Techt3o's picture
ca5705cc9c8581d916aca37e6759c44f0b1e70429e49ce83e658a0517cd3d6fe
c87d1bc verified
raw
history blame
8.15 kB
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]
import os
import yaml
import torch
import shutil
import logging
import operator
from tqdm import tqdm
from os import path as osp
from functools import reduce
from typing import List, Union
from collections import OrderedDict
from torch.optim.lr_scheduler import _LRScheduler
class CustomScheduler(_LRScheduler):
def __init__(self, optimizer, lr_lambda):
self.lr_lambda = lr_lambda
super(CustomScheduler, self).__init__(optimizer)
def get_lr(self):
return [base_lr * self.lr_lambda(self.last_epoch)
for base_lr in self.base_lrs]
def lr_decay_fn(epoch):
if epoch == 0: return 1.0
if epoch % big_epoch == 0:
return big_decay
else:
return small_decay
def save_obj(v, f, file_name='output.obj'):
obj_file = open(file_name, 'w')
for i in range(len(v)):
obj_file.write('v ' + str(v[i][0]) + ' ' + str(v[i][1]) + ' ' + str(v[i][2]) + '\n')
for i in range(len(f)):
obj_file.write('f ' + str(f[i][0]+1) + '/' + str(f[i][0]+1) + ' ' + str(f[i][1]+1) + '/' + str(f[i][1]+1) + ' ' + str(f[i][2]+1) + '/' + str(f[i][2]+1) + '\n')
obj_file.close()
def check_data_pararell(train_weight):
new_state_dict = OrderedDict()
for k, v in train_weight.items():
name = k[7:] if k.startswith('module') else k # remove `module.`
new_state_dict[name] = v
return new_state_dict
def get_from_dict(dict, keys):
return reduce(operator.getitem, keys, dict)
def tqdm_enumerate(iter):
i = 0
for y in tqdm(iter):
yield i, y
i += 1
def iterdict(d):
for k,v in d.items():
if isinstance(v, dict):
d[k] = dict(v)
iterdict(v)
return d
def accuracy(output, target):
_, pred = output.topk(1)
pred = pred.view(-1)
correct = pred.eq(target).sum()
return correct.item(), target.size(0) - correct.item()
def lr_decay(optimizer, step, lr, decay_step, gamma):
lr = lr * gamma ** (step/decay_step)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def step_decay(optimizer, step, lr, decay_step, gamma):
lr = lr * gamma ** (step / decay_step)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def read_yaml(filename):
return yaml.load(open(filename, 'r'))
def write_yaml(filename, object):
with open(filename, 'w') as f:
yaml.dump(object, f)
def save_dict_to_yaml(obj, filename, mode='w'):
with open(filename, mode) as f:
yaml.dump(obj, f, default_flow_style=False)
def save_to_file(obj, filename, mode='w'):
with open(filename, mode) as f:
f.write(obj)
def concatenate_dicts(dict_list, dim=0):
rdict = dict.fromkeys(dict_list[0].keys())
for k in rdict.keys():
rdict[k] = torch.cat([d[k] for d in dict_list], dim=dim)
return rdict
def bool_to_string(x: Union[List[bool],bool]) -> Union[List[str],str]:
"""
boolean to string conversion
:param x: list or bool to be converted
:return: string converted thing
"""
if isinstance(x, bool):
return [str(x)]
for i, j in enumerate(x):
x[i]=str(j)
return x
def checkpoint2model(checkpoint, key='gen_state_dict'):
state_dict = checkpoint[key]
print(f'Performance of loaded model on 3DPW is {checkpoint["performance"]:.2f}mm')
# del state_dict['regressor.mean_theta']
return state_dict
def get_optimizer(cfg, model, optim_type, momentum, stage):
if stage == 'stage2':
param_list = [{'params': model.integrator.parameters()}]
for name, param in model.named_parameters():
# if 'integrator' not in name and 'motion_encoder' not in name and 'trajectory_decoder' not in name:
if 'integrator' not in name:
param_list.append({'params': param, 'lr': cfg.TRAIN.LR_FINETUNE})
else:
param_list = [{'params': model.parameters()}]
if optim_type in ['sgd', 'SGD']:
opt = torch.optim.SGD(lr=cfg.TRAIN.LR, params=param_list, momentum=momentum)
elif optim_type in ['Adam', 'adam', 'ADAM']:
opt = torch.optim.Adam(lr=cfg.TRAIN.LR, params=param_list, weight_decay=cfg.TRAIN.WD, betas=(0.9, 0.999))
else:
raise ModuleNotFoundError
return opt
def create_logger(logdir, phase='train'):
os.makedirs(logdir, exist_ok=True)
log_file = osp.join(logdir, f'{phase}_log.txt')
head = '%(asctime)-15s %(message)s'
logging.basicConfig(filename=log_file,
format=head)
logger = logging.getLogger()
logger.setLevel(logging.INFO)
console = logging.StreamHandler()
logging.getLogger('').addHandler(console)
return logger
class AverageMeter(object):
def __init__(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def prepare_output_dir(cfg, cfg_file):
# ==== create logdir
logdir = osp.join(cfg.OUTPUT_DIR, cfg.EXP_NAME)
os.makedirs(logdir, exist_ok=True)
shutil.copy(src=cfg_file, dst=osp.join(cfg.OUTPUT_DIR, 'config.yaml'))
cfg.LOGDIR = logdir
# save config
save_dict_to_yaml(cfg, osp.join(cfg.LOGDIR, 'config.yaml'))
return cfg
def prepare_groundtruth(batch, device):
groundtruths = dict()
gt_keys = ['pose', 'cam', 'betas', 'kp3d', 'bbox'] # Evaluation
gt_keys += ['pose_root', 'vel_root', 'weak_kp2d', 'verts', # Training
'full_kp2d', 'contact', 'R', 'cam_angvel',
'has_smpl', 'has_traj', 'has_full_screen', 'has_verts']
for gt_key in gt_keys:
if gt_key in batch.keys():
dtype = torch.float32 if batch[gt_key].dtype == torch.float64 else batch[gt_key].dtype
groundtruths[gt_key] = batch[gt_key].to(dtype=dtype, device=device)
return groundtruths
def prepare_auxiliary(batch, device):
aux = dict()
aux_keys = ['mask', 'bbox', 'res', 'cam_intrinsics', 'init_root', 'cam_angvel']
for key in aux_keys:
if key in batch.keys():
dtype = torch.float32 if batch[key].dtype == torch.float64 else batch[key].dtype
aux[key] = batch[key].to(dtype=dtype, device=device)
return aux
def prepare_input(batch, device, use_features):
# Input keypoints data
kp2d = batch['kp2d'].to(device).float()
# Input features
if use_features and 'features' in batch.keys():
features = batch['features'].to(device).float()
else:
features = None
# Initial SMPL parameters
init_smpl = batch['init_pose'].to(device).float()
# Initial keypoints
init_kp = torch.cat((
batch['init_kp3d'], batch['init_kp2d']
), dim=-1).to(device).float()
return kp2d, (init_kp, init_smpl), features
def prepare_batch(batch, device, use_features=True):
x, inits, features = prepare_input(batch, device, use_features)
aux = prepare_auxiliary(batch, device)
groundtruths = prepare_groundtruth(batch, device)
return x, inits, features, aux, groundtruths