Spaces:
Sleeping
Sleeping
File size: 12,696 Bytes
c87d1bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
import cv2
import torch
import random
import numpy as np
from . import transforms
def do_augmentation(scale_factor=0.2, trans_factor=0.1):
scale = random.uniform(1.2 - scale_factor, 1.2 + scale_factor)
trans_x = random.uniform(-trans_factor, trans_factor)
trans_y = random.uniform(-trans_factor, trans_factor)
return scale, trans_x, trans_y
def get_transform(center, scale, res, rot=0):
"""Generate transformation matrix."""
# res: (height, width), (rows, cols)
crop_aspect_ratio = res[0] / float(res[1])
h = 200 * scale
w = h / crop_aspect_ratio
t = np.zeros((3, 3))
t[0, 0] = float(res[1]) / w
t[1, 1] = float(res[0]) / h
t[0, 2] = res[1] * (-float(center[0]) / w + .5)
t[1, 2] = res[0] * (-float(center[1]) / h + .5)
t[2, 2] = 1
if not rot == 0:
rot = -rot # To match direction of rotation from cropping
rot_mat = np.zeros((3, 3))
rot_rad = rot * np.pi / 180
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
rot_mat[0, :2] = [cs, -sn]
rot_mat[1, :2] = [sn, cs]
rot_mat[2, 2] = 1
# Need to rotate around center
t_mat = np.eye(3)
t_mat[0, 2] = -res[1] / 2
t_mat[1, 2] = -res[0] / 2
t_inv = t_mat.copy()
t_inv[:2, 2] *= -1
t = np.dot(t_inv, np.dot(rot_mat, np.dot(t_mat, t)))
return t
def transform(pt, center, scale, res, invert=0, rot=0):
"""Transform pixel location to different reference."""
t = get_transform(center, scale, res, rot=rot)
if invert:
t = np.linalg.inv(t)
new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T
new_pt = np.dot(t, new_pt)
return np.array([round(new_pt[0]), round(new_pt[1])], dtype=int) + 1
def crop_cliff(img, center, scale, res):
"""
Crop image according to the supplied bounding box.
res: [rows, cols]
"""
# Upper left point
ul = np.array(transform([1, 1], center, scale, res, invert=1)) - 1
# Bottom right point
br = np.array(transform([res[1] + 1, res[0] + 1], center, scale, res, invert=1)) - 1
# Padding so that when rotated proper amount of context is included
pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2)
new_shape = [br[1] - ul[1], br[0] - ul[0]]
if len(img.shape) > 2:
new_shape += [img.shape[2]]
new_img = np.zeros(new_shape, dtype=np.float32)
# Range to fill new array
new_x = max(0, -ul[0]), min(br[0], len(img[0])) - ul[0]
new_y = max(0, -ul[1]), min(br[1], len(img)) - ul[1]
# Range to sample from original image
old_x = max(0, ul[0]), min(len(img[0]), br[0])
old_y = max(0, ul[1]), min(len(img), br[1])
try:
new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], old_x[0]:old_x[1]]
except Exception as e:
print(e)
new_img = cv2.resize(new_img, (res[1], res[0])) # (cols, rows)
return new_img, ul, br
def obtain_bbox(center, scale, res, org_res):
# Upper left point
ul = np.array(transform([1, 1], center, scale, res, invert=1)) - 1
# Bottom right point
br = np.array(transform([res[1] + 1, res[0] + 1], center, scale, res, invert=1)) - 1
# Padding so that when rotated proper amount of context is included
pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2)
# Range to sample from original image
old_x = max(0, ul[0]), min(org_res[0], br[0])
old_y = max(0, ul[1]), min(org_res[1], br[1])
return old_x, old_y
def cam_crop2full(crop_cam, bbox, full_img_shape, focal_length=None):
"""
convert the camera parameters from the crop camera to the full camera
:param crop_cam: shape=(N, 3) weak perspective camera in cropped img coordinates (s, tx, ty)
:param center: shape=(N, 2) bbox coordinates (c_x, c_y)
:param scale: shape=(N, 1) square bbox resolution (b / 200)
:param full_img_shape: shape=(N, 2) original image height and width
:param focal_length: shape=(N,)
:return:
"""
cx = bbox[..., 0].clone(); cy = bbox[..., 1].clone(); b = bbox[..., 2].clone() * 200
img_h, img_w = full_img_shape[:, 0], full_img_shape[:, 1]
w_2, h_2 = img_w / 2., img_h / 2.
