Spaces:
Sleeping
Sleeping
from __future__ import absolute_import | |
from __future__ import print_function | |
from __future__ import division | |
import torch | |
import joblib | |
from lib.utils import transforms | |
from configs import constants as _C | |
from .amass import compute_contact_label, perspective_projection | |
from ..utils.augmentor import * | |
from .._dataset import BaseDataset | |
from ...models import build_body_model | |
from ...utils import data_utils as d_utils | |
from ...utils.kp_utils import root_centering | |
class BEDLAMDataset(BaseDataset): | |
def __init__(self, cfg): | |
label_pth = _C.PATHS.BEDLAM_LABEL.replace('backbone', cfg.MODEL.BACKBONE) | |
super(BEDLAMDataset, self).__init__(cfg, training=True) | |
self.labels = joblib.load(label_pth) | |
self.VideoAugmentor = VideoAugmentor(cfg) | |
self.SMPLAugmentor = SMPLAugmentor(cfg, False) | |
self.smpl = build_body_model('cpu', self.n_frames) | |
self.prepare_video_batch() | |
def __name__(self, ): | |
return 'BEDLAM' | |
def get_inputs(self, index, target, vis_thr=0.6): | |
start_index, end_index = self.video_indices[index] | |
bbox = self.labels['bbox'][start_index:end_index+1].clone() | |
bbox[:, 2] = bbox[:, 2] / 200 | |
gt_kp3d = target['kp3d'] | |
inpt_kp3d = self.VideoAugmentor(gt_kp3d[:, :self.n_joints, :-1].clone()) | |
# kp2d = perspective_projection(inpt_kp3d, target['K']) | |
kp2d = perspective_projection(inpt_kp3d, self.cam_intrinsics) | |
mask = self.VideoAugmentor.get_mask() | |
# kp2d, bbox = self.keypoints_normalizer(kp2d, target['res'], self.cam_intrinsics, 224, 224, bbox) | |
kp2d, bbox = self.keypoints_normalizer(kp2d, target['res'], self.cam_intrinsics, 224, 224) | |
target['bbox'] = bbox[1:] | |
target['kp2d'] = kp2d | |
target['mask'] = mask[1:] | |
# Image features | |
target['features'] = self.labels['features'][start_index+1:end_index+1].clone() | |
return target | |
def get_groundtruth(self, index, target): | |
start_index, end_index = self.video_indices[index] | |
# GT 1. Joints | |
gt_kp3d = target['kp3d'] | |
# gt_kp2d = perspective_projection(gt_kp3d, target['K']) | |
gt_kp2d = perspective_projection(gt_kp3d, self.cam_intrinsics) | |
target['kp3d'] = torch.cat((gt_kp3d, torch.ones_like(gt_kp3d[..., :1])), dim=-1) | |
# target['full_kp2d'] = torch.cat((gt_kp2d, torch.zeros_like(gt_kp2d[..., :1])), dim=-1)[1:] | |
target['full_kp2d'] = torch.cat((gt_kp2d, torch.ones_like(gt_kp2d[..., :1])), dim=-1)[1:] | |
target['weak_kp2d'] = torch.zeros_like(target['full_kp2d']) | |
target['init_kp3d'] = root_centering(gt_kp3d[:1, :self.n_joints].clone()).reshape(1, -1) | |
# GT 2. Root pose | |
w_transl = self.labels['w_trans'][start_index:end_index+1] | |
pose_root = transforms.axis_angle_to_matrix(self.labels['root'][start_index:end_index+1]) | |
vel_world = (w_transl[1:] - w_transl[:-1]) | |
vel_root = (pose_root[:-1].transpose(-1, -2) @ vel_world.unsqueeze(-1)).squeeze(-1) | |
target['vel_root'] = vel_root.clone() | |
target['pose_root'] = transforms.matrix_to_rotation_6d(pose_root) | |
target['init_root'] = target['pose_root'][:1].clone() | |
return target | |
def forward_smpl(self, target): | |
output = self.smpl.get_output( | |
body_pose=torch.cat((target['init_pose'][:, 1:], target['pose'][1:, 1:])), | |
global_orient=torch.cat((target['init_pose'][:, :1], target['pose'][1:, :1])), | |
betas=target['betas'], | |
transl=target['transl'], | |
pose2rot=False) | |
target['kp3d'] = output.joints + output.offset.unsqueeze(1) | |
target['feet'] = output.feet[1:] + target['transl'][1:].unsqueeze(-2) | |
target['verts'] = output.vertices[1:, ].clone() | |
return target | |
def augment_data(self, target): | |
# Augmentation 1. SMPL params augmentation | |
target = self.SMPLAugmentor(target) | |
# Get world-coordinate SMPL | |
target = self.forward_smpl(target) | |
return target | |
def load_camera(self, index, target): | |
start_index, end_index = self.video_indices[index] | |
# Get camera info | |
extrinsics = self.labels['extrinsics'][start_index:end_index+1].clone() | |
R = extrinsics[:, :3, :3] | |
T = extrinsics[:, :3, -1] | |
K = self.labels['intrinsics'][start_index:end_index+1].clone() | |
width, height = K[0, 0, 2] * 2, K[0, 1, 2] * 2 | |
target['R'] = R | |
target['res'] = torch.tensor([width, height]).float() | |
# Compute angular velocity | |
cam_angvel = transforms.matrix_to_rotation_6d(R[:-1] @ R[1:].transpose(-1, -2)) | |
cam_angvel = cam_angvel - torch.tensor([[1, 0, 0, 0, 1, 0]]).to(cam_angvel) # Normalize | |
target['cam_angvel'] = cam_angvel * 3e1 # BEDLAM is 30-fps | |
target['K'] = K # Use GT camera intrinsics for projecting keypoints | |
self.get_naive_intrinsics(target['res']) | |
target['cam_intrinsics'] = self.cam_intrinsics | |
return target | |
def load_params(self, index, target): | |
start_index, end_index = self.video_indices[index] | |
# Load AMASS labels | |
pose = self.labels['pose'][start_index:end_index+1].clone() | |
pose = transforms.axis_angle_to_matrix(pose.reshape(-1, 24, 3)) | |
transl = self.labels['c_trans'][start_index:end_index+1].clone() | |
betas = self.labels['betas'][start_index:end_index+1, :10].clone() | |
# Stack GT | |
target.update({'vid': self.labels['vid'][start_index].clone(), | |
'pose': pose, | |
'transl': transl, | |
'betas': betas}) | |
return target | |
def get_single_sequence(self, index): | |
target = {'has_full_screen': torch.tensor(True), | |
'has_smpl': torch.tensor(True), | |
'has_traj': torch.tensor(False), | |
'has_verts': torch.tensor(True), | |
# Null contact label | |
'contact': torch.ones((self.n_frames - 1, 4)) * (-1), | |
} | |
target = self.load_params(index, target) | |
target = self.load_camera(index, target) | |
target = self.augment_data(target) | |
target = self.get_groundtruth(index, target) | |
target = self.get_inputs(index, target) | |
target = d_utils.prepare_keypoints_data(target) | |
target = d_utils.prepare_smpl_data(target) | |
return target |