Spaces:
Sleeping
Sleeping
import cuda_ba | |
import numba as nb | |
import numpy as np | |
import pypose as pp | |
import torch | |
from einops import parse_shape, rearrange | |
from scipy.spatial.transform import Rotation as R | |
def make_pypose_Sim3(rot, t, s): | |
q = R.from_matrix(rot).as_quat() | |
data = np.concatenate([t, q, np.array(s).reshape((1,))]) | |
return pp.Sim3(data) | |
def SE3_to_Sim3(x: pp.SE3): | |
out = torch.cat((x.data, torch.ones_like(x.data[...,:1])), dim=-1) | |
return pp.Sim3(out) | |
def _format(es): | |
return np.asarray(es, dtype=np.int64).reshape((-1, 2))[1:] | |
def reduce_edges(flow_mag, ii, jj, max_num_edges, nms): | |
es = [(-1, -1)] | |
if ii.size == 0: | |
return _format(es) | |
Ni, Nj = (ii.max()+1), (jj.max()+1) | |
ignore_lookup = np.zeros((Ni, Nj), dtype=nb.bool_) | |
idxs = np.argsort(flow_mag) | |
for idx in idxs: # edge index | |
if len(es) > max_num_edges: | |
break | |
i = ii[idx] | |
j = jj[idx] | |
mag = flow_mag[idx] | |
if ((j - i) < 30): | |
continue | |
if mag >= 1000: # i.e., inf | |
continue | |
if ignore_lookup[i, j]: | |
continue | |
es.append((i, j)) | |
for di in range(-nms, nms+1): | |
i1 = i + di | |
if 0 <= i1 < Ni: | |
ignore_lookup[i1, j] = True | |
return _format(es) | |
def umeyama_alignment(x: np.ndarray, y: np.ndarray): | |
""" | |
The following function was copied from: | |
https://github.com/MichaelGrupp/evo/blob/3067541b350528fe46375423e5bc3a7c42c06c63/evo/core/geometry.py#L35 | |
Computes the least squares solution parameters of an Sim(m) matrix | |
that minimizes the distance between a set of registered points. | |
Umeyama, Shinji: Least-squares estimation of transformation parameters | |
between two point patterns. IEEE PAMI, 1991 | |
:param x: mxn matrix of points, m = dimension, n = nr. of data points | |
:param y: mxn matrix of points, m = dimension, n = nr. of data points | |
:param with_scale: set to True to align also the scale (default: 1.0 scale) | |
:return: r, t, c - rotation matrix, translation vector and scale factor | |
""" | |
# m = dimension, n = nr. of data points | |
m, n = x.shape | |
# means, eq. 34 and 35 | |
mean_x = x.sum(axis=1) / n | |
mean_y = y.sum(axis=1) / n | |
# variance, eq. 36 | |
# "transpose" for column subtraction | |
sigma_x = 1.0 / n * (np.linalg.norm(x - mean_x[:, np.newaxis])**2) | |
# covariance matrix, eq. 38 | |
outer_sum = np.zeros((m, m)) | |
for i in range(n): | |
outer_sum += np.outer((y[:, i] - mean_y), (x[:, i] - mean_x)) | |
cov_xy = np.multiply(1.0 / n, outer_sum) | |
# SVD (text betw. eq. 38 and 39) | |
u, d, v = np.linalg.svd(cov_xy) | |
if np.count_nonzero(d > np.finfo(d.dtype).eps) < m - 1: | |
return None, None, None # Degenerate covariance rank, Umeyama alignment is not possible | |
# S matrix, eq. 43 | |
s = np.eye(m) | |
if np.linalg.det(u) * np.linalg.det(v) < 0.0: | |
# Ensure a RHS coordinate system (Kabsch algorithm). | |
s[m - 1, m - 1] = -1 | |
# rotation, eq. 40 | |
r = u.dot(s).dot(v) | |
# scale & translation, eq. 42 and 41 | |
c = 1 / sigma_x * np.trace(np.diag(d).dot(s)) | |
t = mean_y - np.multiply(c, r.dot(mean_x)) | |
return r, t, c | |
def ransac_umeyama(src_points, dst_points, iterations=1, threshold=0.1): | |
best_inliers = 0 | |
best_R = None | |
best_t = None | |
best_s = None | |
for _ in range(iterations): | |
# Randomly select three points | |
indices = np.random.choice(src_points.shape[0], 3, replace=False) | |
src_sample = src_points[indices] | |
dst_sample = dst_points[indices] | |
# Estimate transformation | |
R, t, s = umeyama_alignment(src_sample.T, dst_sample.T) | |
if t is None: | |
continue | |
