Spaces:
Sleeping
Sleeping
"""This transforms function is mainly borrowed from PyTorch3D""" | |
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the BSD-style license found in the | |
# LICENSE file in the root directory of this source tree. | |
from typing import Optional, Union | |
import torch | |
import torch.nn.functional as F | |
Device = Union[str, torch.device] | |
""" | |
The transformation matrices returned from the functions in this file assume | |
the points on which the transformation will be applied are column vectors. | |
i.e. the R matrix is structured as | |
R = [ | |
[Rxx, Rxy, Rxz], | |
[Ryx, Ryy, Ryz], | |
[Rzx, Rzy, Rzz], | |
] # (3, 3) | |
This matrix can be applied to column vectors by post multiplication | |
by the points e.g. | |
points = [[0], [1], [2]] # (3 x 1) xyz coordinates of a point | |
transformed_points = R * points | |
To apply the same matrix to points which are row vectors, the R matrix | |
can be transposed and pre multiplied by the points: | |
e.g. | |
points = [[0, 1, 2]] # (1 x 3) xyz coordinates of a point | |
transformed_points = points * R.transpose(1, 0) | |
""" | |
def quaternion_to_matrix(quaternions: torch.Tensor) -> torch.Tensor: | |
""" | |
Convert rotations given as quaternions to rotation matrices. | |
Args: | |
quaternions: quaternions with real part first, | |
as tensor of shape (..., 4). | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
r, i, j, k = torch.unbind(quaternions, -1) | |
# pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`. | |
two_s = 2.0 / (quaternions * quaternions).sum(-1) | |
o = torch.stack( | |
( | |
1 - two_s * (j * j + k * k), | |
two_s * (i * j - k * r), | |
two_s * (i * k + j * r), | |
two_s * (i * j + k * r), | |
1 - two_s * (i * i + k * k), | |
two_s * (j * k - i * r), | |
two_s * (i * k - j * r), | |
two_s * (j * k + i * r), | |
1 - two_s * (i * i + j * j), | |
), | |
-1, | |
) | |
return o.reshape(quaternions.shape[:-1] + (3, 3)) | |
def _copysign(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: | |
""" | |
Return a tensor where each element has the absolute value taken from the, | |
corresponding element of a, with sign taken from the corresponding | |
element of b. This is like the standard copysign floating-point operation, | |
but is not careful about negative 0 and NaN. | |
Args: | |
a: source tensor. | |
b: tensor whose signs will be used, of the same shape as a. | |
Returns: | |
Tensor of the same shape as a with the signs of b. | |
""" | |
signs_differ = (a < 0) != (b < 0) | |
return torch.where(signs_differ, -a, a) | |
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor: | |
""" | |
Returns torch.sqrt(torch.max(0, x)) | |
but with a zero subgradient where x is 0. | |
""" | |
ret = torch.zeros_like(x) | |
positive_mask = x > 0 | |
ret[positive_mask] = torch.sqrt(x[positive_mask]) | |
return ret | |
def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor: | |
""" | |
Convert rotations given as rotation matrices to quaternions. | |
Args: | |
matrix: Rotation matrices as tensor of shape (..., 3, 3). | |
Returns: | |
quaternions with real part first, as tensor of shape (..., 4). | |
""" | |
if matrix.size(-1) != 3 or matrix.size(-2) != 3: | |
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.") | |
batch_dim = matrix.shape[:-2] | |
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind( | |
matrix.reshape(batch_dim + (9,)), dim=-1 | |
) | |
q_abs = _sqrt_positive_part( | |
torch.stack( | |
[ | |
1.0 + m00 + m11 + m22, | |
1.0 + m00 - m11 - m22, | |
1.0 - m00 + m11 - m22, | |
1.0 - m00 - m11 + m22, | |
], | |
dim=-1, | |
) | |
) | |
# we produce the desired quaternion multiplied by each of r, i, j, k | |
quat_by_rijk = torch.stack( | |