bs = b * crop_cam[:, :, 0] + 1e-9
if focal_length is None:
focal_length = (img_w * img_w + img_h * img_h) ** 0.5
tz = 2 * focal_length.unsqueeze(-1) / bs
tx = (2 * (cx - w_2.unsqueeze(-1)) / bs) + crop_cam[:, :, 1]
ty = (2 * (cy - h_2.unsqueeze(-1)) / bs) + crop_cam[:, :, 2]
full_cam = torch.stack([tx, ty, tz], dim=-1)
return full_cam
def cam_pred2full(crop_cam, center, scale, full_img_shape, focal_length=2000.,):
"""
Reference CLIFF: Carrying Location Information in Full Frames into Human Pose and Shape Estimation
convert the camera parameters from the crop camera to the full camera
:param crop_cam: shape=(N, 3) weak perspective camera in cropped img coordinates (s, tx, ty)
:param center: shape=(N, 2) bbox coordinates (c_x, c_y)
:param scale: shape=(N, ) square bbox resolution (b / 200)
:param full_img_shape: shape=(N, 2) original image height and width
:param focal_length: shape=(N,)
:return:
"""
# img_h, img_w = full_img_shape[:, 0], full_img_shape[:, 1]
img_w, img_h = full_img_shape[:, 0], full_img_shape[:, 1]
cx, cy, b = center[:, 0], center[:, 1], scale * 200
w_2, h_2 = img_w / 2., img_h / 2.
bs = b * crop_cam[:, 0] + 1e-9
tz = 2 * focal_length / bs
tx = (2 * (cx - w_2) / bs) + crop_cam[:, 1]
ty = (2 * (cy - h_2) / bs) + crop_cam[:, 2]
full_cam = torch.stack([tx, ty, tz], dim=-1)
return full_cam
def cam_full2pred(full_cam, center, scale, full_img_shape, focal_length=2000.):
# img_h, img_w = full_img_shape[:, 0], full_img_shape[:, 1]
img_w, img_h = full_img_shape[:, 0], full_img_shape[:, 1]
cx, cy, b = center[:, 0], center[:, 1], scale * 200
w_2, h_2 = img_w / 2., img_h / 2.
bs = (2 * focal_length / full_cam[:, 2])
_s = bs / b
_tx = full_cam[:, 0] - (2 * (cx - w_2) / bs)
_ty = full_cam[:, 1] - (2 * (cy - h_2) / bs)
crop_cam = torch.stack([_s, _tx, _ty], dim=-1)
return crop_cam
def obtain_camera_intrinsics(image_shape, focal_length):
res_w = image_shape[..., 0].clone()
res_h = image_shape[..., 1].clone()
K = torch.eye(3).unsqueeze(0).expand(focal_length.shape[0], -1, -1).to(focal_length.device)
K[..., 0, 0] = focal_length.clone()
K[..., 1, 1] = focal_length.clone()
K[..., 0, 2] = res_w / 2
K[..., 1, 2] = res_h / 2
return K.unsqueeze(1)
def trans_point2d(pt_2d, trans):
src_pt = np.array([pt_2d[0], pt_2d[1], 1.]).T
dst_pt = np.dot(trans, src_pt)
return dst_pt[0:2]
def rotate_2d(pt_2d, rot_rad):
x = pt_2d[0]
y = pt_2d[1]
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
xx = x * cs - y * sn
yy = x * sn + y * cs
return np.array([xx, yy], dtype=np.float32)
def gen_trans_from_patch_cv(c_x, c_y, src_width, src_height, dst_width, dst_height, scale, rot, inv=False):
# augment size with scale
src_w = src_width * scale
src_h = src_height * scale
src_center = np.zeros(2)
src_center[0] = c_x
src_center[1] = c_y # np.array([c_x, c_y], dtype=np.float32)
# augment rotation
rot_rad = np.pi * rot / 180
src_downdir = rotate_2d(np.array([0, src_h * 0.5], dtype=np.float32), rot_rad)
src_rightdir = rotate_2d(np.array([src_w * 0.5, 0], dtype=np.float32), rot_rad)
dst_w = dst_width
dst_h = dst_height
dst_center = np.array([dst_w * 0.5, dst_h * 0.5], dtype=np.float32)
dst_downdir = np.array([0, dst_h * 0.5], dtype=np.float32)
dst_rightdir = np.array([dst_w * 0.5, 0], dtype=np.float32)
src = np.zeros((3, 2), dtype=np.float32)
src[0, :] = src_center
src[1, :] = src_center + src_downdir
src[2, :] = src_center + src_rightdir
dst = np.zeros((3, 2), dtype=np.float32)
dst[0, :] = dst_center
dst[1, :] = dst_center + dst_downdir
dst[2, :] = dst_center + dst_rightdir
if inv:
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
else:
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
return trans
def transform_keypoints(kp_2d, bbox, patch_width, patch_height):
center_x, center_y, scale = bbox[:3]
width = height = scale * 200
# scale, rot = 1.2, 0
scale, rot = 1.0, 0
# generate transformation
trans = gen_trans_from_patch_cv(
center_x,
center_y,
width,
height,
patch_width,
patch_height,
scale,
rot,
inv=False,
)
for n_jt in range(kp_2d.shape[0]):
kp_2d[n_jt] = trans_point2d(kp_2d[n_jt], trans)
return kp_2d, trans
def transform(pt, center, scale, res, invert=0, rot=0):
"""Transform pixel location to different reference."""