# Apply transformation | |
transformed = (src_points @ (R * s).T) + t | |
# Count inliers (not ideal because depends on scene scale) | |
distances = np.sum((transformed - dst_points)**2, axis=1)**0.5 | |
inlier_mask = distances < threshold | |
inliers = np.sum(inlier_mask) | |
# Update best transformation | |
if inliers > best_inliers: | |
best_inliers = inliers | |
best_R, best_t, best_s = umeyama_alignment(src_points[inlier_mask].T, dst_points[inlier_mask].T) | |
if inliers > 100: | |
break | |
return best_R, best_t, best_s, best_inliers | |
def batch_jacobian(func, x): | |
def _func_sum(*x): | |
return func(*x).sum(dim=0) | |
_, b, c = torch.autograd.functional.jacobian(_func_sum, x, vectorize=True) | |
return rearrange(torch.stack((b,c)), 'N O B I -> N B O I', N=2) | |
def _residual(C, Gi, Gj): | |
assert parse_shape(C, 'N _') == parse_shape(Gi, 'N _') == parse_shape(Gj, 'N _') | |
out = C @ pp.Exp(Gi) @ pp.Exp(Gj).Inv() | |
return out.Log().tensor() | |
def residual(Ginv, input_poses, dSloop, ii, jj, jacobian=False): | |
# prep | |
device = Ginv.device | |
assert parse_shape(input_poses, '_ d') == dict(d=7) | |
pred_inv_poses = SE3_to_Sim3(input_poses).Inv() | |
# free variables | |
n, _ = pred_inv_poses.shape | |
kk = torch.arange(1, n, device=device) | |
ll = kk-1 | |
# constants | |
Ti = pred_inv_poses[kk] | |
Tj = pred_inv_poses[ll] | |
dSij = Tj @ Ti.Inv() | |
constants = torch.cat((dSij, dSloop), dim=0) | |
iii = torch.cat((kk, ii)) | |
jjj = torch.cat((ll, jj)) | |
resid = _residual(constants, Ginv[iii], Ginv[jjj]) | |
if not jacobian: | |
return resid | |
J_Ginv_i, J_Ginv_j = batch_jacobian(_residual, (constants, Ginv[iii], Ginv[jjj])) | |
return resid, (J_Ginv_i, J_Ginv_j, iii, jjj) | |
# print(f"{J_Ginv_i.shape=} {J_Ginv_j.shape=} {resid.shape=} {iii.shape=} {jjj.shape=}") | |
r = iii.numel() | |
assert parse_shape(J_Ginv_i, 'r do di') == parse_shape(J_Ginv_j, 'r do di') == dict(r=r, do=7, di=7) | |
J = torch.zeros(r, n, 7, 7, device=device) | |
rr = torch.arange(r, device=device) | |
J[rr, iii] = J_Ginv_i | |
J[rr, jjj] = J_Ginv_j | |
J = rearrange(J, 'r n do di -> r do n di') | |
return resid, J, (J_Ginv_i, J_Ginv_j, iii, jjj) | |
def run_DPVO_PGO(pred_poses, loop_poses, loop_ii, loop_jj, queue): | |
final_est = perform_updates(pred_poses, loop_poses, loop_ii, loop_jj, iters=30) | |
safe_i = loop_ii.max().item() + 1 | |
aa = SE3_to_Sim3(pred_poses.cpu()) | |
final_est = (aa[[safe_i]] * final_est[[safe_i]].Inv()) * final_est | |
output = final_est[:safe_i] | |
queue.put(output) | |
def perform_updates(input_poses, dSloop, ii_loop, jj_loop, iters, ep=0.0, lmbda=1e-6, fix_opt_window=False): | |
""" Run the Levenberg Marquardt algorithm """ | |
input_poses = input_poses.clone() | |
if fix_opt_window: | |
freen = torch.cat((ii_loop, jj_loop)).max().item() + 1 | |
else: | |
freen = -1 | |
Ginv = SE3_to_Sim3(input_poses).Inv().Log() | |
residual_history = [] | |
for itr in range(iters): | |
resid, (J_Ginv_i, J_Ginv_j, iii, jjj) = residual(Ginv, input_poses, dSloop, ii_loop, jj_loop, jacobian=True) | |
residual_history.append(resid.square().mean().item()) | |
# print("#Residual", residual_history[-1]) | |
delta_pose, = cuda_ba.solve_system(J_Ginv_i, J_Ginv_j, iii, jjj, resid, ep, lmbda, freen) | |
assert Ginv.shape == delta_pose.shape | |
Ginv_tmp = Ginv + delta_pose | |
new_resid = residual(Ginv_tmp, input_poses, dSloop, ii_loop, jj_loop) | |
if new_resid.square().mean() < residual_history[-1]: | |
Ginv = Ginv_tmp | |
lmbda /= 2 | |
else: | |
lmbda *= 2 | |
if (residual_history[-1] < 1e-5) and (itr >= 4) and ((residual_history[-5] / residual_history[-1]) < 1.5): | |
break | |
return pp.Exp(Ginv).Inv() | |