different types
30
+ #endif
31
+
32
+ #include <Eigen/Core>
33
+ #include <Eigen/SparseCore>
34
+
35
+ #if defined(_MSC_VER)
36
+ # pragma warning(pop)
37
+ #endif
38
+
39
+ // Eigen prior to 3.2.7 doesn't have proper move constructors--but worse, some classes get implicit
40
+ // move constructors that break things. We could detect this an explicitly copy, but an extra copy
41
+ // of matrices seems highly undesirable.
42
+ static_assert(EIGEN_VERSION_AT_LEAST(3, 2, 7),
43
+ "Eigen support in pybind11 requires Eigen >= 3.2.7");
44
+
45
+ PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
46
+
47
+ // Provide a convenience alias for easier pass-by-ref usage with fully dynamic strides:
48
+ using EigenDStride = Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic>;
49
+ template <typename MatrixType>
50
+ using EigenDRef = Eigen::Ref<MatrixType, 0, EigenDStride>;
51
+ template <typename MatrixType>
52
+ using EigenDMap = Eigen::Map<MatrixType, 0, EigenDStride>;
53
+
54
+ PYBIND11_NAMESPACE_BEGIN(detail)
55
+
56
+ #if EIGEN_VERSION_AT_LEAST(3, 3, 0)
57
+ using EigenIndex = Eigen::Index;
58
+ template <typename Scalar, int Flags, typename StorageIndex>
59
+ using EigenMapSparseMatrix = Eigen::Map<Eigen::SparseMatrix<Scalar, Flags, StorageIndex>>;
60
+ #else
61
+ using EigenIndex = EIGEN_DEFAULT_DENSE_INDEX_TYPE;
62
+ template <typename Scalar, int Flags, typename StorageIndex>
63
+ using EigenMapSparseMatrix = Eigen::MappedSparseMatrix<Scalar, Flags, StorageIndex>;
64
+ #endif
65
+
66
+ // Matches Eigen::Map, Eigen::Ref, blocks, etc:
67
+ template <typename T>
68
+ using is_eigen_dense_map = all_of<is_template_base_of<Eigen::DenseBase, T>,
69
+ std::is_base_of<Eigen::MapBase<T, Eigen::ReadOnlyAccessors>, T>>;
70
+ template <typename T>
71
+ using is_eigen_mutable_map = std::is_base_of<Eigen::MapBase<T, Eigen::WriteAccessors>, T>;
72
+ template <typename T>
73
+ using is_eigen_dense_plain
74
+ = all_of<negation<is_eigen_dense_map<T>>, is_template_base_of<Eigen::PlainObjectBase, T>>;
75
+ template <typename T>
76
+ using is_eigen_sparse = is_template_base_of<Eigen::SparseMatrixBase, T>;
77
+ // Test for objects inheriting from EigenBase<Derived> that aren't captured by the above. This
78
+ // basically covers anything that can be assigned to a dense matrix but that don't have a typical
79
+ // matrix data layout that can be copied from their .data(). For example, DiagonalMatrix and
80
+ // SelfAdjointView fall into this category.
81
+ template <typename T>
82
+ using is_eigen_other
83
+ = all_of<is_template_base_of<Eigen::EigenBase, T>,
84
+ negation<any_of<is_eigen_dense_map<T>, is_eigen_dense_plain<T>, is_eigen_sparse<T>>>>;
85
+
86
+ // Captures numpy/eigen conformability status (returned by EigenProps::conformable()):
87
+ template <bool EigenRowMajor>
88
+ struct EigenConformable {
89
+ bool conformable = false;
90
+ EigenIndex rows = 0, cols = 0;
91
+ EigenDStride stride{0, 0}; // Only valid if negativestrides is false!
92
+ bool negativestrides = false; // If true, do not use stride!
93
+
94
+ // NOLINTNEXTLINE(google-explicit-constructor)
95
+ EigenConformable(bool fits = false) : conformable{fits} {}
96
+ // Matrix type:
97
+ EigenConformable(EigenIndex r, EigenIndex c, EigenIndex rstride, EigenIndex cstride)
98
+ : conformable{true}, rows{r}, cols{c},
99
+ // TODO: when Eigen bug #747 is fixed, remove the tests for non-negativity.
