File size: 7,900 Bytes
20ae9ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import cuda_ba
import numba as nb
import numpy as np
import pypose as pp
import torch
from einops import parse_shape, rearrange
from scipy.spatial.transform import Rotation as R


def make_pypose_Sim3(rot, t, s):
    q = R.from_matrix(rot).as_quat()
    data = np.concatenate([t, q, np.array(s).reshape((1,))])
    return pp.Sim3(data)

def SE3_to_Sim3(x: pp.SE3):
    out = torch.cat((x.data, torch.ones_like(x.data[...,:1])), dim=-1)
    return pp.Sim3(out)

@nb.njit(cache=True)
def _format(es):
    return np.asarray(es, dtype=np.int64).reshape((-1, 2))[1:]

@nb.njit(cache=True)
def reduce_edges(flow_mag, ii, jj, max_num_edges, nms):
    es = [(-1, -1)]

    if ii.size == 0:
        return _format(es)

    Ni, Nj = (ii.max()+1), (jj.max()+1)
    ignore_lookup = np.zeros((Ni, Nj), dtype=nb.bool_)

    idxs = np.argsort(flow_mag)
    for idx in idxs: # edge index

        if len(es) > max_num_edges:
            break

        i = ii[idx]
        j = jj[idx]
        mag = flow_mag[idx]

        if ((j - i) < 30):
            continue

        if mag >= 1000: # i.e., inf
            continue

        if ignore_lookup[i, j]:
            continue

        es.append((i, j))

        for di in range(-nms, nms+1):
            i1 = i + di

            if 0 <= i1 < Ni:
                ignore_lookup[i1, j] = True

    return _format(es)



@nb.njit(cache=True)
def umeyama_alignment(x: np.ndarray, y: np.ndarray):
    """

    The following function was copied from:

    https://github.com/MichaelGrupp/evo/blob/3067541b350528fe46375423e5bc3a7c42c06c63/evo/core/geometry.py#L35



    Computes the least squares solution parameters of an Sim(m) matrix

    that minimizes the distance between a set of registered points.

    Umeyama, Shinji: Least-squares estimation of transformation parameters

                     between two point patterns. IEEE PAMI, 1991

    :param x: mxn matrix of points, m = dimension, n = nr. of data points

    :param y: mxn matrix of points, m = dimension, n = nr. of data points

    :param with_scale: set to True to align also the scale (default: 1.0 scale)

    :return: r, t, c - rotation matrix, translation vector and scale factor

    """

    # m = dimension, n = nr. of data points
    m, n = x.shape

    # means, eq. 34 and 35
    mean_x = x.sum(axis=1) / n
    mean_y = y.sum(axis=1) / n

    # variance, eq. 36
    # "transpose" for column subtraction
    sigma_x = 1.0 / n * (np.linalg.norm(x - mean_x[:, np.newaxis])**2)

    # covariance matrix, eq. 38
    outer_sum = np.zeros((m, m))
    for i in range(n):
        outer_sum += np.outer((y[:, i] - mean_y), (x[:, i] - mean_x))
    cov_xy = np.multiply(1.0 / n, outer_sum)

    # SVD (text betw. eq. 38 and 39)
    u, d, v = np.linalg.svd(cov_xy)
    if np.count_nonzero(d > np.finfo(d.dtype).eps) < m - 1:
        return None, None, None # Degenerate covariance rank, Umeyama alignment is not possible

    # S matrix, eq. 43
    s = np.eye(m)
    if np.linalg.det(u) * np.linalg.det(v) < 0.0:
        # Ensure a RHS coordinate system (Kabsch algorithm).
        s[m - 1, m - 1] = -1

    # rotation, eq. 40
    r = u.dot(s).dot(v)

    # scale & translation, eq. 42 and 41
    c = 1 / sigma_x * np.trace(np.diag(d).dot(s))
    t = mean_y - np.multiply(c, r.dot(mean_x))

    return r, t, c

@nb.njit(cache=True)
def ransac_umeyama(src_points, dst_points, iterations=1, threshold=0.1):
    best_inliers = 0
    best_R = None
    best_t = None
    best_s = None
    for _ in range(iterations):
        # Randomly select three points
        indices = np.random.choice(src_points.shape[0], 3, replace=False)
        src_sample = src_points[indices]
        dst_sample = dst_points[indices]

        # Estimate transformation
        R, t, s = umeyama_alignment(src_sample.T, dst_sample.T)
        if t is None:
            continue

        # Apply transformation
        transformed = (src_points @ (R * s).T) + t

        # Count inliers (not ideal because depends on scene scale)
        distances = np.sum((transformed - dst_points)**2, axis=1)**0.5
        inlier_mask = distances < threshold
        inliers = np.sum(inlier_mask)