[ | |
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and | |
# `int`. | |
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1), | |
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and | |
# `int`. | |
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1), | |
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and | |
# `int`. | |
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1), | |
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and | |
# `int`. | |
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1), | |
], | |
dim=-2, | |
) | |
# We floor here at 0.1 but the exact level is not important; if q_abs is small, | |
# the candidate won't be picked. | |
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device) | |
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr)) | |
# if not for numerical problems, quat_candidates[i] should be same (up to a sign), | |
# forall i; we pick the best-conditioned one (with the largest denominator) | |
return quat_candidates[ | |
F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, : | |
].reshape(batch_dim + (4,)) | |
def _axis_angle_rotation(axis: str, angle: torch.Tensor) -> torch.Tensor: | |
""" | |
Return the rotation matrices for one of the rotations about an axis | |
of which Euler angles describe, for each value of the angle given. | |
Args: | |
axis: Axis label "X" or "Y or "Z". | |
angle: any shape tensor of Euler angles in radians | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
cos = torch.cos(angle) | |
sin = torch.sin(angle) | |
one = torch.ones_like(angle) | |
zero = torch.zeros_like(angle) | |
if axis == "X": | |
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos) | |
elif axis == "Y": | |
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos) | |
elif axis == "Z": | |
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one) | |
else: | |
raise ValueError("letter must be either X, Y or Z.") | |
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3)) | |
def euler_angles_to_matrix(euler_angles: torch.Tensor, convention: str) -> torch.Tensor: | |
""" | |
Convert rotations given as Euler angles in radians to rotation matrices. | |
Args: | |
euler_angles: Euler angles in radians as tensor of shape (..., 3). | |
convention: Convention string of three uppercase letters from | |
{"X", "Y", and "Z"}. | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3: | |
raise ValueError("Invalid input euler angles.") | |
if len(convention) != 3: | |
raise ValueError("Convention must have 3 letters.") | |
if convention[1] in (convention[0], convention[2]): | |
raise ValueError(f"Invalid convention {convention}.") | |
for letter in convention: | |
if letter not in ("X", "Y", "Z"): | |
raise ValueError(f"Invalid letter {letter} in convention string.") | |
matrices = [ | |
_axis_angle_rotation(c, e) | |
for c, e in zip(convention, torch.unbind(euler_angles, -1)) | |
] | |
# return functools.reduce(torch.matmul, matrices) | |
return torch.matmul(torch.matmul(matrices[0], matrices[1]), matrices[2]) | |
def _angle_from_tan( | |
axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool | |
) -> torch.Tensor: | |
""" | |
Extract the first or third Euler angle from the two members of | |
the matrix which are positive constant times its sine and cosine. | |
Args: | |
axis: Axis label "X" or "Y or "Z" for the angle we are finding. | |
other_axis: Axis label "X" or "Y or "Z" for the middle axis in the | |
convention. | |
data: Rotation matrices as tensor of shape (..., 3, 3). | |
horizontal: Whether we are looking for the angle for the third axis, | |
which means the relevant entries are in the same row of the | |