100
+ // http://eigen.tuxfamily.org/bz/show_bug.cgi?id=747
101
+ stride{EigenRowMajor ? (rstride > 0 ? rstride : 0)
102
+ : (cstride > 0 ? cstride : 0) /* outer stride */,
103
+ EigenRowMajor ? (cstride > 0 ? cstride : 0)
104
+ : (rstride > 0 ? rstride : 0) /* inner stride */},
105
+ negativestrides{rstride < 0 || cstride < 0} {}
106
+ // Vector type:
107
+ EigenConformable(EigenIndex r, EigenIndex c, EigenIndex stride)
108
+ : EigenConformable(r, c, r == 1 ? c * stride : stride, c == 1 ? r : r * stride) {}
109
+
110
+ template <typename props>
111
+ bool stride_compatible() const {
112
+ // To have compatible strides, we need (on both dimensions) one of fully dynamic strides,
113
+ // matching strides, or a dimension size of 1 (in which case the stride value is
114
+ // irrelevant)
115
+ return !negativestrides
116
+ && (props::inner_stride == Eigen::Dynamic || props::inner_stride == stride.inner()
117
+ || (EigenRowMajor ? cols : rows) == 1)
118
+ && (props::outer_stride == Eigen::Dynamic || props::outer_stride == stride.outer()
119
+ || (EigenRowMajor ? rows : cols) == 1);
120
+ }
121
+ // NOLINTNEXTLINE(google-explicit-constructor)
122
+ operator bool() const { return conformable; }
123
+ };
124
+
125
+ template <typename Type>
126
+ struct eigen_extract_stride {
127
+ using type = Type;
128
+ };
129
+ template <typename PlainObjectType, int MapOptions, typename StrideType>
130
+ struct eigen_extract_stride<Eigen::Map<PlainObjectType, MapOptions, StrideType>> {
131
+ using type = StrideType;
132
+ };
133
+ template <typename PlainObjectType, int Options, typename StrideType>
134
+ struct eigen_extract_stride<Eigen::Ref<PlainObjectType, Options, StrideType>> {
135
+ using type = StrideType;
136
+ };
137
+
138
+ // Helper struct for extracting information from an Eigen type
139
+ template <typename Type_>
140
+ struct EigenProps {
141
+ using Type = Type_;
142
+ using Scalar = typename Type::Scalar;
143
+ using StrideType = typename eigen_extract_stride<Type>::type;
144
+ static constexpr EigenIndex rows = Type::RowsAtCompileTime, cols = Type::ColsAtCompileTime,
145
+ size = Type::SizeAtCompileTime;
146
+ static constexpr bool row_major = Type::IsRowMajor,
147
+ vector
148
+ = Type::IsVectorAtCompileTime, // At least one dimension has fixed size 1
149
+ fixed_rows = rows != Eigen::Dynamic, fixed_cols = cols != Eigen::Dynamic,
150
+ fixed = size != Eigen::Dynamic, // Fully-fixed size
151
+ dynamic = !fixed_rows && !fixed_cols; // Fully-dynamic size
152
+
153
+ template <EigenIndex i, EigenIndex ifzero>
154
+ using if_zero = std::integral_constant<EigenIndex, i == 0 ? ifzero : i>;
155
+ static constexpr EigenIndex inner_stride
156
+ = if_zero<StrideType::InnerStrideAtCompileTime, 1>::value,
157
+ outer_stride = if_zero < StrideType::OuterStrideAtCompileTime,
158
+ vector ? size
159
+ : row_major ? cols
160
+ : rows > ::value;
161
+ static constexpr bool dynamic_stride
162
+ = inner_stride == Eigen::Dynamic && outer_stride == Eigen::Dynamic;
163
+ static constexpr bool requires_row_major
164
+ = !dynamic_stride && !vector && (row_major ? inner_stride : outer_stride) == 1;
165
+ static constexpr bool requires_col_major
166
+ = !dynamic_stride && !vector && (row_major ? outer_stride : inner_stride) == 1;
167
+
168
+ // Takes an input array and determines whether we can make it fit into the Eigen type. If
169
+ // the array is a vector, we attempt to fit it into either an Eigen 1xN or Nx1 vector
170
+ // (preferring the latter if it will fit in either, i.e. for a fully dynamic matrix type).
