Techt3o's picture
1c0fe995ac3bf6c4bc83a727a73c46ab2d045729fb0abd53c4c78cd2b8282877
20ae9ff verified
raw
history blame
5.6 kB
#include <torch/extension.h>
#include <vector>
#include <unordered_map>
#include <algorithm>
#include <iostream>
#include <Eigen/Core>
#include <Eigen/Sparse>
std::vector<torch::Tensor> cuda_ba(
torch::Tensor poses,
torch::Tensor patches,
torch::Tensor intrinsics,
torch::Tensor target,
torch::Tensor weight,
torch::Tensor lmbda,
torch::Tensor ii,
torch::Tensor jj,
torch::Tensor kk,
const int PPF,
int t0, int t1, int iterations, bool eff_impl);
torch::Tensor cuda_reproject(
torch::Tensor poses,
torch::Tensor patches,
torch::Tensor intrinsics,
torch::Tensor ii,
torch::Tensor jj,
torch::Tensor kk);
std::vector<torch::Tensor> ba(
torch::Tensor poses,
torch::Tensor patches,
torch::Tensor intrinsics,
torch::Tensor target,
torch::Tensor weight,
torch::Tensor lmbda,
torch::Tensor ii,
torch::Tensor jj,
torch::Tensor kk,
int PPF,
int t0, int t1, int iterations, bool eff_impl) {
return cuda_ba(poses, patches, intrinsics, target, weight, lmbda, ii, jj, kk, PPF, t0, t1, iterations, eff_impl);
}
torch::Tensor reproject(
torch::Tensor poses,
torch::Tensor patches,
torch::Tensor intrinsics,
torch::Tensor ii,
torch::Tensor jj,
torch::Tensor kk) {
return cuda_reproject(poses, patches, intrinsics, ii, jj, kk);
}
std::vector<torch::Tensor> neighbors(torch::Tensor ii, torch::Tensor jj)
{
auto tup = torch::_unique(ii, true, true);
torch::Tensor uniq = std::get<0>(tup).to(torch::kCPU);
torch::Tensor perm = std::get<1>(tup).to(torch::kCPU);
jj = jj.to(torch::kCPU);
auto jj_accessor = jj.accessor<long,1>();
auto perm_accessor = perm.accessor<long,1>();
std::vector<std::vector<long>> index(uniq.size(0));
for (int i=0; i < ii.size(0); i++) {
index[perm_accessor[i]].push_back(i);
}
auto opts = torch::TensorOptions().dtype(torch::kInt64);
torch::Tensor ix = torch::empty({ii.size(0)}, opts);
torch::Tensor jx = torch::empty({ii.size(0)}, opts);
auto ix_accessor = ix.accessor<long,1>();
auto jx_accessor = jx.accessor<long,1>();
for (int i=0; i<uniq.size(0); i++) {
std::vector<long>& idx = index[i];
std::stable_sort(idx.begin(), idx.end(),
[&jj_accessor](size_t i, size_t j) {return jj_accessor[i] < jj_accessor[j];});
for (int i=0; i < idx.size(); i++) {
ix_accessor[idx[i]] = (i > 0) ? idx[i-1] : -1;
jx_accessor[idx[i]] = (i < idx.size() - 1) ? idx[i+1] : -1;
}
}
ix = ix.to(torch::kCUDA);
jx = jx.to(torch::kCUDA);
return {ix, jx};
}
typedef Eigen::SparseMatrix<double> SpMat;
typedef Eigen::Triplet<double> T;
Eigen::VectorXd solve(const SpMat &A, const Eigen::VectorXd &b, int freen){
if (freen < 0){
const Eigen::SimplicialCholesky<SpMat> chol(A);
return chol.solve(b); // n x 1
}
const SpMat A_sub = A.topLeftCorner(freen, freen);
const Eigen::VectorXd b_sub = b.topRows(freen);
const Eigen::VectorXd delta = solve(A_sub, b_sub, -7);
Eigen::VectorXd delta2(b.rows());
delta2.setZero();
delta2.topRows(freen) = delta;
return delta2;
}
std::vector<torch::Tensor> solve_system(torch::Tensor J_Ginv_i, torch::Tensor J_Ginv_j, torch::Tensor ii, torch::Tensor jj, torch::Tensor res, float ep, float lm, int freen)
{
const torch::Device device = res.device();
J_Ginv_i = J_Ginv_i.to(torch::kCPU);
J_Ginv_j = J_Ginv_j.to(torch::kCPU);
ii = ii.to(torch::kCPU);
jj = jj.to(torch::kCPU);
res = res.clone().to(torch::kCPU);
const int r = res.size(0);
const int n = std::max(ii.max().item<long>(), jj.max().item<long>()) + 1;
res.resize_({r*7});
float *res_ptr = res.data_ptr<float>();
Eigen::Map<Eigen::VectorXf> v(res_ptr, r*7);
SpMat J(r*7, n*7);
std::vector<T> tripletList;
tripletList.reserve(r*7*7*2);
auto ii_acc = ii.accessor<long,1>();
auto jj_acc = jj.accessor<long,1>();
auto J_Ginv_i_acc = J_Ginv_i.accessor<float,3>();
auto J_Ginv_j_acc = J_Ginv_j.accessor<float,3>();
for (int x=0; x<r; x++){
const int i = ii_acc[x];
const int j = jj_acc[x];
for (int k=0; k<7; k++){
for (int l=0; l<7; l++){
if (i == j)
exit(1);
const float val_i = J_Ginv_i_acc[x][k][l];
tripletList.emplace_back(x*7 + k, i*7 + l, val_i);
const float val_j = J_Ginv_j_acc[x][k][l];
tripletList.emplace_back(x*7 + k, j*7 + l, val_j);
}
}
}
J.setFromTriplets(tripletList.begin(), tripletList.end());
const SpMat Jt = J.transpose();
Eigen::VectorXd b = -(Jt * v.cast<double>());
SpMat A = Jt * J;
A.diagonal() += (A.diagonal() * lm);
A.diagonal().array() += ep;
Eigen::VectorXf delta = solve(A, b, freen*7).cast<float>();
torch::Tensor delta_tensor = torch::from_blob(delta.data(), {n*7}).clone().to(device);
delta_tensor.resize_({n, 7});
return {delta_tensor};
Eigen::Matrix<float, -1, -1, Eigen::RowMajor> dense_J(J.cast<float>());
torch::Tensor dense_J_tensor = torch::from_blob(dense_J.data(), {r*7, n*7}).clone().to(device);
dense_J_tensor.resize_({r, 7, n, 7});
return {delta_tensor, dense_J_tensor};
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &ba, "BA forward operator");
m.def("neighbors", &neighbors, "temporal neighboor indicies");
m.def("reproject", &reproject, "temporal neighboor indicies");
m.def("solve_system", &solve_system, "temporal neighboor indicies");
}