        # Update best transformation
        if inliers > best_inliers:
            best_inliers = inliers
            best_R, best_t, best_s = umeyama_alignment(src_points[inlier_mask].T, dst_points[inlier_mask].T)

        if inliers > 100:
            break

    return best_R, best_t, best_s, best_inliers

def batch_jacobian(func, x):
  def _func_sum(*x):
    return func(*x).sum(dim=0)
  _, b, c = torch.autograd.functional.jacobian(_func_sum, x, vectorize=True)
  return rearrange(torch.stack((b,c)), 'N O B I -> N B O I', N=2)

def _residual(C, Gi, Gj):
    assert parse_shape(C, 'N _') == parse_shape(Gi, 'N _') == parse_shape(Gj, 'N _')
    out = C @ pp.Exp(Gi) @ pp.Exp(Gj).Inv()
    return out.Log().tensor()

def residual(Ginv, input_poses, dSloop, ii, jj, jacobian=False):

    # prep
    device = Ginv.device
    assert parse_shape(input_poses, '_ d') == dict(d=7)
    pred_inv_poses = SE3_to_Sim3(input_poses).Inv()

    # free variables
    n, _ = pred_inv_poses.shape
    kk = torch.arange(1, n, device=device)
    ll = kk-1

    # constants
    Ti = pred_inv_poses[kk]
    Tj = pred_inv_poses[ll]
    dSij = Tj @ Ti.Inv()

    constants = torch.cat((dSij, dSloop), dim=0)
    iii = torch.cat((kk, ii))
    jjj = torch.cat((ll, jj))
    resid = _residual(constants, Ginv[iii], Ginv[jjj])

    if not jacobian:
        return resid

    J_Ginv_i, J_Ginv_j = batch_jacobian(_residual, (constants, Ginv[iii], Ginv[jjj]))
    return resid, (J_Ginv_i, J_Ginv_j, iii, jjj)
    # print(f"{J_Ginv_i.shape=} {J_Ginv_j.shape=} {resid.shape=} {iii.shape=} {jjj.shape=}")

    r = iii.numel()
    assert parse_shape(J_Ginv_i, 'r do di') == parse_shape(J_Ginv_j, 'r do di') == dict(r=r, do=7, di=7)
    J = torch.zeros(r, n, 7, 7, device=device)
    rr = torch.arange(r, device=device)
    J[rr, iii] = J_Ginv_i
    J[rr, jjj] = J_Ginv_j
    J = rearrange(J, 'r n do di -> r do n di')

    return resid, J, (J_Ginv_i, J_Ginv_j, iii, jjj)

def run_DPVO_PGO(pred_poses, loop_poses, loop_ii, loop_jj, queue):
    final_est = perform_updates(pred_poses, loop_poses, loop_ii, loop_jj, iters=30)

    safe_i = loop_ii.max().item() + 1
    aa = SE3_to_Sim3(pred_poses.cpu())
    final_est = (aa[[safe_i]] * final_est[[safe_i]].Inv()) * final_est
    output = final_est[:safe_i]
    queue.put(output)

def perform_updates(input_poses, dSloop, ii_loop, jj_loop, iters, ep=0.0, lmbda=1e-6, fix_opt_window=False):
    """ Run the Levenberg Marquardt algorithm """

    input_poses = input_poses.clone()

    if fix_opt_window:
        freen = torch.cat((ii_loop, jj_loop)).max().item() + 1
    else:
        freen = -1

    Ginv = SE3_to_Sim3(input_poses).Inv().Log()

    residual_history = []

    for itr in range(iters):
        resid, (J_Ginv_i, J_Ginv_j, iii, jjj) = residual(Ginv, input_poses, dSloop, ii_loop, jj_loop, jacobian=True)
        residual_history.append(resid.square().mean().item())
        # print("#Residual", residual_history[-1])
        delta_pose, = cuda_ba.solve_system(J_Ginv_i, J_Ginv_j, iii, jjj, resid, ep, lmbda, freen)
        assert Ginv.shape == delta_pose.shape
        Ginv_tmp = Ginv + delta_pose

        new_resid = residual(Ginv_tmp, input_poses, dSloop, ii_loop, jj_loop)
        if new_resid.square().mean() < residual_history[-1]:
            Ginv = Ginv_tmp
            lmbda /= 2
        else:
            lmbda *= 2

        if (residual_history[-1] < 1e-5) and (itr >= 4) and ((residual_history[-5] / residual_history[-1]) < 1.5):
            break

    return pp.Exp(Ginv).Inv()