171
+ static EigenConformable<row_major> conformable(const array &a) {
172
+ const auto dims = a.ndim();
173
+ if (dims < 1 || dims > 2) {
174
+ return false;
175
+ }
176
+
177
+ if (dims == 2) { // Matrix type: require exact match (or dynamic)
178
+
179
+ EigenIndex np_rows = a.shape(0), np_cols = a.shape(1),
180
+ np_rstride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar)),
181
+ np_cstride = a.strides(1) / static_cast<ssize_t>(sizeof(Scalar));
182
+ if ((PYBIND11_SILENCE_MSVC_C4127(fixed_rows) && np_rows != rows)
183
+ || (PYBIND11_SILENCE_MSVC_C4127(fixed_cols) && np_cols != cols)) {
184
+ return false;
185
+ }
186
+
187
+ return {np_rows, np_cols, np_rstride, np_cstride};
188
+ }
189
+
190
+ // Otherwise we're storing an n-vector. Only one of the strides will be used, but
191
+ // whichever is used, we want the (single) numpy stride value.
192
+ const EigenIndex n = a.shape(0),
193
+ stride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar));
194
+
195
+ if (vector) { // Eigen type is a compile-time vector
196
+ if (PYBIND11_SILENCE_MSVC_C4127(fixed) && size != n) {
197
+ return false; // Vector size mismatch
198
+ }
199
+ return {rows == 1 ? 1 : n, cols == 1 ? 1 : n, stride};
200
+ }
201
+ if (fixed) {
202
+ // The type has a fixed size, but is not a vector: abort
203
+ return false;
204
+ }
205
+ if (fixed_cols) {
206
+ // Since this isn't a vector, cols must be != 1. We allow this only if it exactly
207
+ // equals the number of elements (rows is Dynamic, and so 1 row is allowed).
208
+ if (cols != n) {
209
+ return false;
210
+ }
211
+ return {1, n, stride};
212
+ } // Otherwise it's either fully dynamic, or column dynamic; both become a column vector
213
+ if (PYBIND11_SILENCE_MSVC_C4127(fixed_rows) && rows != n) {
214
+ return false;
215
+ }
216
+ return {n, 1, stride};
217
+ }
218
+
219
+ static constexpr bool show_writeable
220
+ = is_eigen_dense_map<Type>::value && is_eigen_mutable_map<Type>::value;
221
+ static constexpr bool show_order = is_eigen_dense_map<Type>::value;
222
+ static constexpr bool show_c_contiguous = show_order && requires_row_major;
223
+ static constexpr bool show_f_contiguous
224
+ = !show_c_contiguous && show_order && requires_col_major;
225
+
226
+ static constexpr auto descriptor
227
+ = const_name("numpy.ndarray[") + npy_format_descriptor<Scalar>::name + const_name("[")
228
+ + const_name<fixed_rows>(const_name<(size_t) rows>(), const_name("m")) + const_name(", ")
229
+ + const_name<fixed_cols>(const_name<(size_t) cols>(), const_name("n")) + const_name("]")
230
+ +
231
+ // For a reference type (e.g. Ref<MatrixXd>) we have other constraints that might need to
232
+ // be satisfied: writeable=True (for a mutable reference), and, depending on the map's
233
+ // stride options, possibly f_contiguous or c_contiguous. We include them in the
234
+ // descriptor output to provide some hint as to why a TypeError is occurring (otherwise
235
+ // it can be confusing to see that a function accepts a 'numpy.ndarray[float64[3,2]]' and
236
+ // an error message that you *gave* a numpy.ndarray of the right type and dimensions.
237
+ const_name<show_writeable>(", flags.writeable", "")
238
+ + const_name<show_c_contiguous>(", flags.c_contiguous", "")
239
+ + const_name<show_f_contiguous>(", flags.f_contiguous", "") + const_name("]");
240
+ };
241
+
242
+ // Casts an Eigen type to numpy array. If given a base, the numpy array references the src data,
243
+ // otherwise it'll make a copy. writeable lets you turn off the writeable flag for the array.