rotation matrix. If not, they are in the same column. | |
tait_bryan: Whether the first and third axes in the convention differ. | |
Returns: | |
Euler Angles in radians for each matrix in data as a tensor | |
of shape (...). | |
""" | |
i1, i2 = {"X": (2, 1), "Y": (0, 2), "Z": (1, 0)}[axis] | |
if horizontal: | |
i2, i1 = i1, i2 | |
even = (axis + other_axis) in ["XY", "YZ", "ZX"] | |
if horizontal == even: | |
return torch.atan2(data[..., i1], data[..., i2]) | |
if tait_bryan: | |
return torch.atan2(-data[..., i2], data[..., i1]) | |
return torch.atan2(data[..., i2], -data[..., i1]) | |
def _index_from_letter(letter: str) -> int: | |
if letter == "X": | |
return 0 | |
if letter == "Y": | |
return 1 | |
if letter == "Z": | |
return 2 | |
raise ValueError("letter must be either X, Y or Z.") | |
def matrix_to_euler_angles(matrix: torch.Tensor, convention: str) -> torch.Tensor: | |
""" | |
Convert rotations given as rotation matrices to Euler angles in radians. | |
Args: | |
matrix: Rotation matrices as tensor of shape (..., 3, 3). | |
convention: Convention string of three uppercase letters. | |
Returns: | |
Euler angles in radians as tensor of shape (..., 3). | |
""" | |
if len(convention) != 3: | |
raise ValueError("Convention must have 3 letters.") | |
if convention[1] in (convention[0], convention[2]): | |
raise ValueError(f"Invalid convention {convention}.") | |
for letter in convention: | |
if letter not in ("X", "Y", "Z"): | |
raise ValueError(f"Invalid letter {letter} in convention string.") | |
if matrix.size(-1) != 3 or matrix.size(-2) != 3: | |
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.") | |
i0 = _index_from_letter(convention[0]) | |
i2 = _index_from_letter(convention[2]) | |
tait_bryan = i0 != i2 | |
if tait_bryan: | |
central_angle = torch.asin( | |
matrix[..., i0, i2] * (-1.0 if i0 - i2 in [-1, 2] else 1.0) | |
) | |
else: | |
central_angle = torch.acos(matrix[..., i0, i0]) | |
o = ( | |
_angle_from_tan( | |
convention[0], convention[1], matrix[..., i2], False, tait_bryan | |
), | |
central_angle, | |
_angle_from_tan( | |
convention[2], convention[1], matrix[..., i0, :], True, tait_bryan | |
), | |
) | |
return torch.stack(o, -1) | |
def random_quaternions( | |
n: int, dtype: Optional[torch.dtype] = None, device: Optional[Device] = None | |
) -> torch.Tensor: | |
""" | |
Generate random quaternions representing rotations, | |
i.e. versors with nonnegative real part. | |
Args: | |
n: Number of quaternions in a batch to return. | |
dtype: Type to return. | |
device: Desired device of returned tensor. Default: | |
uses the current device for the default tensor type. | |
Returns: | |
Quaternions as tensor of shape (N, 4). | |
""" | |
if isinstance(device, str): | |
device = torch.device(device) | |
o = torch.randn((n, 4), dtype=dtype, device=device) | |
s = (o * o).sum(1) | |
o = o / _copysign(torch.sqrt(s), o[:, 0])[:, None] | |
return o | |
def random_rotations( | |
n: int, dtype: Optional[torch.dtype] = None, device: Optional[Device] = None | |
) -> torch.Tensor: | |
""" | |
Generate random rotations as 3x3 rotation matrices. | |
Args: | |
n: Number of rotation matrices in a batch to return. | |
dtype: Type to return. | |
device: Device of returned tensor. Default: if None, | |
uses the current device for the default tensor type. | |
Returns: | |
Rotation matrices as tensor of shape (n, 3, 3). | |
""" | |
quaternions = random_quaternions(n, dtype=dtype, device=device) | |
return quaternion_to_matrix(quaternions) | |
def random_rotation( | |
dtype: Optional[torch.dtype] = None, device: Optional[Device] = None | |
) -> torch.Tensor: | |
""" | |
Generate a single random 3x3 rotation matrix. | |
