Spaces:
Sleeping
Sleeping
import os | |
from multiprocessing import Process, Queue | |
from pathlib import Path | |
import cv2 | |
import numpy as np | |
import torch | |
from evo.core.trajectory import PoseTrajectory3D | |
from evo.tools import file_interface | |
from dpvo.config import cfg | |
from dpvo.dpvo import DPVO | |
from dpvo.plot_utils import plot_trajectory, save_output_for_COLMAP, save_ply | |
from dpvo.stream import image_stream, video_stream | |
from dpvo.utils import Timer | |
SKIP = 0 | |
def show_image(image, t=0): | |
image = image.permute(1, 2, 0).cpu().numpy() | |
cv2.imshow('image', image / 255.0) | |
cv2.waitKey(t) | |
def run(cfg, network, imagedir, calib, stride=1, skip=0, viz=False, timeit=False): | |
slam = None | |
queue = Queue(maxsize=8) | |
if os.path.isdir(imagedir): | |
reader = Process(target=image_stream, args=(queue, imagedir, calib, stride, skip)) | |
else: | |
reader = Process(target=video_stream, args=(queue, imagedir, calib, stride, skip)) | |
reader.start() | |
while 1: | |
(t, image, intrinsics) = queue.get() | |
if t < 0: break | |
image = torch.from_numpy(image).permute(2,0,1).cuda() | |
intrinsics = torch.from_numpy(intrinsics).cuda() | |
if slam is None: | |
_, H, W = image.shape | |
slam = DPVO(cfg, network, ht=H, wd=W, viz=viz) | |
with Timer("SLAM", enabled=timeit): | |
slam(t, image, intrinsics) | |
reader.join() | |
points = slam.pg.points_.cpu().numpy()[:slam.m] | |
colors = slam.pg.colors_.view(-1, 3).cpu().numpy()[:slam.m] | |
return slam.terminate(), (points, colors, (*intrinsics, H, W)) | |
if __name__ == '__main__': | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--network', type=str, default='dpvo.pth') | |
parser.add_argument('--imagedir', type=str) | |
parser.add_argument('--calib', type=str) | |
parser.add_argument('--name', type=str, help='name your run', default='result') | |
parser.add_argument('--stride', type=int, default=2) | |
parser.add_argument('--skip', type=int, default=0) | |
parser.add_argument('--config', default="config/default.yaml") | |
parser.add_argument('--timeit', action='store_true') | |
parser.add_argument('--viz', action="store_true") | |
parser.add_argument('--plot', action="store_true") | |
parser.add_argument('--opts', nargs='+', default=[]) | |
parser.add_argument('--save_ply', action="store_true") | |
parser.add_argument('--save_colmap', action="store_true") | |
parser.add_argument('--save_trajectory', action="store_true") | |
args = parser.parse_args() | |
cfg.merge_from_file(args.config) | |
cfg.merge_from_list(args.opts) | |
print("Running with config...") | |
print(cfg) | |
(poses, tstamps), (points, colors, calib) = run(cfg, args.network, args.imagedir, args.calib, args.stride, args.skip, args.viz, args.timeit) | |
trajectory = PoseTrajectory3D(positions_xyz=poses[:,:3], orientations_quat_wxyz=poses[:, [6, 3, 4, 5]], timestamps=tstamps) | |
if args.save_ply: | |
save_ply(args.name, points, colors) | |
if args.save_colmap: | |
save_output_for_COLMAP(args.name, trajectory, points, colors, *calib) | |
if args.save_trajectory: | |
Path("saved_trajectories").mkdir(exist_ok=True) | |
file_interface.write_tum_trajectory_file(f"saved_trajectories/{args.name}.txt", trajectory) | |
if args.plot: | |
Path("trajectory_plots").mkdir(exist_ok=True) | |
plot_trajectory(trajectory, title=f"DPVO Trajectory Prediction for {args.name}", filename=f"trajectory_plots/{args.name}.pdf") | |