244
+ template <typename props>
245
+ handle
246
+ eigen_array_cast(typename props::Type const &src, handle base = handle(), bool writeable = true) {
247
+ constexpr ssize_t elem_size = sizeof(typename props::Scalar);
248
+ array a;
249
+ if (props::vector) {
250
+ a = array({src.size()}, {elem_size * src.innerStride()}, src.data(), base);
251
+ } else {
252
+ a = array({src.rows(), src.cols()},
253
+ {elem_size * src.rowStride(), elem_size * src.colStride()},
254
+ src.data(),
255
+ base);
256
+ }
257
+
258
+ if (!writeable) {
259
+ array_proxy(a.ptr())->flags &= ~detail::npy_api::NPY_ARRAY_WRITEABLE_;
260
+ }
261
+
262
+ return a.release();
263
+ }
264
+
265
+ // Takes an lvalue ref to some Eigen type and a (python) base object, creating a numpy array that
266
+ // reference the Eigen object's data with `base` as the python-registered base class (if omitted,
267
+ // the base will be set to None, and lifetime management is up to the caller). The numpy array is
268
+ // non-writeable if the given type is const.
269
+ template <typename props, typename Type>
270
+ handle eigen_ref_array(Type &src, handle parent = none()) {
271
+ // none here is to get past array's should-we-copy detection, which currently always
272
+ // copies when there is no base. Setting the base to None should be harmless.
273
+ return eigen_array_cast<props>(src, parent, !std::is_const<Type>::value);
274
+ }
275
+
276
+ // Takes a pointer to some dense, plain Eigen type, builds a capsule around it, then returns a
277
+ // numpy array that references the encapsulated data with a python-side reference to the capsule to
278
+ // tie its destruction to that of any dependent python objects. Const-ness is determined by
279
+ // whether or not the Type of the pointer given is const.
280
+ template <typename props, typename Type, typename = enable_if_t<is_eigen_dense_plain<Type>::value>>
281
+ handle eigen_encapsulate(Type *src) {
282
+ capsule base(src, [](void *o) { delete static_cast<Type *>(o); });
283
+ return eigen_ref_array<props>(*src, base);
284
+ }
285
+
286
+ // Type caster for regular, dense matrix types (e.g. MatrixXd), but not maps/refs/etc. of dense
287
+ // types.
288
+ template <typename Type>
289
+ struct type_caster<Type, enable_if_t<is_eigen_dense_plain<Type>::value>> {
290
+ using Scalar = typename Type::Scalar;
291
+ using props = EigenProps<Type>;
292
+
293
+ bool load(handle src, bool convert) {
294
+ // If we're in no-convert mode, only load if given an array of the correct type
295
+ if (!convert && !isinstance<array_t<Scalar>>(src)) {
296
+ return false;
297
+ }
298
+
299
+ // Coerce into an array, but don't do type conversion yet; the copy below handles it.
300
+ auto buf = array::ensure(src);
301
+
302
+ if (!buf) {
303
+ return false;
304
+ }
305
+
306
+ auto dims = buf.ndim();
307
+ if (dims < 1 || dims > 2) {
308
+ return false;
309
+ }
310
+
311
+ auto fits = props::conformable(buf);
312
+ if (!fits) {
313
+ return false;
314
+ }
315
+
316
+ // Allocate the new type, then build a numpy reference into it
317
+ value = Type(fits.rows, fits.cols);
318
+ auto ref = reinterpret_steal<array>(eigen_ref_array<props>(value));
319
+ if (dims == 1) {
320
+ ref = ref.squeeze();
321
+ } else if (ref.ndim() == 1) {
322
+ buf = buf.squeeze();
323
+ }
324
+
325
+ int result = detail::npy_api::get().PyArray_CopyInto_(ref.ptr(), buf.ptr());
326
+
327
+ if (result < 0) { // Copy failed!
