File size: 10,061 Bytes
57ae837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
import argparse
import os.path as osp
from glob import glob
from collections import defaultdict

import cv2
import torch
import joblib
import numpy as np
from loguru import logger
from progress.bar import Bar

from configs.config import get_cfg_defaults
from lib.data.datasets import CustomDataset
from lib.utils.imutils import avg_preds
from lib.utils.transforms import matrix_to_axis_angle
from lib.models import build_network, build_body_model
from lib.models.preproc.detector import DetectionModel
from lib.models.preproc.extractor import FeatureExtractor
from lib.models.smplify import TemporalSMPLify

try: 
    from lib.models.preproc.slam import SLAMModel
    _run_global = True
except: 
    logger.info('DPVO is not properly installed. Only estimate in local coordinates !')
    _run_global = False

def run(cfg,

        video,

        output_pth,

        network,

        calib=None,

        run_global=True,

        save_pkl=False,

        visualize=False):
    
    cap = cv2.VideoCapture(video)
    assert cap.isOpened(), f'Faild to load video file {video}'
    fps = cap.get(cv2.CAP_PROP_FPS)
    length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    width, height = cap.get(cv2.CAP_PROP_FRAME_WIDTH), cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
    
    # Whether or not estimating motion in global coordinates
    run_global = run_global and _run_global
    
    # Preprocess
    with torch.no_grad():
        if not (osp.exists(osp.join(output_pth, 'tracking_results.pth')) and 
                osp.exists(osp.join(output_pth, 'slam_results.pth'))):
            
            detector = DetectionModel(cfg.DEVICE.lower())
            extractor = FeatureExtractor(cfg.DEVICE.lower(), cfg.FLIP_EVAL)
            
            if run_global: slam = SLAMModel(video, output_pth, width, height, calib)
            else: slam = None
            
            bar = Bar('Preprocess: 2D detection and SLAM', fill='#', max=length)
            while (cap.isOpened()):
                flag, img = cap.read()
                if not flag: break
                
                # 2D detection and tracking
                detector.track(img, fps, length)
                
                # SLAM
                if slam is not None: 
                    slam.track()
                
                bar.next()

            tracking_results = detector.process(fps)
            
            if slam is not None: 
                slam_results = slam.process()
            else:
                slam_results = np.zeros((length, 7))
                slam_results[:, 3] = 1.0    # Unit quaternion
        
            # Extract image features
            # TODO: Merge this into the previous while loop with an online bbox smoothing.
            tracking_results = extractor.run(video, tracking_results)
            logger.info('Complete Data preprocessing!')
            
            # Save the processed data
            joblib.dump(tracking_results, osp.join(output_pth, 'tracking_results.pth'))
            joblib.dump(slam_results, osp.join(output_pth, 'slam_results.pth'))
            logger.info(f'Save processed data at {output_pth}')
        
        # If the processed data already exists, load the processed data
        else:
            tracking_results = joblib.load(osp.join(output_pth, 'tracking_results.pth'))
            slam_results = joblib.load(osp.join(output_pth, 'slam_results.pth'))
            logger.info(f'Already processed data exists at {output_pth} ! Load the data .')
    
    # Build dataset
    dataset = CustomDataset(cfg, tracking_results, slam_results, width, height, fps)
    
    # run WHAM
    results = defaultdict(dict)
    
    n_subjs = len(dataset)
    for subj in range(n_subjs):

        with torch.no_grad():
            if cfg.FLIP_EVAL:
                # Forward pass with flipped input
                flipped_batch = dataset.load_data(subj, True)
                _id, x, inits, features, mask, init_root, cam_angvel, frame_id, kwargs = flipped_batch
                flipped_pred = network(x, inits, features, mask=mask, init_root=init_root, cam_angvel=cam_angvel, return_y_up=True, **kwargs)
                
                # Forward pass with normal input
                batch = dataset.load_data(subj)
                _id, x, inits, features, mask, init_root, cam_angvel, frame_id, kwargs = batch
                pred = network(x, inits, features, mask=mask, init_root=init_root, cam_angvel=cam_angvel, return_y_up=True, **kwargs)
                
                # Merge two predictions
                flipped_pose, flipped_shape = flipped_pred['pose'].squeeze(0), flipped_pred['betas'].squeeze(0)
                pose, shape = pred['pose'].squeeze(0), pred['betas'].squeeze(0)
                flipped_pose, pose = flipped_pose.reshape(-1, 24, 6), pose.reshape(-1, 24, 6)
                avg_pose, avg_shape = avg_preds(pose, shape, flipped_pose, flipped_shape)
                avg_pose = avg_pose.reshape(-1, 144)
                avg_contact = (flipped_pred['contact'][..., [2, 3, 0, 1]] + pred['contact']) / 2
                
