Spaces:
Sleeping
Sleeping
File size: 10,733 Bytes
f561f8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import os
import time
import os.path as osp
from glob import glob
from collections import defaultdict
import torch
import pickle
import numpy as np
from smplx import SMPL
from loguru import logger
from progress.bar import Bar
from configs import constants as _C
from configs.config import parse_args
from lib.data.dataloader import setup_eval_dataloader
from lib.models import build_network, build_body_model
from lib.eval.eval_utils import (
compute_jpe,
compute_rte,
compute_jitter,
compute_error_accel,
compute_foot_sliding,
batch_align_by_pelvis,
first_align_joints,
global_align_joints,
compute_rte,
compute_jitter,
compute_foot_sliding
batch_compute_similarity_transform_torch,
)
from lib.utils import transforms
from lib.utils.utils import prepare_output_dir
from lib.utils.utils import prepare_batch
from lib.utils.imutils import avg_preds
"""
This is a tentative script to evaluate WHAM on EMDB dataset.
Current implementation requires EMDB dataset downloaded at ./datasets/EMDB/
"""
m2mm = 1e3
@torch.no_grad()
def main(cfg, args):
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
logger.info(f'GPU name -> {torch.cuda.get_device_name()}')
logger.info(f'GPU feat -> {torch.cuda.get_device_properties("cuda")}')
# ========= Dataloaders ========= #
eval_loader = setup_eval_dataloader(cfg, 'emdb', args.eval_split, cfg.MODEL.BACKBONE)
logger.info(f'Dataset loaded')
# ========= Load WHAM ========= #
smpl_batch_size = cfg.TRAIN.BATCH_SIZE * cfg.DATASET.SEQLEN
smpl = build_body_model(cfg.DEVICE, smpl_batch_size)
network = build_network(cfg, smpl)
network.eval()
# Build SMPL models with each gender
smpl = {k: SMPL(_C.BMODEL.FLDR, gender=k).to(cfg.DEVICE) for k in ['male', 'female', 'neutral']}
# Load vertices -> joints regression matrix to evaluate
pelvis_idxs = [1, 2]
# WHAM uses Y-down coordinate system, while EMDB dataset uses Y-up one.
yup2ydown = transforms.axis_angle_to_matrix(torch.tensor([[np.pi, 0, 0]])).float().to(cfg.DEVICE)
# To torch tensor function
tt = lambda x: torch.from_numpy(x).float().to(cfg.DEVICE)
accumulator = defaultdict(list)
bar = Bar('Inference', fill='#', max=len(eval_loader))
with torch.no_grad():
for i in range(len(eval_loader)):
# Original batch
batch = eval_loader.dataset.load_data(i, False)
x, inits, features, kwargs, gt = prepare_batch(batch, cfg.DEVICE, cfg.TRAIN.STAGE == 'stage2')
# Align with groundtruth data to the first frame
cam2yup = batch['R'][0][:1].to(cfg.DEVICE)
cam2ydown = cam2yup @ yup2ydown
cam2root = transforms.rotation_6d_to_matrix(inits[1][:, 0, 0])
ydown2root = cam2ydown.mT @ cam2root
ydown2root = transforms.matrix_to_rotation_6d(ydown2root)
kwargs['init_root'][:, 0] = ydown2root
if cfg.FLIP_EVAL:
flipped_batch = eval_loader.dataset.load_data(i, True)
f_x, f_inits, f_features, f_kwargs, _ = prepare_batch(flipped_batch, cfg.DEVICE, cfg.TRAIN.STAGE == 'stage2')
# Forward pass with flipped input
flipped_pred = network(f_x, f_inits, f_features, **f_kwargs)
# Forward pass with normal input
pred = network(x, inits, features, **kwargs)
if cfg.FLIP_EVAL:
# Merge two predictions
flipped_pose, flipped_shape = flipped_pred['pose'].squeeze(0), flipped_pred['betas'].squeeze(0)
pose, shape = pred['pose'].squeeze(0), pred['betas'].squeeze(0)
flipped_pose, pose = flipped_pose.reshape(-1, 24, 6), pose.reshape(-1, 24, 6)
avg_pose, avg_shape = avg_preds(pose, shape, flipped_pose, flipped_shape)
avg_pose = avg_pose.reshape(-1, 144)
avg_contact = (flipped_pred['contact'][..., [2, 3, 0, 1]] + pred['contact']) / 2
# Refine trajectory with merged prediction
network.pred_pose = avg_pose.view_as(network.pred_pose)
network.pred_shape = avg_shape.view_as(network.pred_shape)
network.pred_contact = avg_contact.view_as(network.pred_contact)
output = network.forward_smpl(**kwargs)
pred = network.refine_trajectory(output, return_y_up=True, **kwargs)
# <======= Prepare groundtruth data
subj, seq = batch['vid'][:2], batch['vid'][3:]
annot_pth = glob(osp.join(_C.PATHS.EMDB_PTH, subj, seq, '*_data.pkl'))[0]
annot = pickle.load(open(annot_pth, 'rb'))
masks = annot['good_frames_mask']
gender = annot['gender']
poses_body = annot["smpl"]["poses_body"]
poses_root = annot["smpl"]["poses_root"]
