Spaces:
Sleeping
Sleeping
from itertools import count | |
from multiprocessing import Process, Queue | |
from pathlib import Path | |
import cv2 | |
import evo.main_ape as main_ape | |
import numpy as np | |
import torch | |
from evo.core import sync | |
from evo.core.metrics import PoseRelation | |
from evo.core.trajectory import PoseTrajectory3D | |
from evo.tools import file_interface, plot | |
from dpvo.config import cfg | |
from dpvo.dpvo import DPVO | |
from dpvo.plot_utils import plot_trajectory | |
from dpvo.utils import Timer | |
SKIP = 0 | |
def show_image(image, t=0): | |
image = image.permute(1, 2, 0).cpu().numpy() | |
cv2.imshow('image', image / 255.0) | |
cv2.waitKey(t) | |
# From https://github.com/utiasSTARS/pykitti/blob/d3e1bb81676e831886726cc5ed79ce1f049aef2c/pykitti/utils.py#L68 | |
def read_calib_file(filepath): | |
"""Read in a calibration file and parse into a dictionary.""" | |
data = {} | |
with open(filepath, 'r') as f: | |
for line in f.readlines(): | |
key, value = line.split(':', 1) | |
# The only non-float values in these files are dates, which | |
# we don't care about anyway | |
try: | |
data[key] = np.array([float(x) for x in value.split()]) | |
except ValueError: | |
pass | |
return data | |
def kitti_image_stream(queue, kittidir, sequence, stride, skip=0): | |
""" image generator """ | |
images_dir = kittidir / "dataset" / "sequences" / sequence | |
image_list = sorted((images_dir / "image_2").glob("*.png"))[skip::stride] | |
calib = read_calib_file(images_dir / "calib.txt") | |
intrinsics = calib['P0'][[0, 5, 2, 6]] | |
for t, imfile in enumerate(image_list): | |
image_left = cv2.imread(str(imfile)) | |
H, W, _ = image_left.shape | |
H, W = (H - H%4, W - W%4) | |
image_left = image_left[..., :H, :W, :] | |
queue.put((t, image_left, intrinsics)) | |
queue.put((-1, image_left, intrinsics)) | |
def run(cfg, network, kittidir, sequence, stride=1, viz=False, show_img=False): | |
slam = None | |
queue = Queue(maxsize=8) | |
reader = Process(target=kitti_image_stream, args=(queue, kittidir, sequence, stride, 0)) | |
reader.start() | |
for step in count(start=1): | |
(t, image, intrinsics) = queue.get() | |
if t < 0: break | |
image = torch.as_tensor(image, device='cuda').permute(2,0,1) | |
intrinsics = torch.as_tensor(intrinsics, dtype=torch.float, device='cuda') | |
if show_img: | |
show_image(image, 1) | |
if slam is None: | |
slam = DPVO(cfg, network, ht=image.shape[-2], wd=image.shape[-1], viz=viz) | |
intrinsics = intrinsics.cuda() | |
with Timer("SLAM", enabled=False): | |
slam(t, image, intrinsics) | |
reader.join() | |
return slam.terminate() | |
if __name__ == '__main__': | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--network', type=str, default='dpvo.pth') | |
parser.add_argument('--config', default="config/default.yaml") | |
parser.add_argument('--stride', type=int, default=2) | |
parser.add_argument('--viz', action="store_true") | |
parser.add_argument('--show_img', action="store_true") | |
parser.add_argument('--trials', type=int, default=1) | |
parser.add_argument('--kittidir', type=Path, default="datasets/KITTI") | |
parser.add_argument('--backend_thresh', type=float, default=32.0) | |
parser.add_argument('--plot', action="store_true") | |
parser.add_argument('--opts', nargs='+', default=[]) | |
parser.add_argument('--save_trajectory', action="store_true") | |
args = parser.parse_args() | |
cfg.merge_from_file(args.config) | |
cfg.BACKEND_THRESH = args.backend_thresh | |
cfg.merge_from_list(args.opts) | |
print("\nRunning with config...") | |
print(cfg, "\n") | |
torch.manual_seed(1234) | |
kitti_scenes = [f"{i:02d}" for i in range(11)] | |
results = {} | |
for scene in kitti_scenes: | |
groundtruth = args.kittidir / "dataset" / "poses" / f"{scene}.txt" | |
poses_ref = file_interface.read_kitti_poses_file(groundtruth) | |
print(f"Evaluating KITTI {scene} with {poses_ref.num_poses // args.stride} poses") | |
scene_results = [] | |
for trial_num in range(args.trials): | |
traj_est, timestamps = run(cfg, args.network, args.kittidir, scene, args.stride, args.viz, args.show_img) | |
traj_est = PoseTrajectory3D( | |
positions_xyz=traj_est[:,:3], | |
orientations_quat_wxyz=traj_est[:, [6, 3, 4, 5]], | |
timestamps=timestamps * args.stride) | |
traj_ref = PoseTrajectory3D( | |
positions_xyz=poses_ref.positions_xyz, | |
orientations_quat_wxyz=poses_ref.orientations_quat_wxyz, | |
timestamps=np.arange(poses_ref.num_poses, dtype=np.float64)) | |
traj_ref, traj_est = sync.associate_trajectories(traj_ref, traj_est) | |
result = main_ape.ape(traj_ref, traj_est, est_name='traj', | |
pose_relation=PoseRelation.translation_part, align=True, correct_scale=True) | |
ate_score = result.stats["rmse"] | |
if args.plot: | |
plot_trajectory(traj_est, traj_ref, f"kitti sequence {scene} Trial #{trial_num+1}", f"trajectory_plots/kitti_seq{scene}_trial{trial_num+1:02d}.pdf", align=True, correct_scale=True) | |
if args.save_trajectory: | |
Path("saved_trajectories").mkdir(exist_ok=True) | |
file_interface.write_tum_trajectory_file(f"saved_trajectories/KITTI_{scene}.txt", traj_est) | |
# file_interface.write_kitti_poses_file(f"saved_trajectories/{scene}.txt", traj_est) # standard kitti format | |
scene_results.append(ate_score) | |
results[scene] = np.median(scene_results) | |
print(scene, sorted(scene_results)) | |
xs = [] | |
for scene in results: | |
print(scene, results[scene]) | |
xs.append(results[scene]) | |
print("AVG: ", np.mean(xs)) | |