Args: | |
dtype: Type to return | |
device: Device of returned tensor. Default: if None, | |
uses the current device for the default tensor type | |
Returns: | |
Rotation matrix as tensor of shape (3, 3). | |
""" | |
return random_rotations(1, dtype, device)[0] | |
def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor: | |
""" | |
Convert a unit quaternion to a standard form: one in which the real | |
part is non negative. | |
Args: | |
quaternions: Quaternions with real part first, | |
as tensor of shape (..., 4). | |
Returns: | |
Standardized quaternions as tensor of shape (..., 4). | |
""" | |
return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions) | |
def quaternion_raw_multiply(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: | |
""" | |
Multiply two quaternions. | |
Usual torch rules for broadcasting apply. | |
Args: | |
a: Quaternions as tensor of shape (..., 4), real part first. | |
b: Quaternions as tensor of shape (..., 4), real part first. | |
Returns: | |
The product of a and b, a tensor of quaternions shape (..., 4). | |
""" | |
aw, ax, ay, az = torch.unbind(a, -1) | |
bw, bx, by, bz = torch.unbind(b, -1) | |
ow = aw * bw - ax * bx - ay * by - az * bz | |
ox = aw * bx + ax * bw + ay * bz - az * by | |
oy = aw * by - ax * bz + ay * bw + az * bx | |
oz = aw * bz + ax * by - ay * bx + az * bw | |
return torch.stack((ow, ox, oy, oz), -1) | |
def quaternion_multiply(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: | |
""" | |
Multiply two quaternions representing rotations, returning the quaternion | |
representing their composition, i.e. the versor with nonnegative real part. | |
Usual torch rules for broadcasting apply. | |
Args: | |
a: Quaternions as tensor of shape (..., 4), real part first. | |
b: Quaternions as tensor of shape (..., 4), real part first. | |
Returns: | |
The product of a and b, a tensor of quaternions of shape (..., 4). | |
""" | |
ab = quaternion_raw_multiply(a, b) | |
return standardize_quaternion(ab) | |
def quaternion_invert(quaternion: torch.Tensor) -> torch.Tensor: | |
""" | |
Given a quaternion representing rotation, get the quaternion representing | |
its inverse. | |
Args: | |
quaternion: Quaternions as tensor of shape (..., 4), with real part | |
first, which must be versors (unit quaternions). | |
Returns: | |
The inverse, a tensor of quaternions of shape (..., 4). | |
""" | |
scaling = torch.tensor([1, -1, -1, -1], device=quaternion.device) | |
return quaternion * scaling | |
def quaternion_apply(quaternion: torch.Tensor, point: torch.Tensor) -> torch.Tensor: | |
""" | |
Apply the rotation given by a quaternion to a 3D point. | |
Usual torch rules for broadcasting apply. | |
Args: | |
quaternion: Tensor of quaternions, real part first, of shape (..., 4). | |
point: Tensor of 3D points of shape (..., 3). | |
Returns: | |
Tensor of rotated points of shape (..., 3). | |
""" | |
if point.size(-1) != 3: | |
raise ValueError(f"Points are not in 3D, {point.shape}.") | |
real_parts = point.new_zeros(point.shape[:-1] + (1,)) | |
point_as_quaternion = torch.cat((real_parts, point), -1) | |
out = quaternion_raw_multiply( | |
quaternion_raw_multiply(quaternion, point_as_quaternion), | |
quaternion_invert(quaternion), | |
) | |
return out[..., 1:] | |
def axis_angle_to_matrix(axis_angle: torch.Tensor) -> torch.Tensor: | |
""" | |
Convert rotations given as axis/angle to rotation matrices. | |
Args: | |
axis_angle: Rotations given as a vector in axis angle form, | |
as a tensor of shape (..., 3), where the magnitude is | |
the angle turned anticlockwise in radians around the | |
vector's direction. | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle)) | |
