File size: 5,628 Bytes
f561f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division

import torch
import joblib

from .._dataset import BaseDataset
from ..utils.augmentor import *
from ...utils import data_utils as d_utils
from ...utils import transforms
from ...models import build_body_model
from ...utils.kp_utils import convert_kps, root_centering


class Dataset2D(BaseDataset):
    def __init__(self, cfg, fname, training):
        super(Dataset2D, self).__init__(cfg, training)

        self.epoch = 0
        self.n_frames = cfg.DATASET.SEQLEN + 1
        self.labels = joblib.load(fname)

        if self.training:
            self.prepare_video_batch()
        
        self.smpl = build_body_model('cpu', self.n_frames)
        self.SMPLAugmentor = SMPLAugmentor(cfg, False)

    def __getitem__(self, index):
        return self.get_single_sequence(index)

    def get_inputs(self, index, target, vis_thr=0.6):
        start_index, end_index = self.video_indices[index]
        
        # 2D keypoints detection
        kp2d = self.labels['kp2d'][start_index:end_index+1][..., :2].clone()
        kp2d, bbox = self.keypoints_normalizer(kp2d, target['res'], target['cam_intrinsics'], 224, 224, target['bbox'])
        target['bbox'] = bbox[1:]
        target['kp2d'] = kp2d
        
        # Detection mask
        target['mask'] = ~self.labels['joints2D'][start_index+1:end_index+1][..., -1].clone().bool()
        
        # Image features
        target['features'] = self.labels['features'][start_index+1:end_index+1].clone()
        
        return target
    
    def get_labels(self, index, target):
        start_index, end_index = self.video_indices[index]
        
        # SMPL parameters
        # NOTE: We use NeuralAnnot labels for Human36m and MPII3D only for the 0th frame input.
        #       We do not supervise the network on SMPL parameters.
        target['pose'] = transforms.axis_angle_to_matrix(
            self.labels['pose'][start_index:end_index+1].clone().reshape(-1, 24, 3))
        target['betas'] = self.labels['betas'][start_index:end_index+1].clone()        # No t
        
        # Apply SMPL augmentor (y-axis rotation and initial frame noise)
        target = self.SMPLAugmentor(target)
        
        # 2D keypoints
        kp2d = self.labels['kp2d'][start_index:end_index+1].clone().float()[..., :2]
        gt_kp2d = torch.zeros((self.n_frames - 1, 31, 2))
        gt_kp2d[:, :17] = kp2d[1:].clone()
        
        # Set 0 confidence to the masked keypoints
        mask = torch.zeros((self.n_frames - 1, 31))
        mask[:, :17] = self.labels['joints2D'][start_index+1:end_index+1][..., -1].clone()
        mask = torch.logical_and(gt_kp2d.mean(-1) != 0, mask)
        gt_kp2d = torch.cat((gt_kp2d, mask.float().unsqueeze(-1)), dim=-1)
        
        _gt_kp2d = gt_kp2d.clone()
        for idx in range(len(_gt_kp2d)):
            _gt_kp2d[idx][..., :2] = torch.from_numpy(
                self.j2d_processing(gt_kp2d[idx][..., :2].numpy().copy(),
                                    target['bbox'][idx].numpy().copy()))

        target['weak_kp2d'] = _gt_kp2d.clone()
        target['full_kp2d'] = torch.zeros_like(gt_kp2d)
        target['kp3d'] = torch.zeros((kp2d.shape[0], 31, 4))
        
        # No SMPL vertices available
        target['verts'] = torch.zeros((self.n_frames - 1, 6890, 3)).float()
        return target
        
    def get_init_frame(self, target):
        # Prepare initial frame
        output = self.smpl.get_output(
            body_pose=target['init_pose'][:, 1:],
            global_orient=target['init_pose'][:, :1],
            betas=target['betas'][:1],
            pose2rot=False
        )
        target['init_kp3d'] = root_centering(output.joints[:1, :self.n_joints]).reshape(1, -1)   
        
        return target

    def get_single_sequence(self, index):
        # Camera parameters
        res = (224.0, 224.0)
        bbox = torch.tensor([112.0, 112.0, 1.12])
        res = torch.tensor(res)
        self.get_naive_intrinsics(res)
        bbox = bbox.repeat(self.n_frames, 1)
        
        # Universal target
        target = {'has_full_screen': torch.tensor(False),
                  'has_smpl': torch.tensor(self.has_smpl),
                  'has_traj': torch.tensor(self.has_traj),
                  'has_verts': torch.tensor(False),
                  'transl': torch.zeros((self.n_frames, 3)),
                  
                  # Camera parameters and bbox
                  'res': res,
                  'cam_intrinsics': self.cam_intrinsics,
                  'bbox': bbox,
                  
                  # Null camera motion
                  'R': torch.eye(3).repeat(self.n_frames, 1, 1),
                  'cam_angvel': torch.zeros((self.n_frames - 1, 6)),
                  
                  # Null root orientation and velocity
                  'pose_root': torch.zeros((self.n_frames, 6)),
                  'vel_root': torch.zeros((self.n_frames - 1, 3)),
                  'init_root': torch.zeros((1, 6)),
                  
                  # Null contact label
                  'contact': torch.ones((self.n_frames - 1, 4)) * (-1)
                  }
        
        self.get_inputs(index, target)
        self.get_labels(index, target)
        self.get_init_frame(target)
        
        target = d_utils.prepare_keypoints_data(target)
        target = d_utils.prepare_smpl_data(target)
        
        return target