betas = np.repeat(annot["smpl"]["betas"].reshape((1, -1)), repeats=annot["n_frames"], axis=0)
trans = annot["smpl"]["trans"]
extrinsics = annot["camera"]["extrinsics"]
# # Map to camear coordinate
poses_root_cam = transforms.matrix_to_axis_angle(tt(extrinsics[:, :3, :3]) @ transforms.axis_angle_to_matrix(tt(poses_root)))
# Groundtruth global motion
target_glob = smpl[gender](body_pose=tt(poses_body), global_orient=tt(poses_root), betas=tt(betas), transl=tt(trans))
target_j3d_glob = target_glob.joints[:, :24][masks]
# Groundtruth local motion
target_cam = smpl[gender](body_pose=tt(poses_body), global_orient=poses_root_cam, betas=tt(betas))
target_verts_cam = target_cam.vertices[masks]
target_j3d_cam = target_cam.joints[:, :24][masks]
# =======>
# Convert WHAM global orient to Y-up coordinate
poses_root = pred['poses_root_world'].squeeze(0)
pred_trans = pred['trans_world'].squeeze(0)
poses_root = yup2ydown.mT @ poses_root
pred_trans = (yup2ydown.mT @ pred_trans.unsqueeze(-1)).squeeze(-1)
# <======= Build predicted motion
# Predicted global motion
pred_glob = smpl['neutral'](body_pose=pred['poses_body'], global_orient=poses_root.unsqueeze(1), betas=pred['betas'].squeeze(0), transl=pred_trans, pose2rot=False)
pred_j3d_glob = pred_glob.joints[:, :24]
# Predicted local motion
pred_cam = smpl['neutral'](body_pose=pred['poses_body'], global_orient=pred['poses_root_cam'], betas=pred['betas'].squeeze(0), pose2rot=False)
pred_verts_cam = pred_cam.vertices
pred_j3d_cam = pred_cam.joints[:, :24]
# =======>
# <======= Evaluation on the local motion
pred_j3d_cam, target_j3d_cam, pred_verts_cam, target_verts_cam = batch_align_by_pelvis(
[pred_j3d_cam, target_j3d_cam, pred_verts_cam, target_verts_cam], pelvis_idxs
)
S1_hat = batch_compute_similarity_transform_torch(pred_j3d_cam, target_j3d_cam)
pa_mpjpe = torch.sqrt(((S1_hat - target_j3d_cam) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy() * m2mm
mpjpe = torch.sqrt(((pred_j3d_cam - target_j3d_cam) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy() * m2mm
pve = torch.sqrt(((pred_verts_cam - target_verts_cam) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy() * m2mm
accel = compute_error_accel(joints_pred=pred_j3d_cam.cpu(), joints_gt=target_j3d_cam.cpu())[1:-1]
accel = accel * (30 ** 2) # per frame^s to per s^2
summary_string = f'{batch["vid"]} | PA-MPJPE: {pa_mpjpe.mean():.1f} MPJPE: {mpjpe.mean():.1f} PVE: {pve.mean():.1f}'
bar.suffix = summary_string
bar.next()
# =======>
# <======= Evaluation on the global motion
chunk_length = 100
w_mpjpe, wa_mpjpe = [], []
for start in range(0, masks.sum(), chunk_length):
end = min(masks.sum(), start + chunk_length)
target_j3d = target_j3d_glob[start:end].clone().cpu()
pred_j3d = pred_j3d_glob[start:end].clone().cpu()
w_j3d = first_align_joints(target_j3d, pred_j3d)
wa_j3d = global_align_joints(target_j3d, pred_j3d)
w_jpe = compute_jpe(target_j3d, w_j3d)
wa_jpe = compute_jpe(target_j3d, wa_j3d)
w_mpjpe.append(w_jpe)
wa_mpjpe.append(wa_jpe)
w_mpjpe = np.concatenate(w_mpjpe) * m2mm
wa_mpjpe = np.concatenate(wa_mpjpe) * m2mm
# Additional metrics
rte = compute_rte(torch.from_numpy(trans[masks]), pred_trans.cpu()) * 1e2
jitter = compute_jitter(pred_glob, fps=30)
foot_sliding = compute_foot_sliding(target_glob, pred_glob, masks) * m2mm
# =======>
# Additional metrics
rte = compute_rte(torch.from_numpy(trans[masks]), pred_trans.cpu()) * 1e2
jitter = compute_jitter(pred_glob, fps=30)
foot_sliding = compute_foot_sliding(target_glob, pred_glob, masks) * m2mm
# <======= Accumulate the results over entire sequences
accumulator['pa_mpjpe'].append(pa_mpjpe)
accumulator['mpjpe'].append(mpjpe)
accumulator['pve'].append(pve)
accumulator['accel'].append(accel)
accumulator['wa_mpjpe'].append(wa_mpjpe)
accumulator['w_mpjpe'].append(w_mpjpe)
accumulator['RTE'].append(rte)
accumulator['jitter'].append(jitter)
accumulator['FS'].append(foot_sliding)
# =======>
for k, v in accumulator.items():
accumulator[k] = np.concatenate(v).mean()
print('')
log_str = f'Evaluation on EMDB {args.eval_split}, '
log_str += ' '.join([f'{k.upper()}: {v:.4f},'for k,v in accumulator.items()])
logger.info(log_str)
if __name__ == '__main__':
cfg, cfg_file, args = parse_args(test=True)
cfg = prepare_output_dir(cfg, cfg_file)
main(cfg, args) |