def matrix_to_axis_angle(matrix: torch.Tensor) -> torch.Tensor: | |
""" | |
Convert rotations given as rotation matrices to axis/angle. | |
Args: | |
matrix: Rotation matrices as tensor of shape (..., 3, 3). | |
Returns: | |
Rotations given as a vector in axis angle form, as a tensor | |
of shape (..., 3), where the magnitude is the angle | |
turned anticlockwise in radians around the vector's | |
direction. | |
""" | |
return quaternion_to_axis_angle(matrix_to_quaternion(matrix)) | |
def axis_angle_to_quaternion(axis_angle: torch.Tensor) -> torch.Tensor: | |
""" | |
Convert rotations given as axis/angle to quaternions. | |
Args: | |
axis_angle: Rotations given as a vector in axis angle form, | |
as a tensor of shape (..., 3), where the magnitude is | |
the angle turned anticlockwise in radians around the | |
vector's direction. | |
Returns: | |
quaternions with real part first, as tensor of shape (..., 4). | |
""" | |
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True) | |
half_angles = angles * 0.5 | |
eps = 1e-6 | |
small_angles = angles.abs() < eps | |
sin_half_angles_over_angles = torch.empty_like(angles) | |
sin_half_angles_over_angles[~small_angles] = ( | |
torch.sin(half_angles[~small_angles]) / angles[~small_angles] | |
) | |
# for x small, sin(x/2) is about x/2 - (x/2)^3/6 | |
# so sin(x/2)/x is about 1/2 - (x*x)/48 | |
sin_half_angles_over_angles[small_angles] = ( | |
0.5 - (angles[small_angles] * angles[small_angles]) / 48 | |
) | |
quaternions = torch.cat( | |
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1 | |
) | |
return quaternions | |
def quaternion_to_axis_angle(quaternions: torch.Tensor) -> torch.Tensor: | |
""" | |
Convert rotations given as quaternions to axis/angle. | |
Args: | |
quaternions: quaternions with real part first, | |
as tensor of shape (..., 4). | |
Returns: | |
Rotations given as a vector in axis angle form, as a tensor | |
of shape (..., 3), where the magnitude is the angle | |
turned anticlockwise in radians around the vector's | |
direction. | |
""" | |
norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True) | |
half_angles = torch.atan2(norms, quaternions[..., :1]) | |
angles = 2 * half_angles | |
eps = 1e-6 | |
small_angles = angles.abs() < eps | |
sin_half_angles_over_angles = torch.empty_like(angles) | |
sin_half_angles_over_angles[~small_angles] = ( | |
torch.sin(half_angles[~small_angles]) / angles[~small_angles] | |
) | |
# for x small, sin(x/2) is about x/2 - (x/2)^3/6 | |
# so sin(x/2)/x is about 1/2 - (x*x)/48 | |
sin_half_angles_over_angles[small_angles] = ( | |
0.5 - (angles[small_angles] * angles[small_angles]) / 48 | |
) | |
return quaternions[..., 1:] / sin_half_angles_over_angles | |
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor: | |
""" | |
Converts 6D rotation representation by Zhou et al. [1] to rotation matrix | |
using Gram--Schmidt orthogonalization per Section B of [1]. | |
Args: | |
d6: 6D rotation representation, of size (*, 6) | |
Returns: | |
batch of rotation matrices of size (*, 3, 3) | |
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H. | |
On the Continuity of Rotation Representations in Neural Networks. | |
IEEE Conference on Computer Vision and Pattern Recognition, 2019. | |
Retrieved from http://arxiv.org/abs/1812.07035 | |
""" | |
a1, a2 = d6[..., :3], d6[..., 3:] | |
b1 = F.normalize(a1, dim=-1) | |
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1 | |
b2 = F.normalize(b2, dim=-1) | |
b3 = torch.cross(b1, b2, dim=-1) | |
return torch.stack((b1, b2, b3), dim=-2) | |
def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor: | |
""" | |
Converts rotation matrices to 6D rotation representation by Zhou et al. [1] | |
