Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
import einops | |
from configs import constants as _C | |
from lib.utils.transforms import axis_angle_to_matrix | |
from .pose_transformer import TransformerDecoder | |
def rot6d_to_rotmat(x: torch.Tensor) -> torch.Tensor: | |
""" | |
Convert 6D rotation representation to 3x3 rotation matrix. | |
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 | |
Args: | |
x (torch.Tensor): (B,6) Batch of 6-D rotation representations. | |
Returns: | |
torch.Tensor: Batch of corresponding rotation matrices with shape (B,3,3). | |
""" | |
x = x.reshape(-1,2,3).permute(0, 2, 1).contiguous() | |
a1 = x[:, :, 0] | |
a2 = x[:, :, 1] | |
b1 = F.normalize(a1) | |
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) | |
b3 = torch.cross(b1, b2) | |
return torch.stack((b1, b2, b3), dim=-1) | |
def build_smpl_head(cfg): | |
smpl_head_type = 'transformer_decoder' | |
if smpl_head_type == 'transformer_decoder': | |
return SMPLTransformerDecoderHead(cfg) | |
else: | |
raise ValueError('Unknown SMPL head type: {}'.format(smpl_head_type)) | |
class SMPLTransformerDecoderHead(nn.Module): | |
""" Cross-attention based SMPL Transformer decoder | |
""" | |
def __init__(self): | |
super().__init__() | |
self.joint_rep_type = '6d' | |
self.joint_rep_dim = {'6d': 6, 'aa': 3}[self.joint_rep_type] | |
npose = self.joint_rep_dim * 24 | |
self.npose = npose | |
self.input_is_mean_shape = False | |
transformer_args = dict( | |
num_tokens=1, | |
token_dim=(npose + 10 + 3) if self.input_is_mean_shape else 1, | |
dim=1024, | |
) | |
transformer_args_from_cfg = dict( | |
depth=6, heads=8, mlp_dim=1024, dim_head=64, dropout=0.0, emb_dropout=0.0, norm='layer', context_dim=1280 | |
) | |
transformer_args = (transformer_args | transformer_args_from_cfg) | |
self.transformer = TransformerDecoder( | |
**transformer_args | |
) | |
dim=transformer_args['dim'] | |
self.decpose = nn.Linear(dim, npose) | |
self.decshape = nn.Linear(dim, 10) | |
self.deccam = nn.Linear(dim, 3) | |
mean_params = np.load(_C.BMODEL.MEAN_PARAMS) | |
init_body_pose = torch.from_numpy(mean_params['pose'].astype(np.float32)).unsqueeze(0) | |
init_betas = torch.from_numpy(mean_params['shape'].astype('float32')).unsqueeze(0) | |
init_cam = torch.from_numpy(mean_params['cam'].astype(np.float32)).unsqueeze(0) | |
self.register_buffer('init_body_pose', init_body_pose) | |
self.register_buffer('init_betas', init_betas) | |
self.register_buffer('init_cam', init_cam) | |
def forward(self, x, **kwargs): | |
batch_size = x.shape[0] | |
# vit pretrained backbone is channel-first. Change to token-first | |
init_body_pose = self.init_body_pose.expand(batch_size, -1) | |
init_betas = self.init_betas.expand(batch_size, -1) | |
init_cam = self.init_cam.expand(batch_size, -1) | |
# TODO: Convert init_body_pose to aa rep if needed | |
if self.joint_rep_type == 'aa': | |
raise NotImplementedError | |
pred_body_pose = init_body_pose | |
pred_betas = init_betas | |
pred_cam = init_cam | |
pred_body_pose_list = [] | |
pred_betas_list = [] | |
pred_cam_list = [] | |
# Input token to transformer is zero token | |
if len(x.shape) > 2: | |
x = einops.rearrange(x, 'b c h w -> b (h w) c') | |
if self.input_is_mean_shape: | |
token = torch.cat([pred_body_pose, pred_betas, pred_cam], dim=1)[:,None,:] | |
else: | |
token = torch.zeros(batch_size, 1, 1).to(x.device) | |
# Pass through transformer | |
token_out = self.transformer(token, context=x) | |
token_out = token_out.squeeze(1) # (B, C) | |
else: | |
token_out = x | |
# Readout from token_out | |
pred_body_pose = self.decpose(token_out) + pred_body_pose | |
pred_betas = self.decshape(token_out) + pred_betas | |
pred_cam = self.deccam(token_out) + pred_cam | |
pred_body_pose_list.append(pred_body_pose) | |
pred_betas_list.append(pred_betas) | |
pred_cam_list.append(pred_cam) | |
# Convert self.joint_rep_type -> rotmat | |
joint_conversion_fn = { | |
'6d': rot6d_to_rotmat, | |
'aa': lambda x: axis_angle_to_matrix(x.view(-1, 3).contiguous()) | |
}[self.joint_rep_type] | |
pred_smpl_params_list = {} | |
pred_smpl_params_list['body_pose'] = torch.cat([joint_conversion_fn(pbp).view(batch_size, -1, 3, 3)[:, 1:, :, :] for pbp in pred_body_pose_list], dim=0) | |
pred_smpl_params_list['betas'] = torch.cat(pred_betas_list, dim=0) | |
pred_smpl_params_list['cam'] = torch.cat(pred_cam_list, dim=0) | |
pred_body_pose = joint_conversion_fn(pred_body_pose).view(batch_size, 24, 3, 3) | |
pred_smpl_params = {'global_orient': pred_body_pose[:, [0]], | |
'body_pose': pred_body_pose[:, 1:], | |
'betas': pred_betas} | |
return pred_smpl_params, pred_cam, pred_smpl_params_list |