328
+ PyErr_Clear();
329
+ return false;
330
+ }
331
+
332
+ return true;
333
+ }
334
+
335
+ private:
336
+ // Cast implementation
337
+ template <typename CType>
338
+ static handle cast_impl(CType *src, return_value_policy policy, handle parent) {
339
+ switch (policy) {
340
+ case return_value_policy::take_ownership:
341
+ case return_value_policy::automatic:
342
+ return eigen_encapsulate<props>(src);
343
+ case return_value_policy::move:
344
+ return eigen_encapsulate<props>(new CType(std::move(*src)));
345
+ case return_value_policy::copy:
346
+ return eigen_array_cast<props>(*src);
347
+ case return_value_policy::reference:
348
+ case return_value_policy::automatic_reference:
349
+ return eigen_ref_array<props>(*src);
350
+ case return_value_policy::reference_internal:
351
+ return eigen_ref_array<props>(*src, parent);
352
+ default:
353
+ throw cast_error("unhandled return_value_policy: should not happen!");
354
+ };
355
+ }
356
+
357
+ public:
358
+ // Normal returned non-reference, non-const value:
359
+ static handle cast(Type &&src, return_value_policy /* policy */, handle parent) {
360
+ return cast_impl(&src, return_value_policy::move, parent);
361
+ }
362
+ // If you return a non-reference const, we mark the numpy array readonly:
363
+ static handle cast(const Type &&src, return_value_policy /* policy */, handle parent) {
364
+ return cast_impl(&src, return_value_policy::move, parent);
365
+ }
366
+ // lvalue reference return; default (automatic) becomes copy
367
+ static handle cast(Type &src, return_value_policy policy, handle parent) {
368
+ if (policy == return_value_policy::automatic
369
+ || policy == return_value_policy::automatic_reference) {
370
+ policy = return_value_policy::copy;
371
+ }
372
+ return cast_impl(&src, policy, parent);
373
+ }
374
+ // const lvalue reference return; default (automatic) becomes copy
375
+ static handle cast(const Type &src, return_value_policy policy, handle parent) {
376
+ if (policy == return_value_policy::automatic
377
+ || policy == return_value_policy::automatic_reference) {
378
+ policy = return_value_policy::copy;
379
+ }
380
+ return cast(&src, policy, parent);
381
+ }
382
+ // non-const pointer return
383
+ static handle cast(Type *src, return_value_policy policy, handle parent) {
384
+ return cast_impl(src, policy, parent);
385
+ }
386
+ // const pointer return
387
+ static handle cast(const Type *src, return_value_policy policy, handle parent) {
388
+ return cast_impl(src, policy, parent);
389
+ }
390
+
391
+ static constexpr auto name = props::descriptor;
392
+
393
+ // NOLINTNEXTLINE(google-explicit-constructor)
394
+ operator Type *() { return &value; }
395
+ // NOLINTNEXTLINE(google-explicit-constructor)
396
+ operator Type &() { return value; }
397
+ // NOLINTNEXTLINE(google-explicit-constructor)
398
+ operator Type &&() && { return std::move(value); }
399
+ template <typename T>
400
+ using cast_op_type = movable_cast_op_type<T>;
401
+
402
+ private:
403
+ Type value;
404
+ };
405
+
406
+ // Base class for casting reference/map/block/etc. objects back to python.
407
+ template <typename MapType>
408
+ struct eigen_map_caster {
409
+ private:
410
+ using props = EigenProps<MapType>;
411
+
412
+ public:
413
+ // Directly referencing a ref/map's data is a bit dangerous (whatever the map/ref points to has
414
+ // to stay around), but we'll allow it under the assumption that you know what you're doing
415
+ // (and have an appropriate keep_alive in place). We return a numpy array pointing directly at
416
+ // the ref's data (The numpy array ends up read-only if the ref was to a const matrix type.)
417
+ // Note that this means you need to ensure you don't destroy the object in some other way (e.g.
418
+ // with an appropriate keep_alive, or with a reference to a statically allocated matrix).
419
+ static handle cast(const MapType &src, return_value_policy policy, handle parent) {
420
+ switch (policy) {
421
+ case return_value_policy::copy:
422
+ return eigen_array_cast<props>(src);
423
+ case return_value_policy::reference_internal:
424
+ return eigen_array_cast<props>(src, parent, is_eigen_mutable_map<MapType>::value);
425
+ case return_value_policy::reference:
426
+ case return_value_policy::automatic:
427
+ case return_value_policy::automatic_reference:
428
+ return eigen_array_cast<props>(src, none(), is_eigen_mutable_map<MapType>::value);
429
+ default:
430
+ // move, take_ownership don't make any sense for a ref/map:
431
+ pybind11_fail("Invalid return_value_policy for Eigen Map/Ref/Block type");
432
+ }
433
+ }
434
+
435
+ static constexpr auto name = props::descriptor;
436
+
437
+ // Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return
438
+ // types but not bound arguments). We still provide them (with an explicitly delete) so that
439
+ // you end up here if you try anyway.