by dropping the last row. Note that 6D representation is not unique. | |
Args: | |
matrix: batch of rotation matrices of size (*, 3, 3) | |
Returns: | |
6D rotation representation, of size (*, 6) | |
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H. | |
On the Continuity of Rotation Representations in Neural Networks. | |
IEEE Conference on Computer Vision and Pattern Recognition, 2019. | |
Retrieved from http://arxiv.org/abs/1812.07035 | |
""" | |
batch_dim = matrix.size()[:-2] | |
return matrix[..., :2, :].clone().reshape(batch_dim + (6,)) | |
def clean_rotation_6d(d6d: torch.Tensor) -> torch.Tensor: | |
""" | |
Clean rotation 6d by converting it to matrix and then reconvert to d6 | |
""" | |
matrix = rotation_6d_to_matrix(d6d) | |
d6d = matrix_to_rotation_6d(matrix) | |
return d6d | |
def rot6d_to_rotmat(x): | |
"""Convert 6D rotation representation to 3x3 rotation matrix. | |
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 | |
Input: | |
(B,6) Batch of 6-D rotation representations | |
Output: | |
(B,3,3) Batch of corresponding rotation matrices | |
""" | |
if x.shape[-1] == 6: | |
batch_dim = x.size()[:-1] | |
else: | |
x = x.reshape(*x.shape[:-1], -1, 6) | |
batch_dim = x.size()[:-1] | |
x = x.reshape(*batch_dim, 3, 2) | |
a1, a2 = x[..., 0], x[..., 1] | |
b1 = F.normalize(a1, dim=-1) | |
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1 | |
b2 = F.normalize(b2, dim=-1) | |
b3 = torch.cross(b1, b2, dim=-1) | |
return torch.stack((b1, b2, b3), dim=-1) | |
def rotmat_to_rot6d(x): | |
"""Inverse computation of rot6d_to_rotmat.""" | |
batch_dim = x.size()[:-2] | |
return x[..., :2].clone().reshape(batch_dim + (6,)) | |
def convert_rotation_matrix_to_homogeneous(rotation_matrix): | |
"Add empty translation vector to Rotation matrix""" | |
transl = torch.zeros_like(rotation_matrix[...,:1]) | |
rotation_matrix_hom = torch.cat((rotation_matrix, transl), dim=-1) | |
return rotation_matrix_hom | |
def rotation_matrix_to_angle_axis(rotation_matrix): | |
"""Convert 3x4 rotation matrix to Rodrigues vector | |
Args: | |
rotation_matrix (Tensor): rotation matrix. | |
Returns: | |
Tensor: Rodrigues vector transformation. | |
Shape: | |
- Input: :math:`(N, 3, 4)` | |
- Output: :math:`(N, 3)` | |
Example: | |
>>> input = torch.rand(2, 3, 4) # Nx3x4 | |
>>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3 | |
""" | |
if rotation_matrix.size(-1) == 3: | |
rotation_matrix = convert_rotation_matrix_to_homogeneous(rotation_matrix) | |
quaternion = rotation_matrix_to_quaternion(rotation_matrix) | |
return quaternion_to_angle_axis(quaternion) | |
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): | |
"""Convert 3x4 rotation matrix to 4d quaternion vector | |
This algorithm is based on algorithm described in | |
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 | |
Args: | |
rotation_matrix (Tensor): the rotation matrix to convert. | |
Return: | |
Tensor: the rotation in quaternion | |
Shape: | |
- Input: :math:`(N, 3, 4)` | |
- Output: :math:`(N, 4)` | |
Example: | |
>>> input = torch.rand(4, 3, 4) # Nx3x4 | |
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 | |
""" | |
if not torch.is_tensor(rotation_matrix): | |
raise TypeError("Input type is not a torch.Tensor. Got {}".format( | |
type(rotation_matrix))) | |
if len(rotation_matrix.shape) > 3: | |
raise ValueError( | |
"Input size must be a three dimensional tensor. Got {}".format( | |
rotation_matrix.shape)) | |
if not rotation_matrix.shape[-2:] == (3, 4): | |
raise ValueError( | |
"Input size must be a N x 3 x 4 tensor. Got {}".format( | |
rotation_matrix.shape)) | |
rmat_t = torch.transpose(rotation_matrix, 1, 2) | |