t = get_transform(center, scale, res, rot=rot)
if invert:
t = np.linalg.inv(t)
new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T
new_pt = np.dot(t, new_pt)
return new_pt[:2].astype(int) + 1
def compute_cam_intrinsics(res):
img_w, img_h = res
focal_length = (img_w * img_w + img_h * img_h) ** 0.5
cam_intrinsics = torch.eye(3).repeat(1, 1, 1).float()
cam_intrinsics[:, 0, 0] = focal_length
cam_intrinsics[:, 1, 1] = focal_length
cam_intrinsics[:, 0, 2] = img_w/2.
cam_intrinsics[:, 1, 2] = img_h/2.
return cam_intrinsics
def flip_kp(kp, img_w=None):
"""Flip keypoints."""
flipped_parts = [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
kp = kp[..., flipped_parts, :]
if img_w is not None:
# Assume 2D keypoints
kp[...,0] = img_w - kp[...,0]
return kp
def flip_bbox(bbox, img_w, img_h):
center = bbox[..., :2]
scale = bbox[..., -1:]
WH = np.ones_like(center)
WH[..., 0] *= img_w
WH[..., 1] *= img_h
center = center - WH/2
center[...,0] = - center[...,0]
center = center + WH/2
flipped_bbox = np.concatenate((center, scale), axis=-1)
return flipped_bbox
def flip_pose(rotation, representation='rotation_6d'):
"""Flip pose.
The flipping is based on SMPL parameters.
"""
BN = rotation.shape[0]
if representation == 'axis_angle':
pose = rotation.reshape(BN, -1).transpose(0, 1)
elif representation == 'matrix':
pose = transforms.matrix_to_axis_angle(rotation).reshape(BN, -1).transpose(0, 1)
elif representation == 'rotation_6d':
pose = transforms.matrix_to_axis_angle(
transforms.rotation_6d_to_matrix(rotation)
).reshape(BN, -1).transpose(0, 1)
else:
raise ValueError(f"Unknown representation: {representation}")
SMPL_JOINTS_FLIP_PERM = [0, 2, 1, 3, 5, 4, 6, 8, 7, 9, 11, 10, 12, 14, 13, 15, 17, 16, 19, 18, 21, 20, 23, 22]
SMPL_POSE_FLIP_PERM = []
for i in SMPL_JOINTS_FLIP_PERM:
SMPL_POSE_FLIP_PERM.append(3*i)
SMPL_POSE_FLIP_PERM.append(3*i+1)
SMPL_POSE_FLIP_PERM.append(3*i+2)
pose = pose[SMPL_POSE_FLIP_PERM]
# we also negate the second and the third dimension of the axis-angle
pose[1::3] = -pose[1::3]
pose[2::3] = -pose[2::3]
pose = pose.transpose(0, 1).reshape(BN, -1, 3)
if representation == 'aa':
return pose
elif representation == 'rotmat':
return transforms.axis_angle_to_matrix(pose)
else:
return transforms.matrix_to_rotation_6d(
transforms.axis_angle_to_matrix(pose)
)
def avg_preds(rotation, shape, flipped_rotation, flipped_shape, representation='rotation_6d'):
# Rotation
flipped_rotation = flip_pose(flipped_rotation, representation=representation)
if representation != 'matrix':
flipped_rotation = eval(f'transforms.{representation}_to_matrix')(flipped_rotation)
rotation = eval(f'transforms.{representation}_to_matrix')(rotation)
avg_rotation = torch.stack([rotation, flipped_rotation])
avg_rotation = transforms.avg_rot(avg_rotation)
if representation != 'matrix':
avg_rotation = eval(f'transforms.matrix_to_{representation}')(avg_rotation)
# Shape
avg_shape = (shape + flipped_shape) / 2.0
return avg_rotation, avg_shape |