FormFighterAIStack / lib /eval /evaluate_rich.py
Techt3o's picture
e01e49325338173592071b44501d91416d6a9072d1040c9d9f5aecf816533bec
f561f8b verified
raw
history blame
7.21 kB
import os
import os.path as osp
from collections import defaultdict
from time import time
import torch
import joblib
import numpy as np
from loguru import logger
from smplx import SMPL, SMPLX
from progress.bar import Bar
from configs import constants as _C
from configs.config import parse_args
from lib.data.dataloader import setup_eval_dataloader
from lib.models import build_network, build_body_model
from lib.eval.eval_utils import (
compute_error_accel,
batch_align_by_pelvis,
batch_compute_similarity_transform_torch,
)
from lib.utils import transforms
from lib.utils.utils import prepare_output_dir
from lib.utils.utils import prepare_batch
from lib.utils.imutils import avg_preds
m2mm = 1e3
smplx2smpl = torch.from_numpy(joblib.load(_C.BMODEL.SMPLX2SMPL)['matrix']).unsqueeze(0).float().cuda()
@torch.no_grad()
def main(cfg, args):
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
logger.info(f'GPU name -> {torch.cuda.get_device_name()}')
logger.info(f'GPU feat -> {torch.cuda.get_device_properties("cuda")}')
# ========= Dataloaders ========= #
eval_loader = setup_eval_dataloader(cfg, 'rich', 'test', cfg.MODEL.BACKBONE)
logger.info(f'Dataset loaded')
# ========= Load WHAM ========= #
smpl_batch_size = cfg.TRAIN.BATCH_SIZE * cfg.DATASET.SEQLEN
smpl = build_body_model(cfg.DEVICE, smpl_batch_size)
network = build_network(cfg, smpl)
network.eval()
# Build neutral SMPL model for WHAM and gendered SMPLX models for the groundtruth data
smpl = SMPL(_C.BMODEL.FLDR, gender='neutral').to(cfg.DEVICE)
# Load vertices -> joints regression matrix to evaluate
J_regressor_eval = smpl.J_regressor.clone().unsqueeze(0)
pelvis_idxs = [1, 2]
accumulator = defaultdict(list)
bar = Bar('Inference', fill='#', max=len(eval_loader))
with torch.no_grad():
for i in range(len(eval_loader)):
time_dict = {}
_t = time()
# Original batch
batch = eval_loader.dataset.load_data(i, False)
x, inits, features, kwargs, gt = prepare_batch(batch, cfg.DEVICE, cfg.TRAIN.STAGE=='stage2')
# <======= Inference
if cfg.FLIP_EVAL:
flipped_batch = eval_loader.dataset.load_data(i, True)
f_x, f_inits, f_features, f_kwargs, _ = prepare_batch(flipped_batch, cfg.DEVICE, cfg.TRAIN.STAGE=='stage2')
# Forward pass with flipped input
flipped_pred = network(f_x, f_inits, f_features, **f_kwargs)
time_dict['inference_flipped'] = time() - _t; _t = time()
# Forward pass with normal input
pred = network(x, inits, features, **kwargs)
time_dict['inference'] = time() - _t; _t = time()
if cfg.FLIP_EVAL:
# Merge two predictions
flipped_pose, flipped_shape = flipped_pred['pose'].squeeze(0), flipped_pred['betas'].squeeze(0)
pose, shape = pred['pose'].squeeze(0), pred['betas'].squeeze(0)
flipped_pose, pose = flipped_pose.reshape(-1, 24, 6), pose.reshape(-1, 24, 6)
avg_pose, avg_shape = avg_preds(pose, shape, flipped_pose, flipped_shape)
avg_pose = avg_pose.reshape(-1, 144)
# Refine trajectory with merged prediction
network.pred_pose = avg_pose.view_as(network.pred_pose)
network.pred_shape = avg_shape.view_as(network.pred_shape)
pred = network.forward_smpl(**kwargs)
time_dict['averaging'] = time() - _t; _t = time()
# =======>
# <======= Build predicted SMPL
pred_output = smpl(body_pose=pred['poses_body'],
global_orient=pred['poses_root_cam'],
betas=pred['betas'].squeeze(0),
pose2rot=False)
pred_verts = pred_output.vertices.cpu()
pred_j3d = torch.matmul(J_regressor_eval, pred_output.vertices).cpu()
time_dict['building prediction'] = time() - _t; _t = time()
# =======>
# <======= Build groundtruth SMPL (from SMPLX)
smplx = SMPLX(_C.BMODEL.FLDR.replace('smpl', 'smplx'),
gender=batch['gender'],
batch_size=len(pred_verts)
).to(cfg.DEVICE)
gt_pose = transforms.matrix_to_axis_angle(transforms.rotation_6d_to_matrix(gt['pose'][0]))
target_output = smplx(
body_pose=gt_pose[:, 1:-2].reshape(-1, 63),
global_orient=gt_pose[:, 0],
betas=gt['betas'][0])
target_verts = torch.matmul(smplx2smpl, target_output.vertices.cuda()).cpu()
target_j3d = torch.matmul(J_regressor_eval, target_verts.to(cfg.DEVICE)).cpu()
time_dict['building target'] = time() - _t; _t = time()
# =======>
# <======= Compute performance of the current sequence
pred_j3d, target_j3d, pred_verts, target_verts = batch_align_by_pelvis(
[pred_j3d, target_j3d, pred_verts, target_verts], pelvis_idxs
)
S1_hat = batch_compute_similarity_transform_torch(pred_j3d, target_j3d)
pa_mpjpe = torch.sqrt(((S1_hat - target_j3d) ** 2).sum(dim=-1)).mean(dim=-1).numpy() * m2mm
mpjpe = torch.sqrt(((pred_j3d - target_j3d) ** 2).sum(dim=-1)).mean(dim=-1).numpy() * m2mm
pve = torch.sqrt(((pred_verts - target_verts) ** 2).sum(dim=-1)).mean(dim=-1).numpy() * m2mm
accel = compute_error_accel(joints_pred=pred_j3d, joints_gt=target_j3d)[1:-1]
accel = accel * (30 ** 2) # per frame^s to per s^2
time_dict['evaluating'] = time() - _t; _t = time()
# =======>
# summary_string = f'{batch["vid"]} | PA-MPJPE: {pa_mpjpe.mean():.1f} MPJPE: {mpjpe.mean():.1f} PVE: {pve.mean():.1f}'
summary_string = f'{batch["vid"]} | ' + ' '.join([f'{k}: {v:.1f} s' for k, v in time_dict.items()])
bar.suffix = summary_string
bar.next()
# <======= Accumulate the results over entire sequences
accumulator['pa_mpjpe'].append(pa_mpjpe)
accumulator['mpjpe'].append(mpjpe)
accumulator['pve'].append(pve)
accumulator['accel'].append(accel)
# =======>
for k, v in accumulator.items():
accumulator[k] = np.concatenate(v).mean()
print('')
log_str = 'Evaluation on RICH, '
log_str += ' '.join([f'{k.upper()}: {v:.4f},'for k,v in accumulator.items()])
logger.info(log_str)
if __name__ == '__main__':
cfg, cfg_file, args = parse_args(test=True)
cfg = prepare_output_dir(cfg, cfg_file)
main(cfg, args)