mask_d2 = rmat_t[:, 2, 2] < eps | |
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] | |
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] | |
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] | |
q0 = torch.stack([rmat_t[:, 1, 2] - rmat_t[:, 2, 1], | |
t0, rmat_t[:, 0, 1] + rmat_t[:, 1, 0], | |
rmat_t[:, 2, 0] + rmat_t[:, 0, 2]], -1) | |
t0_rep = t0.repeat(4, 1).t() | |
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] | |
q1 = torch.stack([rmat_t[:, 2, 0] - rmat_t[:, 0, 2], | |
rmat_t[:, 0, 1] + rmat_t[:, 1, 0], | |
t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1]], -1) | |
t1_rep = t1.repeat(4, 1).t() | |
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] | |
q2 = torch.stack([rmat_t[:, 0, 1] - rmat_t[:, 1, 0], | |
rmat_t[:, 2, 0] + rmat_t[:, 0, 2], | |
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2], -1) | |
t2_rep = t2.repeat(4, 1).t() | |
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] | |
q3 = torch.stack([t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], | |
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], | |
rmat_t[:, 0, 1] - rmat_t[:, 1, 0]], -1) | |
t3_rep = t3.repeat(4, 1).t() | |
mask_c0 = mask_d2 * mask_d0_d1 | |
# mask_c1 = mask_d2 * (1 - mask_d0_d1) | |
mask_c1 = mask_d2 * ~mask_d0_d1 | |
# mask_c2 = (1 - mask_d2) * mask_d0_nd1 | |
mask_c2 = ~mask_d2 * mask_d0_nd1 | |
# mask_c3 = (1 - mask_d2) * (1 - mask_d0_nd1) | |
mask_c3 = ~mask_d2 * ~mask_d0_nd1 | |
mask_c0 = mask_c0.view(-1, 1).type_as(q0) | |
mask_c1 = mask_c1.view(-1, 1).type_as(q1) | |
mask_c2 = mask_c2.view(-1, 1).type_as(q2) | |
mask_c3 = mask_c3.view(-1, 1).type_as(q3) | |
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 | |
q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + # noqa | |
t2_rep * mask_c2 + t3_rep * mask_c3) # noqa | |
q *= 0.5 | |
return q | |
def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor: | |
"""Convert quaternion vector to angle axis of rotation. | |
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h | |
Args: | |
quaternion (torch.Tensor): tensor with quaternions. | |
Return: | |
torch.Tensor: tensor with angle axis of rotation. | |
Shape: | |
- Input: :math:`(*, 4)` where `*` means, any number of dimensions | |
- Output: :math:`(*, 3)` | |
Example: | |
>>> quaternion = torch.rand(2, 4) # Nx4 | |
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3 | |
""" | |
if not torch.is_tensor(quaternion): | |
raise TypeError("Input type is not a torch.Tensor. Got {}".format( | |
type(quaternion))) | |
if not quaternion.shape[-1] == 4: | |
raise ValueError("Input must be a tensor of shape Nx4 or 4. Got {}" | |
.format(quaternion.shape)) | |
# unpack input and compute conversion | |
q1: torch.Tensor = quaternion[..., 1] | |
q2: torch.Tensor = quaternion[..., 2] | |
q3: torch.Tensor = quaternion[..., 3] | |
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 | |
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) | |
cos_theta: torch.Tensor = quaternion[..., 0] | |
two_theta: torch.Tensor = 2.0 * torch.where( | |
cos_theta < 0.0, | |
torch.atan2(-sin_theta, -cos_theta), | |
torch.atan2(sin_theta, cos_theta)) | |
k_pos: torch.Tensor = two_theta / sin_theta | |
k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta) | |
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) | |
angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3] | |
angle_axis[..., 0] += q1 * k | |
angle_axis[..., 1] += q2 * k | |
angle_axis[..., 2] += q3 * k | |
return angle_axis | |
def avg_rot(rot): | |
# input [B,...,3,3] --> output [...,3,3] | |
rot = rot.mean(dim=0) | |
U, _, V = torch.svd(rot) | |
rot = U @ V.transpose(-1, -2) | |
return rot |