440
+ bool load(handle, bool) = delete;
441
+ operator MapType() = delete;
442
+ template <typename>
443
+ using cast_op_type = MapType;
444
+ };
445
+
446
+ // We can return any map-like object (but can only load Refs, specialized next):
447
+ template <typename Type>
448
+ struct type_caster<Type, enable_if_t<is_eigen_dense_map<Type>::value>> : eigen_map_caster<Type> {};
449
+
450
+ // Loader for Ref<...> arguments. See the documentation for info on how to make this work without
451
+ // copying (it requires some extra effort in many cases).
452
+ template <typename PlainObjectType, typename StrideType>
453
+ struct type_caster<
454
+ Eigen::Ref<PlainObjectType, 0, StrideType>,
455
+ enable_if_t<is_eigen_dense_map<Eigen::Ref<PlainObjectType, 0, StrideType>>::value>>
456
+ : public eigen_map_caster<Eigen::Ref<PlainObjectType, 0, StrideType>> {
457
+ private:
458
+ using Type = Eigen::Ref<PlainObjectType, 0, StrideType>;
459
+ using props = EigenProps<Type>;
460
+ using Scalar = typename props::Scalar;
461
+ using MapType = Eigen::Map<PlainObjectType, 0, StrideType>;
462
+ using Array
463
+ = array_t<Scalar,
464
+ array::forcecast
465
+ | ((props::row_major ? props::inner_stride : props::outer_stride) == 1
466
+ ? array::c_style
467
+ : (props::row_major ? props::outer_stride : props::inner_stride) == 1
468
+ ? array::f_style
469
+ : 0)>;
470
+ static constexpr bool need_writeable = is_eigen_mutable_map<Type>::value;
471
+ // Delay construction (these have no default constructor)
472
+ std::unique_ptr<MapType> map;
473
+ std::unique_ptr<Type> ref;
474
+ // Our array. When possible, this is just a numpy array pointing to the source data, but
475
+ // sometimes we can't avoid copying (e.g. input is not a numpy array at all, has an
476
+ // incompatible layout, or is an array of a type that needs to be converted). Using a numpy
477
+ // temporary (rather than an Eigen temporary) saves an extra copy when we need both type
478
+ // conversion and storage order conversion. (Note that we refuse to use this temporary copy
479
+ // when loading an argument for a Ref<M> with M non-const, i.e. a read-write reference).
480
+ Array copy_or_ref;
481
+
482
+ public:
483
+ bool load(handle src, bool convert) {
484
+ // First check whether what we have is already an array of the right type. If not, we
485
+ // can't avoid a copy (because the copy is also going to do type conversion).
486
+ bool need_copy = !isinstance<Array>(src);
487
+
488
+ EigenConformable<props::row_major> fits;
489
+ if (!need_copy) {
490
+ // We don't need a converting copy, but we also need to check whether the strides are
491
+ // compatible with the Ref's stride requirements
492
+ auto aref = reinterpret_borrow<Array>(src);
493
+
494
+ if (aref && (!need_writeable || aref.writeable())) {
495
+ fits = props::conformable(aref);
496
+ if (!fits) {
497
+ return false; // Incompatible dimensions
498
+ }
499
+ if (!fits.template stride_compatible<props>()) {
500
+ need_copy = true;
501
+ } else {
502
+ copy_or_ref = std::move(aref);
503
+ }
504
+ } else {
505
+ need_copy = true;
506
+ }
507
+ }
508
+
509
+ if (need_copy) {
510
+ // We need to copy: If we need a mutable reference, or we're not supposed to convert
511
+ // (either because we're in the no-convert overload pass, or because we're explicitly
512
+ // instructed not to copy (via `py::arg().noconvert()`) we have to fail loading.