                # Refine trajectory with merged prediction
                network.pred_pose = avg_pose.view_as(network.pred_pose)
                network.pred_shape = avg_shape.view_as(network.pred_shape)
                network.pred_contact = avg_contact.view_as(network.pred_contact)
                output = network.forward_smpl(**kwargs)
                pred = network.refine_trajectory(output, cam_angvel, return_y_up=True)
            
            else:
                # data
                batch = dataset.load_data(subj)
                _id, x, inits, features, mask, init_root, cam_angvel, frame_id, kwargs = batch
                
                # inference
                pred = network(x, inits, features, mask=mask, init_root=init_root, cam_angvel=cam_angvel, return_y_up=True, **kwargs)
        
        # if False:
        if args.run_smplify:
            smplify = TemporalSMPLify(smpl, img_w=width, img_h=height, device=cfg.DEVICE)
            input_keypoints = dataset.tracking_results[_id]['keypoints']
            pred = smplify.fit(pred, input_keypoints, **kwargs)
            
            with torch.no_grad():
                network.pred_pose = pred['pose']
                network.pred_shape = pred['betas']
                network.pred_cam = pred['cam']
                output = network.forward_smpl(**kwargs)
                pred = network.refine_trajectory(output, cam_angvel, return_y_up=True)
        
        # ========= Store results ========= #
        pred_body_pose = matrix_to_axis_angle(pred['poses_body']).cpu().numpy().reshape(-1, 69)
        pred_root = matrix_to_axis_angle(pred['poses_root_cam']).cpu().numpy().reshape(-1, 3)
        pred_root_world = matrix_to_axis_angle(pred['poses_root_world']).cpu().numpy().reshape(-1, 3)
        pred_pose = np.concatenate((pred_root, pred_body_pose), axis=-1)
        pred_pose_world = np.concatenate((pred_root_world, pred_body_pose), axis=-1)
        pred_trans = (pred['trans_cam'] - network.output.offset).cpu().numpy()
        
        results[_id]['pose'] = pred_pose
        results[_id]['trans'] = pred_trans
        results[_id]['pose_world'] = pred_pose_world
        results[_id]['trans_world'] = pred['trans_world'].cpu().squeeze(0).numpy()
        results[_id]['betas'] = pred['betas'].cpu().squeeze(0).numpy()
        results[_id]['verts'] = (pred['verts_cam'] + pred['trans_cam'].unsqueeze(1)).cpu().numpy()
        results[_id]['frame_ids'] = frame_id
    
    if save_pkl:
        joblib.dump(results, osp.join(output_pth, "wham_output.pkl"))
     
    # Visualize
    if visualize:
        from lib.vis.run_vis import run_vis_on_demo
        with torch.no_grad():
            run_vis_on_demo(cfg, video, results, output_pth, network.smpl, vis_global=run_global)


if __name__ == '__main__':
    parser = argparse.ArgumentParser()

    parser.add_argument('--video', type=str, 
                        default='examples/demo_video.mp4', 
                        help='input video path or youtube link')

    parser.add_argument('--output_pth', type=str, default='output/demo', 
                        help='output folder to write results')
    
    parser.add_argument('--calib', type=str, default=None, 
                        help='Camera calibration file path')

    parser.add_argument('--estimate_local_only', action='store_true',
                        help='Only estimate motion in camera coordinate if True')
    
    parser.add_argument('--visualize', action='store_true',
                        help='Visualize the output mesh if True')
    
    parser.add_argument('--save_pkl', action='store_true',
                        help='Save output as pkl file')
    
    parser.add_argument('--run_smplify', action='store_true',
                        help='Run Temporal SMPLify for post processing')

    args = parser.parse_args()

    cfg = get_cfg_defaults()
    cfg.merge_from_file('configs/yamls/demo.yaml')
    
    logger.info(f'GPU name -> {torch.cuda.get_device_name()}')
    logger.info(f'GPU feat -> {torch.cuda.get_device_properties("cuda")}')    
    
    # ========= Load WHAM ========= #
    smpl_batch_size = cfg.TRAIN.BATCH_SIZE * cfg.DATASET.SEQLEN
    smpl = build_body_model(cfg.DEVICE, smpl_batch_size)
    network = build_network(cfg, smpl)
    network.eval()
    
    # Output folder
    sequence = '.'.join(args.video.split('/')[-1].split('.')[:-1])
    output_pth = osp.join(args.output_pth, sequence)
    os.makedirs(output_pth, exist_ok=True)
    
    run(cfg, 
        args.video, 
        output_pth, 
        network, 
        args.calib, 
        run_global=not args.estimate_local_only, 
        save_pkl=args.save_pkl,
        visualize=args.visualize)
        
    print()
    logger.info('Done !')