513
+ if (!convert || need_writeable) {
514
+ return false;
515
+ }
516
+
517
+ Array copy = Array::ensure(src);
518
+ if (!copy) {
519
+ return false;
520
+ }
521
+ fits = props::conformable(copy);
522
+ if (!fits || !fits.template stride_compatible<props>()) {
523
+ return false;
524
+ }
525
+ copy_or_ref = std::move(copy);
526
+ loader_life_support::add_patient(copy_or_ref);
527
+ }
528
+
529
+ ref.reset();
530
+ map.reset(new MapType(data(copy_or_ref),
531
+ fits.rows,
532
+ fits.cols,
533
+ make_stride(fits.stride.outer(), fits.stride.inner())));
534
+ ref.reset(new Type(*map));
535
+
536
+ return true;
537
+ }
538
+
539
+ // NOLINTNEXTLINE(google-explicit-constructor)
540
+ operator Type *() { return ref.get(); }
541
+ // NOLINTNEXTLINE(google-explicit-constructor)
542
+ operator Type &() { return *ref; }
543
+ template <typename _T>
544
+ using cast_op_type = pybind11::detail::cast_op_type<_T>;
545
+
546
+ private:
547
+ template <typename T = Type, enable_if_t<is_eigen_mutable_map<T>::value, int> = 0>
548
+ Scalar *data(Array &a) {
549
+ return a.mutable_data();
550
+ }
551
+
552
+ template <typename T = Type, enable_if_t<!is_eigen_mutable_map<T>::value, int> = 0>
553
+ const Scalar *data(Array &a) {
554
+ return a.data();
555
+ }
556
+
557
+ // Attempt to figure out a constructor of `Stride` that will work.
558
+ // If both strides are fixed, use a default constructor:
559
+ template <typename S>
560
+ using stride_ctor_default = bool_constant<S::InnerStrideAtCompileTime != Eigen::Dynamic
561
+ && S::OuterStrideAtCompileTime != Eigen::Dynamic
562
+ && std::is_default_constructible<S>::value>;
563
+ // Otherwise, if there is a two-index constructor, assume it is (outer,inner) like
564
+ // Eigen::Stride, and use it:
565
+ template <typename S>
566
+ using stride_ctor_dual
567
+ = bool_constant<!stride_ctor_default<S>::value
568
+ && std::is_constructible<S, EigenIndex, EigenIndex>::value>;
569
+ // Otherwise, if there is a one-index constructor, and just one of the strides is dynamic, use
570
+ // it (passing whichever stride is dynamic).
571
+ template <typename S>
572
+ using stride_ctor_outer
573
+ = bool_constant<!any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value
574
+ && S::OuterStrideAtCompileTime == Eigen::Dynamic
575
+ && S::InnerStrideAtCompileTime != Eigen::Dynamic
576
+ && std::is_constructible<S, EigenIndex>::value>;
577
+ template <typename S>
578
+ using stride_ctor_inner
579
+ = bool_constant<!any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value
580
+ && S::InnerStrideAtCompileTime == Eigen::Dynamic
581
+ && S::OuterStrideAtCompileTime != Eigen::Dynamic
582
+ && std::is_constructible<S, EigenIndex>::value>;
583
+
584
+ template <typename S = StrideType, enable_if_t<stride_ctor_default<S>::value, int> = 0>
585
+ static S make_stride(EigenIndex, EigenIndex) {
586
+ return S();
587
+ }
588
+ template <typename S = StrideType, enable_if_t<stride_ctor_dual<S>::value, int> = 0>
589
+ static S make_stride(EigenIndex outer, EigenIndex inner) {
590
+ return S(outer, inner);
591
+ }
592
+ template <typename S = StrideType, enable_if_t<stride_ctor_outer<S>::value, int> = 0>
593
+ static S make_stride(EigenIndex outer, EigenIndex) {
594
+ return S(outer);
595
+ }
596
+ template <typename S = StrideType, enable_if_t<stride_ctor_inner<S>::value, int> = 0>
597
+ static S make_stride(EigenIndex, EigenIndex inner) {
598
+ return S(inner);
599
+ }
600
+ };
601
+
602
+ // type_caster for special matrix types (e.g. DiagonalMatrix), which are EigenBase, but not
603
+ // EigenDense (i.e. they don't have a data(), at least not with the usual matrix layout).
604
+ // load() is not supported, but we can cast them into the python domain by first copying to a
605
+ // regular Eigen::Matrix, then casting that.
606
+ template <typename Type>
607
+ struct type_caster<Type, enable_if_t<is_eigen_other<Type>::value>> {
608
+ protected:
609
+ using Matrix
610
+ = Eigen::Matrix<typename Type::Scalar, Type::RowsAtCompileTime, Type::ColsAtCompileTime>;
611
+ using props = EigenProps<Matrix>;
612
+
613
+ public:
614
+ static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
615
+ handle h = eigen_encapsulate<props>(new Matrix(src));
616
+ return h;
617
+ }
618
+ static handle cast(const Type *src, return_value_policy policy, handle parent) {
619
+ return cast(*src, policy, parent);
620
+ }
621
+
622
+ static constexpr auto name = props::descriptor;
623
+
624
+ // Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return
625
+ // types but not bound arguments). We still provide them (with an explicitly delete) so that
626
+ // you end up here if you try anyway.
627
+ bool load(handle, bool) = delete;
628
+ operator Type() = delete;
629
+ template <typename>
630
+ using cast_op_type = Type;
631
+ };
632
+
633
+ template <typename Type>
634
+ struct type_caster<Type, enable_if_t<is_eigen_sparse<Type>::value>> {
635
+ using Scalar = typename Type::Scalar;
636
+ using StorageIndex = remove_reference_t<decltype(*std::declval<Type>().outerIndexPtr())>;
637
+ using Index = typename Type::Index;
638
+ static constexpr bool rowMajor = Type::IsRowMajor;
639
+
640
+ bool load(handle src, bool) {
641
+ if (!src) {
642
+ return false;
643
+ }
644
+
645
+ auto obj = reinterpret_borrow<object>(src);
646
+ object sparse_module = module_::import("scipy.sparse");
647
+ object matrix_type = sparse_module.attr(rowMajor ? "csr_matrix" : "csc_matrix");
648
+
649
+ if (!type::handle_of(obj).is(matrix_type)) {
650
+ try {
651
+ obj = matrix_type(obj);
652
+ } catch (const error_already_set &) {
653
+ return false;
654
+ }
655
+ }
656
+
657
+ auto values = array_t<Scalar>((object) obj.attr("data"));
658
+ auto innerIndices = array_t<StorageIndex>((object) obj.attr("indices"));
659
+ auto outerIndices = array_t<StorageIndex>((object) obj.attr("indptr"));
660
+ auto shape = pybind11::tuple((pybind11::object) obj.attr("shape"));
661
+ auto nnz = obj.attr("nnz").cast<Index>();
662
+
663
+ if (!values || !innerIndices || !outerIndices) {
664
+ return false;
665
+ }
666
+
667
+ value = EigenMapSparseMatrix<Scalar,
668
+ Type::Flags &(Eigen::RowMajor | Eigen::ColMajor),
669
+ StorageIndex>(shape[0].cast<Index>(),
670
+ shape[1].cast<Index>(),
671
+ std::move(nnz),
672
+ outerIndices.mutable_data(),
673
+ innerIndices.mutable_data(),
674
+ values.mutable_data());
675
+
676
+ return true;
677
+ }
678
+
679
+ static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
680
+ const_cast<Type &>(src).makeCompressed();
681
+
682
+ object matrix_type
683
+ = module_::import("scipy.sparse").attr(rowMajor ? "csr_matrix" : "csc_matrix");
684
+
685
+ array data(src.nonZeros(), src.valuePtr());
686
+ array outerIndices((rowMajor ? src.rows() : src.cols()) + 1, src.outerIndexPtr());
687
+ array innerIndices(src.nonZeros(), src.innerIndexPtr());
688
+
689
+ return matrix_type(std::make_tuple(
690
+ std::move(data), std::move(innerIndices), std::move(outerIndices)),
691
+ std::make_pair(src.rows(), src.cols()))
692
+ .release();
693
+ }
694
+
695
+ PYBIND11_TYPE_CASTER(Type,
696
+ const_name<(Type::IsRowMajor) != 0>("scipy.sparse.csr_matrix[",
697
+ "scipy.sparse.csc_matrix[")
698
+ + npy_format_descriptor<Scalar>::name + const_name("]"));
699
+ };
700
+
701
+ PYBIND11_NAMESPACE_END(detail)
702
+ PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)